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Introduction

This work concerns two independent subjects which are both fundamental
in classical algebraic geometry: unirationality and Grassmann varieties. In
particular, we focus here on unirationality of families of hypersurfaces and on
proprieties of quadratic line complexes. Both parts contain some interesting
results.

An algebraic variety X is unirational if we can find a dominant ration
map from a projective space to X. If such a map is birational, then X is said
rational. Lüroth proved in a classical theorem that the two notions coincides
for a curve [Lür75]; the same was proved by Castelnuovo and Enriques for
surfaces [Cas94], [Enr97]. However, it was not known if the two notions were
the same in general until the 1970s, when Clemens and Griffiths [CG72] and
Iskovskikh and Manin [IM71] found varieties of dimension three which are
unirational but not rational. Then it was clear that it is easier to obtain
examples of unirational varieties than rational ones. We work so on the
weaker notion of unirationality.

The first part of the thesis is dedicated to prove, under appropriate hy-
potheses, the unirationality of varieties described by families of hypersurfaces,
and we prove it by using two classical ideas. The first idea comes from an
article of Conforto [Con41] which proves, under certain condition, the unira-
tionality of a family of quadric hypersurfaces parametrized by a unirational
basis. To do it, he finds a rational section: i.e., he finds a rational point on the
generic fibre. Then, using a criterion of Roth [Rot50], he obtains the proof.
This approach can be found also in an older article by Comessatti [Com40]:
he uses the "rational section idea" to prove the rationality of a family of
conics, and he does so very nicely working directly with polynomials.

The other idea comes from works proving the unirationality of hyper-
surfaces of low degree and high dimension. The first of this work can be
attributed to Morin [Mor42], and two are the main articles which improves
his results: the one by Murre [Mur79] and another by Ciliberto [Cil80]. The
methods in these articles are the same: for a generic high dimensional hyper-
surface of low degree, to find a linear space on it corresponds to proving its
unirationality. Then each author gives a lower bound on the dimension of
the hypersurfaces for which it is possible to find the aforementioned linear
space and to construct the dominant rational map from a projective space
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which proves the unirationality.
These ideas are put together in the present work and allow us to prove the

unirationality of varieties described by suitable families of hypersurfaces of
low degree and high dimension: given a family of this kind, we construct the
associated Fano family of the appropriate linear spaces contained in them and
we find a rational section of it. At the end, we are able to give a numerical
criterion for the unirationality of varieties described by suitable families of
hypersurfaces.

The second part of the thesis is dedicated to the study of quadratic line
complexes, i.e., intersection of Grassmannian of lines with quadrics in the
Plücker ambient space. We study the quadratic line complexes in relation
with their discriminant loci. Given a quadratic complex of lines, we can
see it as assigning to each point of the initial projective space a quadric
hypersurface in a hyperplane: the discriminant hypersurface parametrizes the
points whose corresponding quadric is singular. Then, studying its proprieties,
we construct a double cover of the discriminant of the complex of lines in a
four-dimensional space. In the final section, we show the connection between
this double cover and O’Grady’s double cover of the so called EPW–sextic in
the five–dimensional space [OGr06].

Let us summarize the contents of each Chapter. In Chapter 1 we recall
some results on basic algebraic geometry subjects, such as quadrics, rationality
and osculating spaces.

In Chapter 2, we begin to recall the rationality of Grassmann varieties.
Then, in Section 2.2, we recall the concept of a family of hypersurfaces and we
show how to find a "rational section". Then we construct the Fano families,
and in the final Section of this Chapter, we obtain the final result about
unirationality, Corollary 2.24.

In Chapter 3, we introduce and study quadratic line complexes in a
projective space of dimension n. We give a description of special points
and special lines, which are strictly related to the concept of discriminant
hypersurface D(X), as the Proposition 3.17 shows. Then, we study the
singularities of this hypersurface, and in the case n = 4 (i.e., the lines of the
complex lie in a four dimensional projective space), we construct a double
cover of D(X). Then in the final section we prove that this is a canonical
morphism, and its relation with the EPW-sextic.



Chapter 1

Preliminaries

1.1 Quadrics

Let |OPn(2)| be the linear system of quadrics of dimension n − 1, and
let x = [x0, . . . , xn] be the homogeneous coordinates of Pn. A quadric Q in
this linear system has equation of the form x ·M · xt = 0 for some non-zero
symmetric matrixM of order n+1 defined up to multiplication by a constant.
Thus the matrix entries mij ’s up to scalar multiplication (simply denoted
by [M ]) can be thought as the homogeneous coordinates of the quadric in
|OPn(2)|. This is a way to compute the dimension of |OPn(2)|, which is n(n+3)

2 .
We define now the rank of a quadric as the rank of the associated matrix

M .

Remark 1.1. We can geometrically describe the quadrics of Pn of a given
rank k. If a quadric Q has maximal rank, i.e. k = n+ 1, then Q is smooth.
Otherwise, if k ≤ n, it is a cone with vertex a linear space of dimension n− k
over a smooth quadric Q′ in a Pk−1.

Definition 1.2. Let Pmn−1 be the projective space associated to the vector
space of m× n matrices. We define the r-th generic determinantal variety
Mr to be the variety parametrizing matrices of rank at most r.

Similarly, we define the symmetric determinantal variety Dk as the variety
of symmetric matrices of |OPn(2)| of corank at least k.

We observe that the irreducibility of the objects described above is not
obvious. It is a corollary of the following results.

Theorem 1.3. The generic determinantal variety M1 inside Pmn−1 is the
Segre variety Seg(m− 1, n− 1) = Pm−1×Pn−1. The generic determinantal
variety Mr for 2 ≤ r ≤ min{m,n} is the (r − 1)-secant variety of the Segre
variety corresponding to M1.

