
9. Dirichlet’s Theorem.

The main result of this section is the Dirichlet Unit theorem (P. Lejeune Dirichlet, Ger-
man mathematician 1805–1859). We give a proof by means of Minkowski’s convex body
theorem.

Proposition 9.1. Let F be a number field of degree n. Let ε be in the unit group O∗F of
the ring of integers of F . Then the following are equivalent
(a) ε has finite order in O∗F . In other words, it is a root of unity.
(b) For i = 1, . . . , n we have |φi(ε)| = 1.

Proof. Suppose that ε is a root of unity. Then we have εm = 1 for some m > 0. It follows
that for each i = 1, . . . , n we have φi(ε)

m = 1 so that |φi(ε)|m = 1 and hence |φi(ε)| = 1.
Conversely, if for i = 1, . . . , n we have |φi(ε)| = 1, then for each k ∈ Z the unit εk is in the
lattice OF ⊂ FR as well as in the bounded set B = {(zi) ∈ FR : |zi| ≤ 1 for i = 1, . . . , n}.
Since the intersection OF ∩ B is finite, so is {εk : k ∈ Z}. This shows that ε has finite
order in O∗F

Corollary 9.2. Let F be a number field. Then the group µF of roots of unity in F is a
finite cyclic group.

Proof. Roots of unity are algebraic integers. Therefore we have µF ⊂ O∗F . In the notation
of the proof of part (b) of Proposition 9.1 the group µF is contained in the finite set OF ∩B.
Therefore µF is a finite group. Since OF is a domain, the group µF is cyclic. This proves
the corollary.

Let
Log : F ∗C −→ FC

be the homomorphism defined by

Log(z1, . . . , zn) = (log |z1|, . . . , log |zn)| ∈ FC =
n∏
i=1

C.

The image of the Log-map is contained in the subalgebra
∏n
i=1 R. The image of F ∗R is the

subalgebra F 0
R of elements of

∏n
i=1 R for which any two coordinates corresponding to a

complex embedding and its complex conjugate, are equal. It has real dimension r2+r2. The
image of the subgroup of elements of F ∗R whose norms are ±1 is the subspace of elements
of F 0

R of trace zero. Equivalently, it is the orthogonal complement of the element 1. It is
denoted by F⊥R . The dimension of F⊥R is r = r1 + r2 − 1. Since units have norm ±1, the
group Log|O∗F | is contained in F⊥R .

Lemma 9.3. The kernel of the homomorphism Log : O∗F −→ F⊥R is the subgroup µF of
roots of unity. Its image is a discrete subgroup of F⊥R .

Proof. The kernel consists of units ε for which |φi(ε)| = 1 for i = 1, . . . , n. By Prop. 9.1
this means that ε is a root of unity. To prove the second statement, let R > 0 and let
B ⊂ FR be the subset

{(x1, . . . , xr1 , z1, . . . , zr2) ∈ FR : |xi| < R and |zi| < R for all i}.
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Then B is bounded and hence B ∩ F⊥R is a bounded subset of F⊥R . Suppose that the
logarithmic image of ε ∈ O∗F is in B. This means that |φi(ε)| < eR for all i = 1, . . . , n.
Since OF is a lattice in FR and since the group of roots of unity µF is finite, there are
only finitely many units ε with this property. It follows that the image Log|O∗F | is discrete
subgroup of F⊥R .

Corollary 9.4. Let F be a number field of degree n. Then its unit group O∗F is a finitely
generated group of rank at most r.

Proof. Indeed, let W be the subvector space of F⊥R spanned by Log|O∗F |. By Proposi-
tion 6.6 (c), the group Log|O∗F | is a lattice in W . Since the dimension of F⊥R is r, the rank
of Log|O∗F | is at most r.

To prove that the rank of O∗F is equal to r is more difficult. Let F be a number field

of degree n and discriminant ∆F . We write δ for the covolume
√
|∆F | of OF ⊂ FR. We

have inclusions
F⊥R ⊂ F 0

R ⊂ FR.

Let π : F 0
R −→ F⊥R be the orthogonal projection on F⊥R . It is given by

π(x) = x− Tr(x)

n
· 1, for x ∈ F 0

R.

