9. Dirichlet's Theorem.

The main result of this section is the Dirichlet Unit theorem (P. Lejeune Dirichlet, German mathematician 1805–1859). We give a proof by means of Minkowski's convex body theorem.

Proposition 9.1. Let F be a number field of degree n. Let ε be in the unit group O_F^* of the ring of integers of F. Then the following are equivalent (a) ε has finite order in O_F^* . In other words, it is a root of unity. (b) For i = 1, ..., n we have $|\phi_i(\varepsilon)| = 1$.

Proof. Suppose that ε is a root of unity. Then we have $\varepsilon^m = 1$ for some m > 0. It follows that for each $i = 1, \ldots, n$ we have $\phi_i(\varepsilon)^m = 1$ so that $|\phi_i(\varepsilon)|^m = 1$ and hence $|\phi_i(\varepsilon)| = 1$. Conversely, if for $i = 1, \ldots, n$ we have $|\phi_i(\varepsilon)| = 1$, then for each $k \in \mathbb{Z}$ the unit ε^k is in the lattice $O_F \subset F_{\mathbb{R}}$ as well as in the bounded set $B = \{(z_i) \in F_{\mathbb{R}} : |z_i| \le 1 \text{ for } i = 1, \ldots, n\}$. Since the intersection $O_F \cap B$ is finite, so is $\{\varepsilon^k : k \in \mathbb{Z}\}$. This shows that ε has finite order in O_F^*

Corollary 9.2. Let F be a number field. Then the group μ_F of roots of unity in F is a finite cyclic group.

Proof. Roots of unity are algebraic integers. Therefore we have $\mu_F \subset O_F^*$. In the notation of the proof of part (b) of Proposition 9.1 the group μ_F is contained in the finite set $O_F \cap B$. Therefore μ_F is a finite group. Since O_F is a domain, the group μ_F is cyclic. This proves the corollary.

Let

$$\operatorname{Log}: F^*_{\mathbf{C}} \longrightarrow F_{\mathbf{C}}$$

be the homomorphism defined by

$$\operatorname{Log}(z_1,\ldots,z_n) = (\log |z_1|,\ldots,\log |z_n)| \in F_{\mathbf{C}} = \prod_{i=1}^n \mathbf{C}.$$

The image of the Log-map is contained in the subalgebra $\prod_{i=1}^{n} \mathbf{R}$. The image of $F_{\mathbf{R}}^*$ is the subalgebra $F_{\mathbf{R}}^0$ of elements of $\prod_{i=1}^{n} \mathbf{R}$ for which any two coordinates corresponding to a complex embedding and its complex conjugate, are equal. It has real dimension r_2+r_2 . The image of the subgroup of elements of $F_{\mathbf{R}}^*$ whose norms are ± 1 is the subspace of elements of $F_{\mathbf{R}}^0$ of trace zero. Equivalently, it is the orthogonal complement of the element 1. It is denoted by $F_{\mathbf{R}}^{\perp}$. The dimension of $F_{\mathbf{R}}^{\perp}$ is $r = r_1 + r_2 - 1$. Since units have norm ± 1 , the group $\text{Log}[O_F^*]$ is contained in $F_{\mathbf{R}}^{\perp}$.

Lemma 9.3. The kernel of the homomorphism $\text{Log}: O_F^* \longrightarrow F_{\mathbf{R}}^{\perp}$ is the subgroup μ_F of roots of unity. Its image is a discrete subgroup of $F_{\mathbf{R}}^{\perp}$.

