
Sums of squares Rome, December 2012

In this note we present proofs of the classical theorems concerning sums of two, three or
four squares of integers. The main tool is Minkowki’s convex body theorem. For the three
squares theorem we follow Ankeny’s 1957 paper [1]. In this case the proof also involves
Dirchlet’s theorem on primes in arithmetic progressions.

Theorem. (Euler 1749) An integer n ≥ 1 is a sum of two squares if and only every prime
q ≡ 3 (mod 4) divides n exactly an even number of times.

Proof. Let p be a prime. Since −1 is not a square modulo p if and only if p ≡ 3 (mod 4)
and since the norm map Z[i] −→ Z is multiplicative, it suffices to show that every prime
p ≡ 1 (mod 4) is a sum of two squares. Let a be an integer for which a2 ≡ −1 (mod p).
The lattice

L = {(x, y) ∈ Z2 : y ≡ ax (mod p)}

has covolume p in R2. Every vector (x, y) ∈ L satisfies x2 + y2 ≡ x2 + a2x2 ≡ 0 (mod p).
The disk D of radius

√
2p has area 2πp. Since this exceeds 22p, Minkowski’s convex body

Theorem implies that there is a non-zero vector (x, y) in L ∩D. Therefore x2 + y2 < 2p.
Since x2 + y2 ≡ 0 (mod p) it follows that x2 + y2 = p as required.

Theorem. (Lagrange 1770) Every integer n ≥ 1 is a sum of 4 squares.

Proof. Since the norm map from the ring of integral quaternions to Z is multiplicative
and since 2 = 12 + 12 + 02 + 02, it suffices to show that every prime p > 2 is a sum of four
squares. Let p be a prime. Since the subsets of Z/pZ given by

{−a2 : a ∈ Z/pZ}, and {b2 + 1 : b ∈ Z/pZ}

both have (p + 1)/2 elements, their intersection is not empty. So, there do exist a, b ∈ Z
for which −a2 ≡ b2 + 1 (mod p). The lattice

L = {(x, y, z, w) ∈ Z4 : z = ax+ by (mod p) and w = bx− ay (mod p)}

has covolume p2 in R4. Every vector (x, y, z, w) in L satisfies

x2 + y2 + z2 +w2 ≡ x2 + y2 + (ax+ by)2 + (bx−ay)2 ≡ (a2 + b2 + 1)(x2 + y2) ≡ 0 (mod p).

The ball B of radius
√

2p in R4 has volume π2

2 (
√

2p)4. Since this exceeds 24p2, Minkowski’s
Theorem implies that there is a non-zero vector (x, y, z, w) in L∩B. This means that the
expression x2 + y2 + z2 + w2 is congruent to 0 (mod p) as well as < 2p. It follows that
x2 + y2 + z2 + w2 = p as required.

Theorem. (Legendre 1798; Gauss 1801) An integer n ≥ 1 is the sum of three squares if
and only if it is not of the form 4km for some integer m ≡ 7 (mod 8).

Proof. A sum of three squares is never congruent to 7 (mod 8) and it is divisible by 4 if
and only if each of the squares is. Therefore it suffices to show that every squarefree integer
m 6≡ 7 (mod 8) is a sum of three squares. First we deal with the case m 6≡ 3 (mod 8). By
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Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime number q
satisfying

q ≡ −1 (mod m), q ≡

 1 (mod 4), when m ≡ 1, 5 (mod 8);
1 (mod 8), when m ≡ 2 (mod 8);
5 (mod 8), when m ≡ 6 (mod 8).

Using quadratic reciprocity one checks that in each case the Legendre symbol
(

−m
q

)
is +1,

so that −m is a square modulo q. Therefore there exists b ∈ Z satisfying b2 ≡ −m (mod q).
The lattice

L = {(x, y, z) ∈ Z3 : x ≡ y (mod m) and y ≡ bz (mod q)}

has covolume mq in R3. Every vector (x, y, z) ∈ L satisfies

qx2 + y2 +mz2 ≡ −x2 + y2 ≡ 0 (mod m),

≡ (bz)2 +mz2 ≡ 0 (mod q).

The ellipsoid E in R3 given by qX2+Y 2+mZ2 ≤ 2mq has volume 4π
3 (
√

2qm)3/
√
qm. Since

this exceeds 23qm, there is a non-zero vector (x, y, z) in L∩E. This means qx2+y2+mz2 <
2qm as well as qx2 + y2 +mz2 ≡ 0 (mod qm). Therefore we must have

qx2 + y2 +mz2 = qm.

Let now p 6= 2, q be a prime that divides y2 + mz2 an odd number of times. Then −m
is a square modulo p and x2 ≡ m (mod p). If p does not divide m, this implies at once
that −1 is a square modulo p and hence p ≡ 1 (mod 4). If p divides m, it divides x and y.
Therefore we have mz2 ≡ qm (mod p2). Since m is squarefree, this implies that q is a
square mod p. Since q ≡ −1 mod m and hence mod p, we see that p ≡ 1 (mod 4).

Therefore every prime p 6= 2, q dividing y2 +mz2 an odd number of times is congruent
to 1 (mod 4). Since q ≡ 1 (mod 4), the two squares theorem implies that (y2 +mz2)/q is
a sum of two squares. This proves the theorem when m 6≡ 3 (mod 8).

Case m ≡ 3 (mod 8). We modify this argument slightly. This time the prime q should
satisfy q ≡ − 1

2 (mod m) and q ≡ 1 (mod 4). Then −m is a square mod q and there exists
b ∈ Z such that b2 ≡ −m (mod 4q). The lattice is replaced by

L = {(x, y, z) ∈ Z3 : x ≡ y (mod m) and y ≡ bz (mod 2q)}.

It has covolume 2mq in R3. This time the relevant quadratic form is 2qX2 + Y 2 +mZ2.
Every vector (x, y, z) ∈ L satisfies

2qx2 + y2 +mz2 ≡ −x2 + y2 ≡ 0 (mod m),

≡ (bz)2 +mz2 ≡ 0 (mod 2q).
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The ellipsoid E given by 2qX2 + Y 2 +mZ2 ≤ 4mq has volume 4π
3 (2
√
qm)3/

√
2qm. Since

this exceeds 232qm, there is a non-zero vector (x, y, z) in L ∩ E. This means that 2qx2 +
y2 +mz2 is congruent to 0 (mod 2qm) as well as < 4qm. Therefore we have

2qx2 + y2 +mz2 = 2qm.

The proof of the fact that any prime p > 2 dividing y2 + mz2 an odd number of times,
is necessarily congruent to 1 (mod 4), is the same. This proves the theorem in the case
m ≡ 3 (mod 8).

[1] N. C. Ankeny.: Sums of three squares, Proceedings of the AMS 8 (1957), 316–319.

3