The proof is in [Har92, pp. 98-99]. Briefly, a matrix M has rank 1 if
and only if it can be expressed as the product X · Y t, where X and Y are

1
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non-zero vectors in Km and Kn respectively. Then, a matrix M has rank k
or less if and only if the associated linear map between Kn → Km has rank k
if and only if the map can be expressed as a sum of k linear map of rank 1.

Theorem 1.4. The symmetric determinantal variety Dn inside |OPn(2)|
is the Veronese variety V2,n. The symmetric determinantal variety Dk for
1 ≤ k ≤ n is the (n− k)-secant variety of the Veronese variety corresponding
to Dn.

The proof of the first part is again in [Har92, Ch. 9]. The second statement
has a similar proof of Theorem 1.3. A symmetric matrix M has rank 1 if and
only if it can be expressed as a product X ·Xt, where X ∈ Kn \ {0}. Then a
symmetric matrix has rank less than or equal to k if and only if it can be
expressed as the sum of k symmetric rank 1 matrices.

Lemma 1.5. The following proprieties hold:

1. The variety Mk of matrices of rank at most k is irreducible of codimen-
sion (n− k)(m− k);

2. The variety Dk of symmetric matrices of corank at least k is irreducible
of codimension

(
k+1

2

)
.

Proof. We need some basic proprieties of Grassmannian varieties G(k, n)
(respectively, G(k, n)) which parametrize all the k-planes of a projective
space of dimension n (respectively, all the k-dimensional space of Kn, cf.
Remark 2.1). More information about Grassmannians will be discussed in
Section 2.1.

1. Let I ⊂ Pmn−1×G(n− k, n) be the incidence correspondence given by

I = {(M,Λ)|Λ ⊂ ker(M)}

where we considerM as a linear map (see the remark after Theorem 1.3).
Let π1 and π2 be the projections on the first and on the second factor
respectively. We observe that Mk = π1(I). Then, fixed a point Λ′ ∈
G(n− k, n), the fibre of π2 over Λ′ is isomorphic to P(V ), where V =
Hom(Kn/Λ′,Km). Then we have that I is irreducible and of dimension
dim(G(n− k, n)) + km− 1 = (n− k)k + km− 1 = k(n+m− k)− 1.
Therefore Mk is irreducible; moreover, since π1 is generically injective,
we have that dim(I) = dim(Mk). Thus it follows that codim(Mk) =
mn− 1− k(n+m− k) + 1 = (m− k)(n− k).

2. We use the description of symmetric matrices as coordinates of quadrics
in Pn and Remark 1.1. The we define the incidence correspondence
J ⊂ |OPn(2)| ×G(k − 1, n) as

J = {(Q,Λ)|Λ ⊂ Sing(Q)}
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with the two projections π1 and π2; thus π1(J) = Dk. Any fibre
of π2 is a isomorphic to |OPn−k(2)|, so J is irreducible of dimension
dim(G(k − 1, n)) + (n−k)(n−k+3)

2 = k(n − k + 1) + (n−k)(n−k+3)
2 =

n2+3n+k2−k
2 . Then Dk is irreducible, and, since the first projection is

generically injective, Dk has the same dimension of J . Performing a
simple calculation we obtain the exact codimension.

Definition 1.6. We call D1 the discriminant hypersurface. In particular, its
equation is the determinant of a symmetric matrix of order n + 1, and its
degree is n+ 1.

Next result has again a proof in [Har92, Theorem 22.33].

Proposition 1.7. If Q0 ∈ Dk\Dk+1, then Dk is smooth at Q0 and its tangent
space is given by the linear system of quadrics Q containing Sing(Q0).

In addition to this, if Q0 ∈ Dk \Dk+1, then its singular locus Sing(Q0) is
isomorphic to Pk and its tangent cone to D1 is given by {Q|cork(Q|Sing(Q0)) ≥ 1}
and the multiplicity of D1 at Q0 is k.

Remark 1.8. We recall that to prove the Proposition 1.7 we use the fact that
given a line L passing through Q0 ∈ Dk \Dk+1, the intersection scheme of
the vertex Sing(Q) with the base locus scheme of L is either the whole vertex
of Q0 if L ⊂ TD1,Q0 or a quadric hypersurface.

1.2 Rationality and Unirationality

Definition 1.9. Let X be an algebraic variety defined over a field K. Then
X is said to be rational if there exists a birational isomorphism between X
and a projective space over K. This amounts to saying that the function field
of X is isomorphic to K(t1, . . . , ts) for some s.

Definition 1.10. Let X be an algebraic variety defined over K. Then X is
said to be unirational if there exists a dominant rational map

φ : Pr 99K X

for some r.
This amounts to saying that there exists an embedding of the function

field K(X) in to K(t1, . . . , tr).

Rationality and unirationality are a fundamental propriety of algebraic
varieties, and they will be central topic in Chapter 2. While in general
it is not simple to prove the rationality (or even the unirationality) of a
variety, there are simple examples of rational and unirational varieties: i.e.,
Grassmannian varieties in Section 2.1 and smooth quadric hypersurfaces are
rational varieties.
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Theorem 1.11. Let X be a smooth quadric hypersurface of Pn defined
over K, with n ≥ 2. X is unirational if and only if X is rational if and
only if X contains a K-rational point (i.e., a point given by an embedding
Spec(K)→ X).

Proof. If there is a rational function PnK 99K X, then X has a K-rational
point.