Proof. The kernel consists of units ε for which $|\phi_i(\varepsilon)| = 1$ for i = 1, ..., n. By Prop. 9.1 this means that ε is a root of unity. To prove the second statement, let R > 0 and let $B \subset F_{\mathbf{R}}$ be the subset

 $\{(x_1, \ldots, x_{r_1}, z_1, \ldots, z_{r_2}) \in F_{\mathbf{R}} : |x_i| < R \text{ and } |z_i| < R \text{ for all } i\}.$

Then B is bounded and hence $B \cap F_{\mathbf{R}}^{\perp}$ is a bounded subset of $F_{\mathbf{R}}^{\perp}$. Suppose that the logarithmic image of $\varepsilon \in O_F^*$ is in B. This means that $|\phi_i(\varepsilon)| < e^R$ for all $i = 1, \ldots, n$. Since O_F is a lattice in $F_{\mathbf{R}}$ and since the group of roots of unity μ_F is finite, there are only finitely many units ε with this property. It follows that the image $\mathrm{Log}|O_F^*|$ is discrete subgroup of $F_{\mathbf{R}}^{\perp}$.

Corollary 9.4. Let F be a number field of degree n. Then its unit group O_F^* is a finitely generated group of rank at most r.

Proof. Indeed, let W be the subvector space of $F_{\mathbf{R}}^{\perp}$ spanned by $\text{Log}|O_F^*|$. By Proposition 6.6 (c), the group $\text{Log}|O_F^*|$ is a lattice in W. Since the dimension of $F_{\mathbf{R}}^{\perp}$ is r, the rank of $\text{Log}|O_F^*|$ is at most r.

To prove that the rank of O_F^* is *equal* to r is more difficult. Let F be a number field of degree n and discriminant Δ_F . We write δ for the covolume $\sqrt{|\Delta_F|}$ of $O_F \subset F_{\mathbf{R}}$. We have inclusions

$$F_{\mathbf{R}}^{\perp} \subset F_{\mathbf{R}}^{0} \subset F_{\mathbf{R}}$$

Let $\pi: F^0_{\mathbf{R}} \longrightarrow F^{\perp}_{\mathbf{R}}$ be the orthogonal projection on $F^{\perp}_{\mathbf{R}}$. It is given by

$$\pi(x) = x - \frac{Tr(x)}{n} \cdot 1, \quad \text{for } x \in F^0_{\mathbf{R}}$$

We let $\lambda: F_{\mathbf{R}}^* \longrightarrow F_{\mathbf{R}}^{\perp}$ denote the homomorphism that is the composition of the Log-map $F_{\mathbf{R}}^* \to F_{\mathbf{R}}^0$ and the orthogonal projection on $F_{\mathbf{R}}^{\perp}$. Explicitly we have

$$\lambda(x) = \pi(\operatorname{Log}|x|) = \operatorname{Log}|x| - \frac{Tr(\operatorname{Log}|x|)}{n} \cdot 1 = \operatorname{Log}|\frac{x}{N(x)^{1/n}}|$$

There are only finitely many non-zero principal ideals of O_F with norm at most δ . Let $\alpha_1, \ldots, \alpha_t \in O_F$ be generators of these ideals. For each $i = 1, \ldots, t$ let B_i denote the closed ball with center $\lambda(\alpha_i)$ and radius log δ :

$$B_i = \{ z \in F_{\mathbf{R}}^{\perp} : \| z - \lambda(\alpha_i) \| \le \log \delta \}.$$

We put

$$L = \operatorname{Log}|O_F^*|.$$

This is a subgroup of $F_{\mathbf{R}}^+$. Since $|N(\varepsilon)| = 1$ for every $\varepsilon \in O_F^*$ it is contained in $F_{\mathbf{R}}^{\perp}$. **Proposition 9.5.** We have

$$F_{\mathbf{R}}^{\perp} = \{ y + z : y \in L \text{ and } z \in \bigcup_{i=1}^{n} B_i \}.$$

Proof. Let $x = (x_{\phi})$ be an arbitrary element of $F_{\mathbf{R}}^{\perp}$. By e^x we denote the element $(e^{x_{\phi}})$ of $F_{\mathbf{R}}^*$. The box

$$B = \{(z_{\phi}) \in F_{\mathbf{R}} : |z_{\phi}| \le \delta^{1/n} \text{ for all embeddings } \phi\}.$$

is convex and symmetric and has has volume $2^{r_1}\sqrt{2\pi}^{r_2}\delta \geq 2^n\delta$. We multiply *B* by e^x . The result is another convex and symmetric box

$$e^{x}B = \{(z_{\phi}) \in F_{\mathbf{R}} : |z_{\phi}| \le e^{x}\delta^{1/n} \text{ for all embeddings } \phi\}.$$