We let λ : F ∗R −→ F⊥R denote the homomorphism that is the composition of the Log-map
F ∗R → F 0

R and the orthogonal projection on F⊥R . Explicitly we have

λ(x) = π(Log|x|) = Log|x| − Tr(Log|x|)
n

· 1 = Log| x

N(x)1/n
|.

There are only finitely many non-zero principal ideals of OF with norm at most δ. Let
α1, . . . , αt ∈ OF be generators of these ideals. For each i = 1, . . . , t let Bi denote the closed
ball with center λ(αi) and radius log δ:

Bi = {z ∈ F⊥R : ||z − λ(αi)|| ≤ log δ}.

We put
L = Log|O∗F |.

This is a subgroup of F+
R . Since |N(ε)| = 1 for every ε ∈ O∗F it is contained in F⊥R .

Proposition 9.5. We have

F⊥R = {y + z : y ∈ L and z ∈
n
∪
i=1

Bi}.

Proof. Let x = (xφ) be an arbitrary element of F⊥R . By ex we denote the element (exφ)
of F ∗R. The box

B = {(zφ) ∈ FR : |zφ| ≤ δ1/n for all embeddings φ}.
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is convex and symmetric and has has volume 2r1
√

2π
r2
δ ≥ 2nδ. We multiply B by ex.

The result is another convex and symmetric box

exB = {(zφ) ∈ FR : |zφ| ≤ exδ1/n for all embeddings φ}.

Since the trace of x is zero, the norm of ex is 1. It follows that the volume of the box
exB ⊂ FR is equal to the volume of B and is hence at least 2nδ. By Minkowski’s convex
body theorem there exists therefore a non-zero vector in OF ∩ exB. In other words, there
is a non-zero a ∈ OF for which

|φ(a)| ≤ exφδ1/n, for all embeddings φ.

This implies that |N(a)| ≤ δ. Therefore the principal ideal generated by a is one of the
principal ideals (αi) with 1 ≤ i ≤ t that were enumerated above. This means that a = εαi
for some unit ε ∈ O∗F . Put y = Log(ε) = λ(ε). Then we put

z = x− y.

To show that z = x−Log(ε) is in Bi, we check that ||z− λ(αi)|| is at most log δ. We have
z − λ(αi) = x− λ(a) and the inequalities

λ(a)φ = log| φ(a)

N(a)1/n
| ≤ log|φ(a)| ≤ xφ +

1

n
log δ, for all embeddings φ.

Here we used the fact that |N(a)| ≥ 1. Since the sum over all φ of λ(a)φ and of xφ is zero,
the lemma below applies to the real numbers λ(a)φ − xφ. We get

||z − λ(ai)||2 = ||λ(a)− x||2 =
∑
φ∈Φ

(λ(a)φ − xφ)
2 ≤ n(n− 1)

n2
log2δ < log2δ,

as required.

Corollary 9.6. (Dirichlet’s unit theorem) The group L is a lattice inside F⊥R .

Proof. Since each ball Bi is compact and since the composite map

t
∪
i=1

Bi ↪→ F⊥R −→ F⊥R/L

is continuous and surjective, Lemma 9.5 implies that F 0
R/L is compact and we are done.

The covolume of the lattice Log|O∗F | in the Euclidean space F⊥R is an invariant of the
number field F . To compute it we choose generators εi for i = 1, . . . , r of O∗F /µF and
complete the vectors log |φ1(ε1)|

...
log |φn(ε1)|

 , . . . ,

 log |φ1(εr)|
...

log |φn(εr)|

 in FR (∗)
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to a basis of FR by adding vectors of FR that are orthogonal to one another and to F⊥R .
More precisely, we add the vector 1 ∈ F ⊂ FR. It has length

√
n. Moreover, for each

of the r2 pairs of complex conjugate embeddings φ, φ : F ↪→ C we add the vector eφ,φ
whose coordinates corresponding to φ and φ are equal to +1 and −1 respectively, while all
other coordinates are zero. It is orthogonal to F⊥R because |φ(a)| = |φ(a)| for each a ∈ F .
The length of eφ,φ is

√
2. The covolume of Log|O∗F | is

1√
2r2n

|detM |

where M is the n× n-matrix whose columns are the r = r1 + r2 − 1 vectors listed in (∗),
the r2 vectors eφ,φ and the vector 1. It is closely related to the classical regulator R. We
have

covol Log|O∗F | =
√

n

2r2
R.