Conversely, if X has a K-rational point P then we can project X from
this point on a Pn−1

K which does not contain P . This map is defined on
X \ P and it is an isomorphism on this open subset. The last implication is
obvious.

1.3 Some proprieties of osculating spaces

In this section we work over the complex field C.

Definition 1.12. Let X be a k-dimensional variety in Pn and let P be a
smooth point of X. X has a local analytic parametrization around P if there
exists an analytic neighbourhood U of P and an invertible analytic function
f : V ⊂ Ck → U such that f(0) = P and f(V ) = X ∩ U .

Definition 1.13. Let X be a k-dimensional variety in Pn and let P be a
smooth point of X. Suppose there exists an analytic local parametrization of
X around P , given by a (n+ 1)-uple [f0(u1, . . . , uk), . . . , fn(u1, . . . , uk)].

We call the derived point of order r at P respect to a multi-index α =
(α1, . . . , αk), with |α| = r, the point Pα whose coordinates are given by

Pα,i :=
∂rfi(u1, . . . , uk)

∂uα1
1 . . . ∂uαk

k

(0) (1.1)

for i = 0, . . . , n, when at least one of the previous derivatives is different from
zero. Otherwise, Pα is not defined.

Definition 1.14. We define the r-osculating space of X at P as the smallest
linear space Πr,P containing P and all of its derived points up to order r.

Remark 1.15. From the previous definition, one could believe that the r-
osculating space is strictly connected to the given parametrization: this is
not true. In fact, from its definition it follows that a hyperplane H contains
Πr,P if and only if the intersection multiplicity of X with H at P is at least
r + 1. Therefore, the r-osculating space can be alternatively defined as the
centre of the projective family of hyperplanes having intersection multiplicity
with X at P at least r + 1.

Definition 1.16. Let C be a curve in Pn and let Λ be a linear space such
that P ∈ C∩Λ. We define the intersection multiplicity of C and Λ at P as the
intersection multiplicity of X and H at P , where H is a general hyperplane
passing through P
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Remark 1.17. If C is a curve contained in X such that P is a smooth point
of C, then the intersection multiplicity of C and Πr,P at P is at least r + 1.
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Chapter 2

Unirationality of families of
hypersurfaces

2.1 Grassmann varieties

In this section we study Grassmann varieties using Semple’s approach
from [Sem31]. Let G(k, n) be the Grassmannian of k-planes in Pn = P(V ),
where V is a K-vector space of dimension n+ 1.

Remark 2.1. The Grassmannian G(k, n) can be also identified with the variety
of the (k + 1)-dimensional subspaces of V . Later this identification will be
useful, so we introduce here the notation G(k, n) or G(k, V ) to denote the
variety containing the subspaces of dimension k of a K-vector space V of
dimension n.

Remark 2.2. We observe that there is a one-to-one correspondence between
k-dimensional subspaces of V and (n− k) dimensional subspaces of V ?: from
this we obtain a canonical isomorphism between G(k, V ) and G(n− k, V ?).
Hence there is a duality isomorphism G(k, n) ∼= G(n− k − 1, n). We assume
without loss of generality that k < n

2 .

For any Λ ∈ G(k, n) we can choose k+1 points P1, . . . , Pk+1, associated to
the vectors v1, . . . , vk+1, such that they span Λ. We can so define a morphism:

φ : G(k, n)→ P(
k+1∧

V ) = PN (2.1)

φ(Λ) = [v1 ∧ . . . ∧ vk+1] (2.2)

where N :=
(
n+1
k+1

)
− 1.

This map is well defined: if we choose another (k + 1)-tuple v′1, . . . , v′k+1

for the same k-space Λ their wedge product differs from the previous one
only for the determinant of the change of basis matrix. It is also an injection.
This morphism is called Plücker embedding.

7
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Explicitly, having fixed a basis B = {e1, . . . , en+1} of V we can associate
to any k-plane Λ a (k + 1)× (n+ 1) matrix MΛ v1,1 . . . v1,n+1

...
...

vk+1,1 . . . vk+1,n+1

 (2.3)

whose rows are the coordinates of the vi’s with respect to the basis B: two
matrices M and M ′ represent the same k-plane if there exists A ∈ GL(k+ 1)
such that M = AM ′.

The homogeneous coordinates of the point in PN corresponding to MΛ

are given by the minors of order k + 1. These are called Plücker coordinates,
and we denote them by zI where I = (i1, . . . , ik+1) is a multi-index with
1 ≤ i1 < i2 < . . . < ik+1 ≤ n+ 1.

If we consider the subset U of points of PN where the first coordinate
z1...k+1 is different from zero, each point Λ ∈ U ∩G(k, n) represents a k-plane
whose associated matrix MΛ can be written in the form

1 0 . . . 0 v1,k+2 . . . v1,n+1

0 1 . . . 0 v2,k+2 . . . v2,n+1
...

. . .
...

...
...

0 0 . . . 1 vk+1,k+2 . . . vk+1,n+1

 . (2.4)

From this description it follows that U ∩G(k, n) is isomorphic to A(k+1)(n−k)

and then the Grassmann variety is rational. How can this isomorphism be
extended to a rational map from G(k, n) to P(k+1)(n−k)? We will see that
this map is a projection of the Grassmannian from PN to P(k+1)(n−k).
Remark 2.3. We can describe geometrically the open subset U : it is the set
of the k-planes of Pn such that they do not intersect the (n− k − 1)-plane
spanned by the points corresponding to ek+2, . . . , en+1, the last n− k vectors
of the basis B. For any choice of a totally decomposable element of ∧n−kV
(i.e., a vector which can be expressed as v1 ∧ . . . ∧ vn−k) we can so construct
a birational map between G(k, n) and P(k+1)(n−k).