Since the trace of x is zero, the norm of e^x is 1. It follows that the volume of the box $e^x B \subset F_{\mathbf{R}}$ is equal to the volume of B and is hence at least $2^n \delta$. By Minkowski's convex body theorem there exists therefore a non-zero vector in $O_F \cap e^x B$. In other words, there is a non-zero $a \in O_F$ for which

$$|\phi(a)| \le e^{x_{\phi}} \delta^{1/n}$$
, for all embeddings ϕ .

This implies that $|N(a)| \leq \delta$. Therefore the principal ideal generated by a is one of the principal ideals (α_i) with $1 \leq i \leq t$ that were enumerated above. This means that $a = \varepsilon \alpha_i$ for some unit $\varepsilon \in O_F^*$. Put $y = \text{Log}(\varepsilon) = \lambda(\varepsilon)$. Then we put

$$z = x - y.$$

To show that $z = x - \text{Log}(\varepsilon)$ is in B_i , we check that $||z - \lambda(\alpha_i)||$ is at most log δ . We have $z - \lambda(\alpha_i) = x - \lambda(\alpha)$ and the inequalities

$$\lambda(a)_{\phi} = \log \left| \frac{\phi(a)}{N(a)^{1/n}} \right| \le \log |\phi(a)| \le x_{\phi} + \frac{1}{n} \log \delta, \quad \text{for all embeddings } \phi.$$

Here we used the fact that $|N(a)| \ge 1$. Since the sum over all ϕ of $\lambda(a)_{\phi}$ and of x_{ϕ} is zero, the lemma below applies to the real numbers $\lambda(a)_{\phi} - x_{\phi}$. We get

$$||z - \lambda(a_i)||^2 = ||\lambda(a) - x||^2 = \sum_{\phi \in \Phi} (\lambda(a)_{\phi} - x_{\phi})^2 \le \frac{n(n-1)}{n^2} \log^2 \delta < \log^2 \delta,$$

as required.

Corollary 9.6. (Dirichlet's unit theorem) The group L is a lattice inside $F_{\mathbf{R}}^{\perp}$.

Proof. Since each ball B_i is compact and since the composite map

$$\bigcup_{i=1}^{t} B_i \ \hookrightarrow \ F_{\mathbf{R}}^{\perp} \ \longrightarrow F_{\mathbf{R}}^{\perp}/L$$

is continuous and surjective, Lemma 9.5 implies that $F_{\mathbf{R}}^0/L$ is compact and we are done.

The covolume of the lattice $\text{Log}|O_F^*|$ in the Euclidean space $F_{\mathbf{R}}^{\perp}$ is an invariant of the number field F. To compute it we choose generators ε_i for $i = 1, \ldots, r$ of O_F^*/μ_F and complete the vectors

$$\begin{pmatrix} \log |\phi_1(\varepsilon_1)| \\ \vdots \\ \log |\phi_n(\varepsilon_1)| \end{pmatrix}, \dots, \begin{pmatrix} \log |\phi_1(\varepsilon_r)| \\ \vdots \\ \log |\phi_n(\varepsilon_r)| \end{pmatrix} \quad \text{in } F_{\mathbf{R}}$$
(*)

to a basis of $F_{\mathbf{R}}$ by adding vectors of $F_{\mathbf{R}}$ that are orthogonal to one another and to $F_{\mathbf{R}}^{\perp}$.