Example 9.8. We compute the unit group O∗F of the field F = Q(
√

67). We have r1 = 2
and r2 = 0. Since F admits embeddings into R, the group of roots of unity in F is {±1}.
By Prop. 3.4 the ring of integers of F is OF = Z[

√
67]. By Dirichlet’s Unit Theorem the

group O∗F is isomorphic to Z × Z/2Z. In other words, the ring OF contains a unit ε for
which we have

O∗F = {±εk : k ∈ Z}.

We compute such a fundamental unit by exhibiting a principal ideal of OF that is generated
by an element u ∈ OF and also by some other element v ∈ OF .The quotient u/v is then
in O∗F . We begin by factoring some principal ideals of OF into products of prime ideals
Recall that for k ∈ Z the norm of the element k −

√
67 ∈ OF is equal to k2 − 67. We

compute the factorizations of some ideals generated by elements β of the form β =
√

67−k
that have small norms.

Table 9.9.

k β N(β) = k2 − 67 (β)

(i) 5
√

67− 5 −42 = −2 · 3 · 7 p2
2p′3p7

(ii) 6
√

67− 6 −31 p31

(iii) 7
√

67− 7 −18 = −2 · 32 p2p
2
3

(iv) 8
√

67− 8 −3 p3

(v) 9
√

67− 9 14 = 2 · 7 p2p
′
7

(vi) 10
√

67− 10 33 = 3 · 11 p3p11

In this example only the prime ideals of norm ≤ 7 play a role. They divide the prime
numbers p ≤ 7. By Theorem 7.1 the factorization of the primes p ≤ 7 is determined by
the factorization of the polynomial in irreducible factors in the ring Fp[X]. The results
are listed in Table 9.10 below.

Table 9.10.
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p X2 + 67 (mod p) factorization prime ideals

2 (X − 1)2 p2
2 p2 = (2,

√
(67)− 1)

3 (X − 1)(X + 1) p3p
′
3 p3 = (3,

√
67− 1) and p′3 = (3,

√
67 + 1)

5 X2 − 2 (5)

7 (X − 2)(X + 2) p7p
′
7 p7 = (7,

√
67− 2) and p′7 = (7,

√
67 + 2)

Even if our goal is to compute the unit group of F , note that the Minkowski constant of
F is equal to

2!

22

√
4 · 67 ≤ 8.5.

Therefore the class group is generated by the prime ideals of norm at most 7. Lines (iii)
and (v) of Table 9.9 show that ClF is actually generated by the primes lying over 3. Since
these are principal by line (iv), the class group of OF is trivial and OF is a PID.

Lines (iii) and (iv) of Table 9.9 show that

(α− 8)2(α− 7)

9
= −221 + 27a

is an element of OF of norm 2. Therefore both its square and the number 2 generate the
ideal (2). It follows that

ε =
1

2
(−221 + 27a)2 = 48842− 5967

√
67

is a unit of OF .
It remains to show that ε and −1 generate the group O∗F or, equivalently, that ε

generates the cyclic group O∗F /{±1}. This can be done by a search among small elements
of OF as follows. Any element a ∈ OF can be written as a = X+Y

√
67 for certain integers

X and Y . Therfore the square of the length of an element a ∈ OF is given by

||a||2 = φ1(a)2 + φ2(a)2 = 2(X2 + 67Y 2).

If ε does not generate O∗F /{±1}, then ε = ±ηk for some generator η and |k| ≥ 2. Since
|φ1(ε)| = 97683.99 . . . and |φ2(ε)| = 0.00001 . . .. We see that |φ1(η)| ≤ |φ1(ε)|1/2 = 312.54
while |φ2(η)| ≤ 1. Writing η = X + Y

√
67, this means that

||η||2 = 2(X2 + 67Y 2) ≤ 312.542 + 1 ≤ 97685.