Now we consider PM = P(k+1)(n−k) with homogeneous coordinates given
by y and xi,j for i = 1, . . . , k + 1 and j = k + 2, . . . , n+ 1: in this setting the
affine space defined above is the complement of the hyperplane H given by
the equation y = 0. We define the rational map

ψ : PM 99K PN (2.5)

such that for a point [y, x1,k+2, . . . , xk+1,n+1] its image is the point whose
coordinates are given by the k + 1 minors of the matrix

y 0 . . . 0 x1,k+2 . . . x1,n+1

0 y . . . 0 x2,k+2 . . . x2,n+1
...

. . .
...

...
...

0 0 . . . y xk+1,k+2 . . . xk+1,n+1

 . (2.6)
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If we consider the open subset U ′ = {y 6= 0} ⊂ PM , ψ|U ′ is the isomor-
phism described above between U ∩G(k, n) and A(k+1)(n−k).

We can describe the linear system d of hypersurfaces associated to this
map. It corresponds to the vector space W ⊂ H0(PM ,OPM (k + 1)) spanned
by yk+1 and the forms

yk+1−rDr
i1,...,ir;j1,...,jr (2.7)

for r = 1, . . . , k+ 1, k+ 2 ≤ i1 < . . . < ir ≤ n+ 1 and 1 ≤ j1 < . . . jr ≤ k+ 1,
where we denote by Dr

i1,...,ir;j1,...,jr
the minor of order r involving the columns

i1, . . . , ir and the rows j1, . . . , jr of the matrix
x1,k+2 . . . x1,n+1

x2,k+2 . . . x2,n+1
...

...
xk+1,k+2 . . . xk+1,n+1

 . (2.8)

For a fixed r = 1, . . . , k + 1, we define mr as the number of the Dr’s.
Thus, mr =

(
k+1
r

)(
n−k
r

)
.

Lemma 2.4. The linear system d defined above corresponds to hypersurfaces
of degree k + 1 in PM passing with multiplicity at least k through a Segre
variety Seg(k, n− k − 1) contained in the hyperplane H with equation y = 0.

Proof. This linear system d has a base locus B1: observing the basis of W
in (2.7), this is the subvariety of H defined by the vanishing of the minors
Dk+1
i1,...,ik+1;j1,...,jk+1

. Then it follows from Theorem 1.3 that B1 is the (k−1)-th
secant variety of a Segre variety Seg(k, n− k − 1) inside H.

Inside B1, moreover, the linear system d determines the singular loci Br
for r = 2, . . . , k where every hypersurface of d passes through with multiplicity
r. Each Br will be in particular the locus of the points P ∈ B1 such that P
is a point of multiplicity r for B1. These loci Br fill up the (k − r)-secant
variety of Seg(k, n− k − 1) for r = 2, . . . , k (see Section 1.1 and [Har92]). In
particular, each hypersurface in the linear system passes through the Segre
variety, which is Bk, with multiplicity k.

Now, we show that this last condition implies the others. In fact, if a
hypersurface α of degree k + 1 contains the Segre variety with multiplicity k,
each secant line of the Segre must be contained in α with multiplicity k − 1.
Suppose that this line intersects α in a finite number of points: then their
intersection multiplicity is at least 2k, contradiction. So the secant variety
Bk−1 is contained in α, and since the points of Bk have multiplicity 2 inside
Bk−1, Bk−1 is contained in α with multiplicity k − 1.

This process can be repeated and if we take r+1 points in general position
on Seg(k, n − k − 1), the r-plane they span must be contained in α with
multiplicity k − r.
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Lemma 2.5. Let Seg(1, k) be a Segre variety in Pn. Let φ : P1 → G(k, n) be
the morphism which sends a point p to the k-plane p× Pk. Then its image is
a rational normal curve of degree k + 1 inside G(k, n).

Proof. We can assume n = 2k + 1. Then if x0, x1 are the homogeneous
coordinates of P1 and zij , i = 0, 1 and j = 0, . . . , k, are the homogenous
coordinates of P2k+1, we can assume that φ is the map which sends [α0, α1] to
the k-plane whose equations in P2k+1 are α1z0j − α0z1j = 0 for j = 0, . . . , k.
In particular, the image of a point [x0, x1] under φ is the point of G(k, 2k+ 1)
whose coordinates are the minors of maximal order of the matrix

x0 0 . . . 0 x1 0 . . . 0
0 x0 . . . 0 0 x1 . . . 0
...

. . . . . .
...

0 0 . . . x0 0 0 . . . x1

 . (2.9)

There are only k + 2 non-vanishing Plücker coordinates: these correspond
to the monomials of degree k + 1 in x0 and x1. Then it follows that the
linear system associated to the map is complete and equal to H0(P1,O(2)).
Therefore the image of φ is a rational normal curve of degree k + 1.

We can generalize the result above:

Lemma 2.6. Let Seg(1, r) be a Segre variety in Pn and let Π be a (k−r−1)-
plane, with k > r, which does not intersect the (2r + 1)-plane spanned by
Seg(1, r). Let φ : P1 → G(k, n) be the morphism which sends a point p to the
k-plane spanned by Π and the r-plane inside the Segre variety given by p×Pr.
Then its image is a rational normal curve of degree r + 1 inside G(k, n).