More precisely, we add the vector $1 \in F \subset F_{\mathbf{R}}$. It has length \sqrt{n} . Moreover, for each of the r_2 pairs of complex conjugate embeddings $\phi, \overline{\phi} : F \hookrightarrow \mathbf{C}$ we add the vector $e_{\phi,\overline{\phi}}$ whose coordinates corresponding to ϕ and $\overline{\phi}$ are equal to +1 and -1 respectively, while all other coordinates are zero. It is orthogonal to $F_{\mathbf{R}}^{\perp}$ because $|\phi(a)| = |\overline{\phi}(a)|$ for each $a \in F$. The length of $e_{\phi,\overline{\phi}}$ is $\sqrt{2}$. The covolume of $\mathrm{Log}|O_F^*|$ is

$$\frac{1}{\sqrt{2^{r_2}n}} |\det M|$$

where M is the $n \times n$ -matrix whose columns are the $r = r_1 + r_2 - 1$ vectors listed in (*), the r_2 vectors $e_{\phi,\overline{\phi}}$ and the vector 1. It is closely related to the classical regulator R. We have

$$\operatorname{covol}\operatorname{Log}|O_F^*| = \sqrt{\frac{n}{2^{r_2}}}R.$$

Example 9.8. We compute the unit group O_F^* of the field $F = \mathbf{Q}(\sqrt{67})$. We have $r_1 = 2$ and $r_2 = 0$. Since F admits embeddings into \mathbf{R} , the group of roots of unity in F is $\{\pm 1\}$. By Prop. 3.4 the ring of integers of F is $O_F = \mathbf{Z}[\sqrt{67}]$. By Dirichlet's Unit Theorem the group O_F^* is isomorphic to $\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. In other words, the ring O_F contains a unit ε for which we have

$$O_F^* = \{ \pm \varepsilon^k : k \in \mathbf{Z} \}.$$

We compute such a fundamental unit by exhibiting a principal ideal of O_F that is generated by an element $u \in O_F$ and also by some other element $v \in O_F$. The quotient u/v is then in O_F^* . We begin by factoring some principal ideals of O_F into products of prime ideals Recall that for $k \in \mathbb{Z}$ the norm of the element $k - \sqrt{67} \in O_F$ is equal to $k^2 - 67$. We compute the factorizations of some ideals generated by elements β of the form $\beta = \sqrt{67} - k$ that have small norms.

Table 9.9.

	k	eta	$N(\beta) = k^2 - 67$	(β)
(i)	5	$\sqrt{67}-5$	$-42 = -2 \cdot 3 \cdot 7$	$\mathfrak{p}_2{}^2\mathfrak{p}_3'\mathfrak{p}_7$
(ii)	6	$\sqrt{67}-6$	-31	\mathfrak{p}_{31}
(iii)	7	$\sqrt{67}-7$	$-18 = -2 \cdot 3^2$	$\mathfrak{p}_2\mathfrak{p}_3^2$
(iv)	8	$\sqrt{67}-8$	-3	\mathfrak{p}_3
(v)	9	$\sqrt{67}-9$	$14 = 2 \cdot 7$	$\mathfrak{p}_2\mathfrak{p}_7'$
(vi)	10	$\sqrt{67} - 10$	$33 = 3 \cdot 11$	$\mathfrak{p}_3\mathfrak{p}_{11}$

In this example only the prime ideals of norm ≤ 7 play a role. They divide the prime numbers $p \leq 7$. By Theorem 7.1 the factorization of the primes $p \leq 7$ is determined by the factorization of the polynomial in irreducible factors in the ring $\mathbf{F}_p[X]$. The results are listed in Table 9.10 below.

Table 9.10.

p	$X^2 + 67 \pmod{p}$	factorization	prime ideals
2	$(X-1)^2$	\mathfrak{p}_2^2	$\mathfrak{p}_2 = (2,\sqrt(67)-1)$
3	(X-1)(X+1)	$\mathfrak{p}_3\mathfrak{p}_3'$	$\mathfrak{p}_3 = (3, \sqrt{67} - 1) \text{ and } \mathfrak{p}'_3 = (3, \sqrt{67} + 1)$
5	$X^2 - 2$	(5)	
7	(X-2)(X+2)	$\mathfrak{p}_7\mathfrak{p}_7'$	$\mathfrak{p}_7 = (7, \sqrt{67} - 2) \text{ and } \mathfrak{p}_7' = (7, \sqrt{67} + 2)$

Even if our goal is to compute the unit group of F, note that the Minkowski constant of F is equal to

$$\frac{2!}{2^2}\sqrt{4\cdot 67} \le 8.5.$$

Therefore the class group is generated by the prime ideals of norm at most 7. Lines (iii) and (v) of Table 9.9 show that Cl_F is actually generated by the primes lying over 3. Since these are principal by line (iv), the class group of O_F is trivial and O_F is a PID.