Since N(η) = X2 − 67Y 2 is equal to ±1 this implies 4 · 67Y 2 ≤ 97687 and hence |Y | ≤ 19.
It is a finite computation to check that only for Y = 0 there is an X ∈ Z for which
X2 − 67Y 2 = ±1. Indeed, these values of X and Y correspond to η = ±1, contradicting
the fact that ε is a power of η. It follows that ε is a generator of O∗F /{±1}.

The final finite, lengthy computation can be considarbly shortened by proving that if
ε = ±ηk for some k ∈ Z, then |k| must be considerably larger than 2. This can be done by
excluding prime divisors p of k. In this example we show that k is not divisble by 2 or 3.
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This implies |k| ≥ 5 and hence |φ1(η) ≤ |φ1(ε)|1/5 = 9.96 while |φ2(η) ≤ 1. It follows that
||η||2 = 2(X2 + 67Y 2) ≤ 100.1. This implies at once Y = 0 and hence X = ±1. AS before
it follows that ε is a generator of O∗F /{±1}.

We first show that k is not even. For if k were even, then one of ±ε would be a square.
Since φ1(ε) is positive, −ε cannot be a square. We show that ε is not a square either by
showing that it is not a square modulo a suitably chosen prime ideal p of OF . We take the
small prime ideal p = p3. The residue field OF /p3 is F3. The image of ε = 48842−5967

√
67

in OF /p3 is 2, which is not a square in F3. Therefore ε is not a square in OF either. This
shows that k must be odd.

Similarly, k is not divisible by 3. Since −1 is a cube in OF , the exponent k is divisible
by 3 if and only if ε is a cube. This time we choose a prime ideal p for which #(OF /p)∗ is
divisible by 3. We take p = p7. It has residue field F7 and the subgroup of cubes is {±1}.
Since

√
67 ≡ 2 (mod p7), the image of ε = 48842 − 5967

√
67 in OF /p7 is 3 − 3 · 2 = 4,

which is not a cube in F7. Therefore ε is not a cube in OF .
This completes the computation. The covolume of the lattice Log|O∗F | is

1√
2

det

(
1 log |φ1(ε)|
1 log |φ2(ε)|

)
=
√

2 log(48842 + 5967
√

67),

which is indeed
√

2 times the usual regulator.

Exercises.

9.1 Let n > 1 and M ∈ R. Suppose that x1, . . . , xn ∈ R satisfy

xi ≤M for i = 1, . . . , n and
∑n

i=1
xi ≥ 0.

Prove the inequality
∑n

i=1
x2i ≤ n(n− 1)M2.

9.2 Let F be a number field of degree n. The regulator RF is defined as follows. Let r1 and r2
be as usual. So we have r1 + 2r2 = n. Put r = r1 + r2 − 1. Let ε1, . . . , εr be a Z-basis of the
unit group O∗F modulo roots of unity.
Let φ1, . . . , φr1 denote the embeddings F −→ C whose image is in R and φr1 , . . . , φr1+r2

embeddings F −→ C that are mutually non-conjugate. Put r = r1 + r2 − 1. Then

RF = | det(M)|

where M is the r× r-matrix whose rows are vectors of the form log(φi|ε1|′), . . .), log(φi|εr|′).
Here i runs through the indices 1, . . . , r except one. The absolute value |x|′ is the usual one
on the real coordinates, but its square on the complex ones.
(a) Show that the regulator RF is well defined, i.e. it does not depend on the choice of the

embedding φi : F → C that was left out.

(b) Show that RF =
√

2r2
n
· covol Log|O∗F |.

9.3 Let f(T ) be a monic polynomial in Z[T ]. Show: if Disc(f) = 1, then f is linear or f(T ) =
(T − k)(T − k − 1) for some k ∈ Z.

9.4 Show that if the rank of the unit group O∗F of a number field F is 1, then [F : Q] = 2, 3 or 4.
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9.5 (Pell’s equation.) Show that for every positive integer d the equation

X2 − dY 2 = 1

has solutions X,Y ∈ Z>0.
9.6 Let f(T ) ∈ Z[T ] be a polynomial all of whose roots in C are on the unit circle. Show that

all roots of f are roots of unity.
9.7 Let η ∈ C be a sum of roots of unity. Show that if |η| = 1, then η is a root of unity.
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