Proof. We can assume n = k+r+1: now let Seg(1, r) be a Segre variety inside
the (2r + 1)-plane L given by the vanishing of the last k − r homogeneous
coordinates of Pk+r+1, and letM be the k−r−1 plane given by the vanishing
of the first 2r + 2 coordinates. Then we can associate to the point [x0, x1] of
P1 the matrix whose rows span the join of M and [x0, x1]× Pr. This is the
(k + 1)× (k + r + 2) matrix [

Mx0,x1 01

02 Ik−r

]
,

where Mx0,x1 is the (r + 1) × (2r + 2) matrix associated to the r-plane
[x0, x1]×Pr in L, 01 is the (r+1)×(k−r) zero matrix, 02 is the (k−r)×(2r+2)
zero matrix and Ik−r is the (k − r) identity matrix. Under our assumption,
the only non-vanishing Plücker coordinates of the point of the Grassmaniann
associated to this matrix are given by the monomials of order r+ 1 in x0 and
x1. Thus we have constructed a morphism between P1 and G(k, k + r + 1)
whose image is a rational normal curve of degree r + 1.
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Lemma 2.7. Let Λ0 be a point of G(k, n) and 1 ≤ r ≤ k. Then the osculating
space Πr,Λ0 is the linear space which is spanned by the Schubert variety Wr,Λ0

{Λ ∈ G(k, n)|dim(Λ ∩ Λ0) ≥ k − r} .

Proof. Without loss of generality, we assume that Λ0 is the point where
only the first Plücker coordinate is different from zero. We need a rational
parametrization of the Grassmannian in a neighbourhood of Λ0: we use the
rational parametrization from (2.5) given by the map ψ restricted to AM to
G(k, n) such that ψ((0, . . . , 0)) = Λ0. Then each coordinate function of ψ is
given by a minor Ds as above (in the non-homogeneous coordinates of AM ).
The derivatives up to order r of the minors Ds with s ≥ r + 1 vanish at
0 ∈ AM . Then it follows that the r-osculating space Πr,Λ0 , which is the span
of the derived points up to order r, has dimension up to

∑r
i=1mi − 1, where

we recall that mi is the number of the the Di’s, and it is equal to
(
k+1
i

)(
n−k
i

)
.

Moreover, for each minor Ds with s ≤ r, there exist a derived point (Λ0)α
with |α| = s such that all its coordinates except the one corresponding to Ds

vanish: this implies that the dimension of Πr,Λ0 is exactly
∑r

i=1mi − 1.
Now we need to show that given two k-planes L1 and L2 in Pn such that

they intersect in a linear space M of dimension k − r, then we can construct
a Segre variety Seg(1, r − 1) such that each Li intersects it in a different
(r − 1)-plane. To prove this, we project from M in Pn−k+r−1 and we obtain
two disjoint r-planes L′1 and L′2. If we fix an isomorphism τ : L′1 → L′2, the
variety defined as the union of the lines joining p ∈ L′1 to τ(p) ∈ L′2 is the
desired Segre variety.

Now, from Lemma 2.6, for any k-plane Λ which intersects Λ0 in a linear
space of dimension at least k − r, we can construct a rational normal curve
of degree r passing through Λ0 and Λ. From the description of Πr,Λ0 given
in Section 1.3, if we take a rational normal curve C of degree r in G(k, n)
passing through Λ0, then it must be contained in the r-osculating space.
Then it follows that Wr,Λ0 is contained in Πr,Λ0 .

To show that Πr,Λ0 is exactly the linear space spanned by Wr,Λ0 we use a
dimension count. In our description, Λ0 is spanned by the points associated
to the vectors v1, . . . , vk+1. Let Λ be an element of Wr,Λ0 : we can assume
that is spanned by k + 1 points and the first k − r + 1 points lies on Λ0.
Then the Plücker coordinates of Λ are the maximal minors of a matrix
MΛ = [vi,j ]i=1,...,n+1;j=1,...,k+1 where vi,j = 0 if i ∈ {k + 2, . . . , n + 1} and
j ∈ {1, . . . , k − r + 1}.

The minors which vanish are those which involve only at least r + 1
columns among the last n − k: so, recalling the definition of the mi’s, the
codimension of the linear space spanned by Wr,Λ0 is at least

∑k−r
i=0 mk+1−i.

Since we can vary the variables vi,j ’s above, the codimension is exactly∑k−r
i=0 mk+1−i: in particular the linear space spanned by Wr,Λ0 is precisely

the r-osculating space.
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Proposition 2.8. Let Π be an element of G(n−k−1, n) andWΠ the Schubert
variety

{Λ ∈ G(k, n)|dim(Λ ∩Π) ≥ 1} . (2.10)

Then the projection ϕ : G(k, n) 99K PM from the linear space generated by
WΠ is the inverse map of a ψ : PM 99K G(k, n) as in (2.5).

Proof. We use the notation of Lemma 2.4. First of all we observe that the
linear system d contains the linear system of hyperplanes of PM as a subsystem:
this is |kH + α|, where α is a hyperplane. From our description above it
follows that hypersurfaces of d are sent by ψ to hyperplane sections of G(k, n).
Thus we obtain that ϕ is a projection whose vertex is the intersection of all
hyperplanes of PM whose intersection with the Grassmann variety contain
ψ(H) with multiplicity at least k.

The image of H under ψ is a Grassmannian G0 = G(k, n − k − 1): if
we impose y = 0 in (2.6) this is the Plücker embedding associated to a
(k + 1)× (n− k) matrix.

We have that a hyperplane H ′ contains G0 with multiplicity r if and only
if H ′ contains Πr−1,P for any P ∈ G0. Then from Lemma 2.7, the vertex of
our projection is spanned by the set

{Λ ∈ G(k, n)|∀P ∈ G0, dim(Λ ∩ P ) ≥ 1}

which is clearly the same object described in (2.10). In addition to this, from
a dimension count similar to the one at the end of previous Lemma, the linear
space spanned by WΠ has dimension N −m1− 1 = N − (k+ 1)(n− k)− 1 =
N −M − 1.

