
8. Minkowski’s theorem.

In this section we prove the an important finiteness result in algebraic number theory. We
prove that the class group of the ring of integers of a number field is finite.

Theorem 8.1. (Blichfeldt 1873–1945, Danish-US mathematician) Let L be a lattice in
a Euclidean vector space V . Then any measurable set A ⊂ V with vol(A) > covol(L)
contains two vectors a 6= b for which a− b is in L.

Proof. Let F ⊂ V be a fundamental domain for L. Then A is a disjoint union of the sets
Ax = A ∩ (F + x) where x ∈ L. Next consider the translated sets Ax − x. They are all
contained in F . Therefore the volume of their union is at most vol(F ). On the other hand
we have

vol(A) =
∑
x∈L

vol(Ax) =
∑
x∈L

vol(Ax − x).

Since vol(A) > vol(F ), the sum of the volumes of the sets Ax − x is strictly larger than
the volume of their union. This means that some of the sets Ax−x must have non-empty
intersection. In other words, there exist two distinct x,y ∈ L for which (Ax−x)∩(Ay−y)
is not empty. So there is a vector v ∈ F for which both a = v+x and b = v+y are in A.
Since a− b is equal to the non-zero vector x− y in L, we are done.

Theorem 8.2. (Minkowski’s convex body theorem) Let L be a lattice in a Euclidean
vector space V . Let B be a bounded, convex, symmetric subset of V . If

vol(B) > 2ncovol(L)

then there exists a non-zero vector x ∈ L ∩B.

Proof. Consider the lattice 2L = {2x : x ∈ L}. An application of Blichfeldt’s theorem
shows that there exist two vectors x 6= y in B for which x− y is in 2L. This means that
1
2 (x − y) is in L. On the other hand, since B is symmetric, the vector −y is in B and
since B is convex, the vector 1

2 (x− y) is in B. This proves the theorem.

We need to compute the volumes of certain convex bodies. Let k ∈ R>0 and let
f : Rn −→ R≥0 be a continuous function with the property that

f(λx) = λkf(x) for all λ ∈ R≥0 and x ∈ Rn,

B = {x ∈ Rn : f(x) ≤ 1} is bounded.

This implies that f vanishes only in the origin. By continuity, f attains a minimum c > 0
on the unit sphere S = {x ∈ Rn : f(x) = 1}. It follows that the integral

∫
Rn e

−f(x)dx is

at most
∫∞
0
e−ct

k

dt times the area of S. Therefore it converges absolutely.

Lemma 8.3. We have

vol(B) =
1

Γ(nk + 1)

∫
Rn

e−f(x)dx.

Proof. This follows by observing that Rn is a disjoint union of sets of the form Sr = {x ∈
Rn : f(x) = rk} and that f is constant on each Sr. For t > 0 we have Srt = tSr. It follows
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that the volume of Br = {x ∈ Rn : f(x) ≤ rk} is equal to rnvol(B). On the other hand,
we have vol(Br) =

∫ r
0

area(St)dt. It follows that area(Sr) = d
drvol(Br) = nrn−1vol(B).

This gives∫
Rn

e−f(x)dx =

∫ ∞
0

e−t
k

area(St)dt =

∫ ∞
0

e−t
k

ntn−1vol(B)dt = Γ(
n

k
+ 1)vol(B),

as required.

As an application consider f(x) = x21 + . . . + x2n with k = 2. The set B is the n-
dimensional unit ball and the integral over Rn is a product of n integrals of the form∫
R
e−x

2

dx =
√
π. This gives the usual formula for the volume of the unit ball in Rn:

vol(B) =
πn/2

Γ(n2 + 1)
.

Our main application is the convex body given by the function

f(x) = |x1|+ . . .+ |xr1 |+ 2|z1|+ . . .+ 2|zr2 |,

in the Euclidean space FR. In this case k = 1 and the integral of Lemma 8.3 is equal to
the product Ir1Jr2 , where I =

∫
R
e−|x|dx = 2 and J is the integral over C of the function

e−2|z|. Keeping in mind that identifying C with R2 in the usual way, doubles the scalar

product on R2, we get J = 2
∫
R2 e

−2
√
x2+y2dxdy = π and hence

vol(B) =
2r1πr2

n!
.

Theorem 8.4. (Minkowski) Let F be a number field of degree n. Let r1 denote the
number of real embeddings φ : F ↪→ R and r2 the number of pairs of complex embeddings
F ↪→ C. Then every non-zero ideal I of OF contains an element x with

|N(x)| ≤ n!

nn

(
4

π

)r2
|∆F |1/2N(I).