Lines (iii) and (iv) of Table 9.9 show that

$$\frac{(\alpha - 8)^2(\alpha - 7)}{9} = -221 + 27a$$

is an element of O_F of norm 2. Therefore both its square and the number 2 generate the ideal (2). It follows that

$$\varepsilon = \frac{1}{2}(-221+27a)^2 = 48842 - 5967\sqrt{67}$$

is a unit of O_F .

It remains to show that ε and -1 generate the group O_F^* or, equivalently, that ε generates the cyclic group $O_F^*/\{\pm 1\}$. This can be done by a search among small elements of O_F as follows. Any element $a \in O_F$ can be written as $a = X + Y\sqrt{67}$ for certain integers X and Y. Therfore the square of the length of an element $a \in O_F$ is given by

$$||a||^2 = \phi_1(a)^2 + \phi_2(a)^2 = 2(X^2 + 67Y^2).$$

If ε does not generate $O_F^*/\{\pm 1\}$, then $\varepsilon = \pm \eta^k$ for some generator η and $|k| \ge 2$. Since $|\phi_1(\varepsilon)| = 97683.99...$ and $|\phi_2(\varepsilon)| = 0.00001...$ We see that $|\phi_1(\eta)| \le |\phi_1(\varepsilon)|^{1/2} = 312.54$ while $|\phi_2(\eta)| \le 1$. Writing $\eta = X + Y\sqrt{67}$, this means that

$$\|\eta\|^2 = 2(X^2 + 67Y^2) \le 312.54^2 + 1 \le 97685.$$

Since $N(\eta) = X^2 - 67Y^2$ is equal to ± 1 this implies $4 \cdot 67Y^2 \leq 97687$ and hence $|Y| \leq 19$. It is a finite computation to check that only for Y = 0 there is an $X \in \mathbb{Z}$ for which $X^2 - 67Y^2 = \pm 1$. Indeed, these values of X and Y correspond to $\eta = \pm 1$, contradicting the fact that ε is a power of η . It follows that ε is a generator of $O_F^*/\{\pm 1\}$.

The final finite, lengthy computation can be considerably shortened by proving that if $\varepsilon = \pm \eta^k$ for some $k \in \mathbb{Z}$, then |k| must be considerably larger than 2. This can be done by excluding prime divisors p of k. In this example we show that k is not divisible by 2 or 3.

This implies $|k| \ge 5$ and hence $|\phi_1(\eta) \le |\phi_1(\varepsilon)|^{1/5} = 9.96$ while $|\phi_2(\eta) \le 1$. It follows that $\|\eta\|^2 = 2(X^2 + 67Y^2) \le 100.1$. This implies at once Y = 0 and hence $X = \pm 1$. AS before it follows that ε is a generator of $O_F^*/\{\pm 1\}$.

We first show that k is not even. For if k were even, then one of $\pm \varepsilon$ would be a square. Since $\phi_1(\varepsilon)$ is positive, $-\varepsilon$ cannot be a square. We show that ε is not a square either by showing that it is not a square modulo a suitably chosen prime ideal \mathfrak{p} of O_F . We take the small prime ideal $\mathfrak{p} = \mathfrak{p}_3$. The residue field O_F/\mathfrak{p}_3 is \mathbf{F}_3 . The image of $\varepsilon = 48842 - 5967\sqrt{67}$ in O_F/\mathfrak{p}_3 is 2, which is not a square in \mathbf{F}_3 . Therefore ε is not a square in O_F either. This shows that k must be odd.