For what we have already seen here, the birational map between G(k, n)
and PM is an isomorphism outside a hyperplane section H of G(k, n) and a
hyperplane H ′ in PM . We call these hyperplanes in PN osculating because
they contain the osculating spaces described in the Proposition above.

Lemma 2.9. Let PN? be the dual space of hyperplanes of PN . Then the
osculating hyperplanes of G(k, n) at a G(k, n− k− 1) form a G(n− k− 1, n)
in PN?.

Proof. Let PN? = P[∧k+1V ]? be the dual projective space: this is isomorphic
to P[∧n−kV ]. We recall that an osculating hyperplane is a hyperplane whose
section with G(k, n) is the set of k-planes which intersect a fixed n−k−1-plane.
We want so to show that the set of totally decomposable elements of P[∧n−kV ],
which corresponds to the set of (n− k− 1)-planes of Pn, is embedded in PN?
under a Plücker morphsim. Let H be a n − k − 1-plane which is spanned
by n − k points, which correspond to the vectors v1, . . . , vn−k. A k-plane
intersects H if it is spanned by k+1 points which corresponds to w1, . . . , wk+1

and the square matrix of order n+1 whose rows are v1, . . . , vn−k, w1, . . . , wk+1
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does not have maximal rank. Therefore, the set of these k-planes is a variety:
this is the section of G(k, n) with the hyperplane of PN of equation∑

1≤i1<...<in−k≤n+1

S(i1, . . . , in−k)αi1,...,in−k
xi1,...,in−k

,

where the αi1,...,in−k
’s are the Plücker coordinates of H in G(n−k−1, n), the

xi1,...,in−k
are the homogeneous coordinates of PN , we denote by i1, . . . , in−k

the (k+1)-uple in n+1 obtained by subtracting {i1, . . . , in−k} from {1, . . . , n+
1}, and S is the sign of the permutation (i1, . . . , in−k, i1, . . . , in−k). In par-
ticular, the variety of osculating hyperplanes is embedded by Plücker inside
PN?.

Corollary 2.10. Let G(k, n) be as above. Then for a general projection ψ,
a subvariety V of G(k, n) is mapped birationally onto its image.

Proof. A projection is completely determined by the choice of a (n− k − 1)-
dimensional linear space in Pn: these are parametrized by G(n− k − 1, n).
Furthermore, the indeterminacy locus and the subvariety contracted by the
projection are contained in a hyperplane section of the Grassmannian. Then
if V is zero-dimensional, there exists a hyperplane not containing it. If
dim(V ) > 0, then there exists a hyperplane H such that V \ (V ∩H) is an
open dense subset.

Lemma 2.11. Let G(k, n) be a Grassmannian variety. Then Pic(G(k, n)) =
Z · [H], where H is an hyperplane section.

Proof. Let X be a projective variety and let D ⊂ X be an effective Weil
divisor on X. Then we can construct the sequence

Z→ Pic(X)→ Pic(U)→ 0

where U = X \D, and the first map is given by 1 7→ [D]. We can apply this
construction to G(k, n) and set D to be the divisor defined by the vanishing
of a fixed Plücker coordinate. Then U is an affine space, as we have seen, and
Pic(U) = 0. In addition to this, [D] is not a torsion element of the Picard
group, so the first map is injective. Obviously, [D] ∼ [H].

2.2 Families of hypersurfaces

In this section we discuss about the problem of rationally determining a
linear space on a generic fibre of a family of hypersurfaces. In particular, we
generalize an approach by Conforto [Con41], which extends a previous work
by Comessatti [Com40]. We fix a field K which is algebraically closed and of
characteristic 0. By Lefschetz principle, we can consider K = C. We recall
some general facts, and give the definition of Fano family.
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Definition 2.12. Let W be a projective irreducible variety. We call a family
of hypersurfaces (of degree d and dimension n−1) any morphism φ : X →W ,
such that there exists a morphism g : W → P[H0(Pn,O(d))] and the following
diagram

X H

W P[H0(Pn,O(d))]

f

g

commutes, where H → P[H0(Pn,O(d))] is the universal family of hypersur-
faces.

Definition 2.13. Given two families X →W and Y → T , we say that X
is birationally equivalent to Y (as families) if there exist two birational maps
f : X 99K Y and g : W 99K T such that the diagram

X Y

W T

f

g

commutes.

Remark 2.14. We observe that it is always possible to obtain a family of
hypersurfaces giving a morphism g : W → P[H0(Pn,O(d))] and using the
pullback construction. With a similar pullback construction, furthermore, we
obtain a birationally equivalent family to X → W from a birational map
W 99K T .

Lemma 2.15. Let X → W be a family of hypersurfaces. Then we can
construct a birationally equivalent family X ′ → W ′ such that W ′ is a hy-
persurface in Pr+1 which is birational to W and X ′ can be described by the
following equation:

∑
i1,...,id∈{0,...,n}

ai1...id(u0, . . . , ur+1)
d∏
j=1

xij = 0 (2.11)

where ai1...id ∈ H0(W ′,OW ′(µ)) for some µ ∈ N.

Proof. We observe that giving such a family is equivalent to give a ratio-
nal map W 99K P[H0(Pn,OPn(d))]. So, firstly we replace W with a bira-
tional equivalent hypersurface W ′ ⊆ Pr+1. Then, giving a rational map
W ′ → P[H0(Pn,OPn(d))] is equivalent to give a

(
n+d
n

)
-uple of elements in

H0(W ′,O ′W (µ)) for some µ.