Proof. We view the ideal I via the map Φ : OF −→ FR as a lattice in FR
∼= Rr1 ×Cr2 .

By Prop.5.10(ii) the covolume of I in VF is

covol(I) = N(I)|∆F |1/2.

For any positive real number R we put

X(R) = {(x1, . . . , xr1 , y1, . . . , yr2) ∈ Rr1×Cr2 : |x1|+ . . .+ |xr1 |+2|y1|+ . . .+2|yr2 | ≤ R}.

Using the triangle inequality one easily verifies that X(R) is a convex, symmetric and
bounded set. By Lemma 7.2 its volume is given by

vol(X(R)) = Rn
2r1πr2

n!
.
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From Minkowski’s convex body Theorem 7.1 we conclude that if

Rn
2r1πr2

n!
> 2n ·N(I)|∆F |1/2,

then there exists a non-zero element x ∈ I ∩ X(R). Since for every R the set X(R) is
bounded, and since the set I ∩X(R) is finite, it follows that there is a vector x ∈ I such
that x ∈ X(R) for every R satisfying this inequality. This vector x is also contained in
X(R0) where R0 satisfies the equality

Rn0
n!
πr22r1 = 2n ·N(I)|∆F |1/2.

By Prop.2.7(iii) and the arithmetic-geometric-mean-inequality (Exer.7.D), we have that

|N(x)| = |x1| · . . . |xr1 ||y1|2 · . . . · |yr2 |2,

≤
(
|x1|+ . . .+ |xr1 |+ 2|y1|+ . . .+ 2|yr2 |

n

)n
,

≤ Rn0
nn

=
n!

nn

(
4

π

)r2
|∆F |1/2N(I)

as required.

Corollary 8.5. Let F be a number field of degree n. Then
(a)

|∆F | ≥
(
nn

n!
(
π

4
)r2
)2

.

(b) |∆F | ≥ πn

4 . In particular, |∆F | > 1 whenever F 6= Q.
(c) Every ideal class contains an ideal I with

|N(I)| ≤ n!

nn

(
4

π

)r2
|∆F |1/2.

(d) The class group Cl(OF ) is finite.

Proof. (a) It follows from the multiplicativity of the norm (Prop.4.6) that for every ideal
I and x ∈ I, one has that |N(x)| ≥ N(I). Combining this with Theorem 7.3 gives (a)
(b) One verifies (by induction) that nn ≥ 2n−1n! for all n ≥ 1. It follows from (i) that

|∆F | ≥
(
nn

n!

)2 (π
4

)2r2
≥ (2n−1)2

(π
4

)n
=
πn

4
.

(c) Let c be an ideal class. Every ideal class contains integral ideals. Pick an integral ideal
J in the inverse of the class of I. By Theorem 7.3 there exists an element x ∈ J with∣∣N(xJ−1)

∣∣ ≤ n!

nn

(π
4

)−r2
|∆F |1/2.
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Since the ideal xJ−1 is integral and in c, the result follows.
(d) By Prop.4.8(iii) there are only a finite number of prime ideals of a given norm. There-
fore, for every number B, there are only a finite number of integral ideals of norm less
than B. The result now follows from (iii).

The cardinality of the class group Cl(OF ) is called the class number of OF , or of F .
It is denoted by

hF = #Cl(OF ).

The expression
n!

nn

(
4

π

)r2 √
|∆F |

associated to a number field F , with the usual notations, is called the Minkowski constant
associated to F . Using Stirling’s formula is is easy to see that Cor.7.4(i) implies that for
large values of n we have

|∆F |1/n ≥
(
e2π

4

)(
4

π

) r1
n

,

≥ (5.803)(1.273)
r1
n .

Minkowski’s Theorem can be used to calculate class groups of rings of integers of number
fields. In this section we present two small examples. In the next section we will give more
elaborate examples.

Examples. (i) Take F = Q(α) where α is a zero of the polynomial f(T ) = T 3−T −1. In
section 2 we have calculated the discriminant ∆F of F . We have that ∆F = Disc(f) = −23.
It is easily verified that the polynomial T 3 − T − 1 has precisely one real zero. So r1 = 1
and r2 = 1. The bound in Minkowski’s Theorem is now

3!

33

(
4

π

)√
23 ≈ 1.356942.