Similarly, k is not divisible by 3. Since -1 is a cube in O_F , the exponent k is divisible by 3 if and only if ε is a cube. This time we choose a prime ideal \mathfrak{p} for which $\#(O_F/\mathfrak{p})^*$ is divisible by 3. We take $\mathfrak{p} = \mathfrak{p}_7$. It has residue field \mathbf{F}_7 and the subgroup of cubes is $\{\pm 1\}$. Since $\sqrt{67} \equiv 2 \pmod{\mathfrak{p}_7}$, the image of $\varepsilon = 48842 - 5967\sqrt{67}$ in O_F/\mathfrak{p}_7 is $3 - 3 \cdot 2 = 4$, which is not a cube in \mathbf{F}_7 . Therefore ε is not a cube in O_F .

This completes the computation. The covolume of the lattice $\text{Log}|O_F^*|$ is

$$\frac{1}{\sqrt{2}} \det \begin{pmatrix} 1 & \log |\phi_1(\varepsilon)| \\ 1 & \log |\phi_2(\varepsilon)| \end{pmatrix} = \sqrt{2} \log(48842 + 5967\sqrt{67}),$$

which is indeed $\sqrt{2}$ times the usual regulator.

Exercises.

9.1 Let n > 1 and $M \in \mathbf{R}$. Suppose that $x_1, \ldots, x_n \in \mathbf{R}$ satisfy

$$x_i \leq M$$
 for $i = 1, \dots, n$ and $\sum_{i=1}^n x_i \geq 0$.

Prove the inequality $\sum_{i=1}^{n} x_i^2 \le n(n-1)M^2$.

9.2 Let F be a number field of degree n. The regulator R_F is defined as follows. Let r_1 and r_2 be as usual. So we have $r_1 + 2r_2 = n$. Put $r = r_1 + r_2 - 1$. Let $\varepsilon_1, \ldots, \varepsilon_r$ be a **Z**-basis of the unit group O_F^* modulo roots of unity.

Let $\phi_1, \ldots, \phi_{r_1}$ denote the embeddings $F \longrightarrow \mathbf{C}$ whose image is in \mathbf{R} and $\phi_{r_1}, \ldots, \phi_{r_1+r_2}$ embeddings $F \longrightarrow \mathbf{C}$ that are mutually non-conjugate. Put $r = r_1 + r_2 - 1$. Then

$$R_F = |\det(M)|$$

where M is the $r \times r$ -matrix whose rows are vectors of the form $\log(\phi_i |\varepsilon_1|'), \ldots), \log(\phi_i |\varepsilon_r|')$. Here i runs through the indices $1, \ldots, r$ except one. The absolute value |x|' is the usual one on the real coordinates, but its square on the complex ones.

- (a) Show that the regulator R_F is well defined, i.e. it does not depend on the choice of the embedding $\phi_i : F \to \mathbf{C}$ that was left out.
- (b) Show that $R_F = \sqrt{\frac{2^{r_2}}{n}} \cdot \operatorname{covol} \operatorname{Log} |O_F^*|$.
- 9.3 Let f(T) be a monic polynomial in $\mathbb{Z}[T]$. Show: if Disc(f) = 1, then f is linear or f(T) = (T-k)(T-k-1) for some $k \in \mathbb{Z}$.
- 9.4 Show that if the rank of the unit group O_F^* of a number field F is 1, then $[F: \mathbf{Q}] = 2, 3 \text{ or } 4$.

9.5 (Pell's equation.) Show that for every positive integer d the equation

$$X^2 - dY^2 = 1$$

has solutions $X, Y \in \mathbb{Z}_{>0}$.

- 9.6 Let $f(T) \in \mathbf{Z}[T]$ be a polynomial all of whose roots in \mathbf{C} are on the unit circle. Show that all roots of f are roots of unity.
- 9.7 Let $\eta \in \mathbf{C}$ be a sum of roots of unity. Show that if $|\eta| = 1$, then η is a root of unity.