Given a hypersurface X ⊂ Pn, the Fano variety of X, denoted by Fk(X),
is the subvariety of G(k, n) whose points represent k-planes contained in X.
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Lemma 2.16. Let X be a hypersurface of degree d in Pn. Let ϕ : G(k, n) 99K
P(k+1)(n−k) be a general projection map as the one described in Lemma 2.8.
Then ϕ|Fk(X) is a birational map and ϕ(Fk(X)) is described by the vanishing
of
(
d+k
k

)
polynomials of degree d.

Proof. The first assertion follows directly from Corollary 2.10.
Let us consider the incidence variety

Φ = {(Λ, X)|Λ ⊆ X} ⊆ G(k, n)×H0(Pn,O(d))

and let π1 and π2 be the projections on G(k, n) and H0(Pn,O(d)) respectively.
Let f be a homogeneous polynomial of degree d in n+ 1 coordinates; f

can be written as

f(x0, . . . , xn) =
∑

d0+...+dn=d

αd0...dnx
d0
0 . . . xdnn

where the αd0...dn are the homogeneous coordinates of H0(Pn,O(d)).
We assume, without loss of generality, that the projection is an iso-

morphism on the open set of the Grassmannian U where the first Plücker
coordinate is different from zero. For every Λ ∈ U we can give a rational
parametrization φΛ : Pk → Λ ⊆ Pn given by

[s0, . . . , sk] 7→ [s0, . . . , sk] ·MΛ =

= [s0, . . . , sk]


1 0 0 . . . 0 a1,k+2 a1,k+3 . . . a1,n+1

0 1 0 . . . 0 a2,k+2 a2,k+3 . . . a2,n+1
...
0 0 0 . . . 1 ak+1,k+2 ak+1,k+3 . . . ak+1,n+1

 .
If we look at f(φΛ([s0, . . . , sk])), this is a form of degree d in s0, . . . , sk

with coefficient in ai,j and αd0...dn .
Therefore, π−1

1 (U) ⊆ Φ will be described by the vanishing of these
coefficients: their number is

(
d+k
k

)
and these are linear in the αd0,...,dn ’s and

of degree d in the ai,j .
Hence, if X is a hypersurface corresponding to x ∈ H0(Pn,O(d)), then

Fk(X) is given by π−1
2 (x). Then it follows that ϕ(Fk(X)|U ) = Fk(X)∩π−1

1 (U)
is given by the vanishing of

(
d+k
k

)
polynomials of degree d in the affine

coordinates ai,j ’s.

Definition 2.17. Let X →W be a family of hypersurfaces. We denote by
Fk(X )→W the family such that, for a general w in W , the fibre Fk(X )w
is the Fano variety of k-planes in Xw.

Remark 2.18. In this definition we omit the fact that this family really exists
and there is a flat morphism between Fk(X ) and W . This fact is proved in
the following lemma.



16 CHAPTER 2. UNIRATIONALITY

Lemma 2.19. Let X → W be a family of hypersurfaces of degree d in Pn
and let dim(W ) = r. Then we can find a rational section of Fk(X ) if the
following condition holds:

n > k +
1

k + 1

[(
d+ k

k

)
dr − 1

]
. (2.12)

Proof. Let us assume, as in Lemma 2.15, that W is a hypersurface in Pr+1

with homogeneous coordinates u0, . . . , ur+1. W is given by the vanishing of
a form φ(u0, . . . , ur+1) of degree m.

In addition to this, we assume that X has equation as in (2.11), i.e.

∑
i1,...,id∈{0,...,n}

ai1...id(u0, . . . , ur+1)
d∏
j=1

xij = 0 (2.13)

where ai1...id ∈ H0(W,OW (µ)) for some µ ∈ N, and the x0, . . . , xn are the
homogeneous coordinates in Pn.

The Fano family Fk(X )→W is contained in W ×G(k, n). Then from
Lemma 2.16 there exists a birationally equivalent family Fk(X )→W , where,
for a general w ∈ W , Fk(X )w is birational to Fk(X )w. We observe that
Fk(X ) is described by the vanishing of

(
d+k
k

)
equations in W × P(k+1)(n−k).

In particular, Fk(X ) is described by the following equations

∑
i1,...,id∈{0,...,n}

bLi1...id(u0, . . . , ur+1)
d∏
j=1

yij = 0 (2.14)

for L = 1, . . . ,
(
d+k
k

)
, and bLi1...id(u0, . . . , ur+1) ∈ H0(W,OW (µ)). The yij ’s

denote here the homogeneous coordinates of P(k+1)(n−k).
We need now to find a rational section p of Fk(X ), in order to compose

the section with the birational map between Fk(X ) and Fk(X ); obtaining
so a section of the latter. This is possible because, for a general w, we can
assume that p(w) is outside the indeterminacy locus of the rational map
Fk(X ) 99K Fk(X ).

A rational section p : W 99K Fk(X ) is given by a [(k+ 1)(n−k) + 1]-uple
of rational functions of W . Each rational function can be expressed by a
homogeneous polynomial in u0, . . . , ur+1 of a fixed degree m that satisfies
the condition φ(u0, . . . , ur+1) = 0.

Supposingm > m, we can chooseM independent elements inH0(W,OW (m)),
where

M =

(
m+ r + 1

r + 1

)
−
(
m−m+ r + 1

r + 1

)
. (2.15)

We call these forms Ψ1, . . . ,ΨM .
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We want to construct a section p by writing its homogeneous coordinates
as linear combinations of the Ψ’s, i.e. by writing them as

pi =

M∑
j=1

λi,jΨj for i = 0, . . . , (k + 1)(n− k) (2.16)

where the λi,j ’s are new variables. The number of the λ’s is

[(k+1)(n−k)+1]M = [(k+1)(n−k)+1]

[(
m+ r + 1

r + 1

)
−
(
m−m+ r + 1

r + 1

)]
.