Therefore, by Cor.7.4(iii), every ideal class contains an integral ideal of norm less than or
equal to 1. This shows, at once, that the class group of F is trivial. (By Exer.7.R the ring
of integers Z[α] is even Euclidean!)

(ii) Take F = Q(
√
−47). By the example in section 2, the ring of integers of F is Z[ 1+

√
−47
2 ]

and the discriminant of F satisfies ∆F = −47. Since r1 = 0 and r2 = 1 we find that the
Minkowski constant is equal to

2!

22

(
4

π

)√
47 ≈ 4.36444.

Therefore the class group is generated by the prime ideals of norm less than or equal to
4. To find these prime ideals explicitly, we decompose the primes 2 and 3 in OF . Let

α = 1+
√
−47
2 . Then α2 − α + 12 = 0. By the Factorization Lemma (Theorem 6.1) we

see that (2) = p2p
′
2 where p2 = (2, α) and p′2 = (2, α − 1). Similarly (3) = p3p

′
3 where
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p3 = (3, α) and p′3 = (3, α− 1). We conclude that the only ideals of OF of norm less than
4.36444 are OF , p2, p′2, p3, p′3, p22, p′22 , p2p

′
2. Therefore the class number is at most 8.

Since (2) = p2p
′
2, the ideal classes of p2 and p′2 are each others inverses: p′2 ∼ p−12 .

Similarly p′3 ∼ p−13 . We conclude that the class group is generated by the classe of p2
and p3.

In order to determine the class group, we decompose some principal ideals into prime
factors. Principal ideals (β) can be factored, by first factoring their norm N(β) ∈ Z and
then determining the prime ideal divisors of (β). For the sake of convenience we take
elements β of the form β = α − k where k ∈ Z is a small integer. By Exer.2.F we have
that N(β) = N(k − α) = k2 − k + 12.

We find

Table.

k β N(β) (β)

(i) 1 1− α 12 = 22 · 3 p′2
2
p′3

(ii) 2 2− α 14 = 2 · 7 p2p7
(iii) 3 3− α 18 = 2 · 32 p′2p3

2

(iv) 4 4− α 24 = 23 · 3 p2
3p3

(v) 5 5− α 32 = 25 p′2
5

From entry (i), we see that the ideal class of p′2
2
p′3 ∼ (1) is trivial. The relation implies

that

p3 ∼ p−12 .

We conclude that the class group is cyclic. It is generated by the class of p2. We will now
determine the order of this class. The second entry tells us that p7 ∼ p−12 and is not of
much use to us. Relation (iii) implies that

p2 ∼ p23.

Combining this with the relation obtained from the first entry of our table, gives at once
that

p52 ∼ 1.

This relation can also be deduced directly from entry (v) of the table. It follows that the
class group is cyclic of order 5 or 1. The latter case occurs if and only if the ideal p2 is
principal. Suppose that for a, b ∈ Z the element γ = a+b(1+

√
−47)/2 ∈ OF is a generator

of p2. Since the norm of p2 is 2, we must have that

2 = N(p2) = |N(γ)| = a2 + ab+ 12b2.

Writing this equation as (2a+ b)2 + 47b2 = 8, it is immediate that there are no solutions
a, b ∈ Z. We conclude that p2 is not principal and that ClQ(

√
−47)

∼= Z/5Z.
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Corollary 8.6. (J. Hermite, French mathematician 1822–1901) Let ∆ ∈ Z. Up to iso-
morphism there are only finitely many number fields F with |∆F | = ∆.

Proof. Let ∆ ∈ Z. By Cor.8.5 (b) there are only finitely many possible values for the
degree n of F . Therefore we may assume that the degree n is fixed. Let F be a number
field of degree n and discriminant ∆. In the usual notation we have n = r1 + 2r2.

We consider a certain bounded, convex and symmetric box B in FR. If F is totally
complex, i.e. if r1 = 0 the R-algebra FR is isomorphic to Cr2 and we put

B = {(z1, . . . , zr2) ∈ FR : |Re(z1)| ≤ 1, |Im(z1)| ≤
√
|∆|+ 1 and |zi| < 1 for i ≥ 2}.

If r1 = 1 we put

B = {(x1, . . . , xr1 , z1, . . . , zr2)∈FR : |zi| < 1 for i ≥ 1 and |xi| <
{√
|∆|+ 1, for i = 1,

1, for i ≥ 2.
}

It is easily checked that volume of B is 8(2π)r2−1(
√
|∆| + 1) in the first case, while it

is 2r1(2π)r2(
√
|∆| + 1) in the second. In either case vol(B) exceeds 2ncovol(OF ). By

Minkowski’s convex body theorem there exists a non-zero element α ∈ OF for which the
element (φ1(α), . . . , φn(α)) of FR is in B.

Since α is not zero, its norm is at least 1. The fact that α ∈ B implies that |φi(α)| < 1
for all i > 1. We conclude that |φ1(α)| ≥ 1. It follows that φ1(α) 6= φi(α) for all i ≥ 2.
Indeed, this is clear when r1 > 0. In this case we even have |φi(α)| < |φ1(α)| for all i ≥ 2.
In the case r1 = 0, the same is true for all embeddings except the complex conjugate
of φ1. However, if it were the case that φ1(α) = φ1(α), then φ1(α) is in R, which implies
|φ1(α)| = |Re(φ1(α))| < 1, which is a contradiction.

Let f(T ) denote the characteristic polynomial of α. Its zeroes are φ1(α), . . . , φn(α).
Since φ1(α) 6= φi(α) for all i ≥ 2, the polynomial f(T ) has a simple zero. Prop. 2.7 (c)
therefore implies that f(T ) is also the minimum polynomial of α. It follows that F = Q(α).

Since the zeroes φi(α) of f(T ) have absolute values bounded by
√
|∆| + 1, the coef-

ficients of f are bounded as well. Since the coefficients are in Z, there are only finitely
many possibilities for f and therefore, up to isomorphism, for the field F . This proves the
corollary.

8.0 (Jensen’s inequality) Let n ≥ 1, let x1, . . . , xn in the interval [a, b] ⊂ R and λ1, . . . , λn be
‘weights’ in the interval (0, 1) satisfying

∑n

i=1
λi = 1. Suppose f is a convex function on the

interval [a, b].
(a) Show that we have f(

∑n

i=1
λixi) ≤

∑n

i=1
λif(xi).

(b) Apply (a) to the convex function “− log” and prove the arithmetic-geometric mean
inequaliy (

n∏
i=1

xi

)1/n

≤ 1

n

n∑
i=1

xi,
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with equality if and only if all xi are equal. A function is called convex on [a, b] if for

each x, x′ ∈ [a, b] we have f(x+x′

2
) ≤ f(x)+f(x′)

2
.

8.1 Let Γ(s) =
∫∞
0
exxs dx

x
denote Euler’s gamma function.

(a) Prove that the integral converges absolutely for s ∈ C with Re(s) > 1.
(b) Show that sΓ(s) = Γ(s+ 1) for s ∈ C with Re(s) > 1.
(c) Show that Γ(n+ 1) = n! for n ∈ Z>0.
(d) Show that Γ( 1

2
) =
√
π.

8.2 Show that Z[
√
−163] has trivial class group and that Z[

√
−71] has class group isomorphic

to Z/7Z.
8.3 Show that the class group of Q(α) where α is a zero of the polynomial T 3 + T − 1 is trivial.
8.4 Show that the class group of Q(ζ11) is trivial.
8.5 Let f(T ) ∈ Z[T ]. Show: if Disc(f) = 1, then f(T ) = (T − k)(T − k − 1) for some k ∈ Z.
8.6 Show that the ring Z[(1 +

√
19)/2] is not Euclidean, but admits unique factorization.

8.7 Show that the ring Z[
√
−5] has class number 2.

8.8 Suppose x, y ∈ Z satisfy y2 = x3 − 5.
(a) Show that x is odd and y is even.
(b) Show that y +

√
−5 and y −

√
5 are coprime in the ring Z[

√
−5].

(c) Show that the ideal (y +
√
−5) is the cube of an ideal of Z[

√
−5].

(d) Show that y −
√
−5 is the cube of an element of Z[

√
−5] (Hint: previous exercise)

(e) Show that the Diophantine equation Y 2 = X3 − 5 has no solutions X,Y ∈ Z.
8.9 Let F be a number field. Show that if

n!

nn

(
4

π

)r2

|∆F |1/2 < 2

then the ring of integers OF is a Euclidean for the norm |N(x)|. (Hint: Let x ∈ FR. Show,
using the notation of the proof of Theorem 7.3, that the set X(R) ∪ (X(R) + x) with R = n
has a volume that is larger than 2ncovol(OF ). Show that it contains a lattice point.)
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