(2.17)
We need to find the values of these λ’s such that p is a section: actually,

we will prove that such λ’s exist. We replace the yi’s in all the equations
(2.14) with the pi(u0, . . . , ur+1)’s and we impose that the result vanishes on
W , i.e. it is a form in K[u0, . . . , ur+1] which is divisible by φ(u0, . . . , ur+1).

We make the substitution and for each L we have

∑
i1,...,id∈{0,...,n}

bLi1...id(u0, . . . , ur+1)

d∏
j=1

pij =

=
∑

l1+...+lr+1=dm+µ

FLl0···lr+1
(λi,j)u

l0
0 · · ·u

lr+1

r+1 . (2.18)

The homogeneous polynomials that we have after the substitution are of
degree dm+ µ with respect to u0, . . . , ur+1 and the coefficients FLl0···lr+1

are
polynomials in the λ’s. Thus, for L = 1, . . . ,

(
d+k
k

)
we set∑

l1+...+lr+1=dm+µ

FLl0···lr+1
(λi,j)u

l0
0 · · ·u

lr+1

r+1 =

= φ(u0, . . . , ur+1)

 ∑
i1+...+ir+1=dm−m+µ

αLi0···ir+1
ui00 · · ·u

ir+1

r+1

 (2.19)

where the αLi0···ir+1
are new variables here introduced. Their number is(

d+ k

k

)(
dm−m+ µ+ r + 1

r + 1

)
. (2.20)

Now to prove the thesis we need to show that, under condition (2.12), there
exists an admissible solution of the system of non-homogeneous equations,
obtained by equating the coefficients of the monomials of degree dm+ µ in
(2.19) for each L. A solution of the system is called admissible if it represents
a section: in this case, a solution is not admissible if all the λ’s are equal to
0. In the system there are(

d+ k

k

)(
dm+ µ+ r + 1

r + 1

)
(2.21)
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equations in the α’s and λ’s. The total amount of these variables is

[(k + 1)(n− k) + 1]

[(
m+ r + 1

r + 1

)
−
(
m−m+ r + 1

r + 1

)]
+

(
d+ k

k

)(
dm−m+ µ+ r + 1

r + 1

)
.

(2.22)

If the number of variables is greater than the number of equations, i.e. if the
following inequality holds

[(k + 1)(n− k) + 1]

[(
m+ r + 1

r + 1

)
−
(
m−m+ r + 1

r + 1

)]
+

(
d+ k

k

)(
dm−m+ µ+ r + 1

r + 1

)
>

(
d+ k

k

)(
dm+ µ+ r + 1

r + 1

) (2.23)

our system has admissible solutions: to prove this we use an argument due
to Conforto.

In general, given a system of non-homogeneous equations, it is not true
that if this is underdeterminate (i.e., the number of equations is lower than
the number of the variables) then the set of solutions is non-empty. In
the associated affine space we know that the point P given by λi,j = 0
and αi0···ir+1 = 0 is a solution of the system, despite the fact that it does
not represent an admissible solution: however this implies that the set of
solutions has a component of positive dimension which contains P . This set,
furthermore, cannot consist only of non admissible solutions: in fact, if all
the λ’s are equal to 0, from (2.19) it follows that also the α’s are 0. So, if the
system is underdeterminate, we have a set of solutions of positive dimension.

Therefore, we want to see under which conditions, for m large enough,
that inequality (2.23) holds. This can be written as

[(k + 1)(n− k) + 1]

[(
m+ r + 1

r + 1

)
−
(
m−m+ r + 1

r + 1

)]
+(

d+ k

k

)[(
dm−m+ µ+ r + 1

r + 1

)
−
(
dm+ µ+ r + 1

r + 1

)]
> 0 (2.24)

The term on the left is a polynomial in m: the condition in order that
it is positive for m → +∞ is that the leading coefficient is positive. The
coefficient of the monomial mr+1 is equal to zero, so we have to look at mr.
Its coefficient is given by

[(k + 1)(n− k) + 1]

(r + 1)!
(r + 1)m+

(
d+k
k

)
dr

(r + 1)!
[−(r + 1)m].

After dividing for the positive term m
r! , we obtain

(k + 1)(n− k) + 1−
(
d+ k

k

)
dr > 0

that is equivalent to (2.12).
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2.3 Unirationality of families of hypersurfaces

In this section we use the previous results to find out when a family of
hypersurfaces is unirational. The main theorem used for this result is from
Ciliberto [Cil80], which is a generalization of a work of Morin [Mor42], already
studied by Murre [Mur79]. The Criterion in Proposition 2.21 is due to Roth
[Rot50].

Definition 2.20. Let X be an algebraic variety defined over K. One says
that X is P -rational (resp. P -unirational) if X is K(P )-rational (resp. K(P )-
unirational), where K(P ) is the extension of K obtaining by adding to K the
coordinates of a point P of X.

Similarly, one says that X is L-rational (resp. L-unirational) if X is
K(L)-rational (resp. K(L)-unirational), where K(L) is the extension of K
obtaining by adding to K the Plücker coordinates of a point l (of the right
Grassmanian) representing a linear space L contained in X.

These definitions are clearly a generalization of those of Section 1.2.

Proposition 2.21. Let X →W be a family of varieties with W unirational
irreducible projective variety. If it is possible to rationally determine on the
general fibre Xw a linear subspace L of dimension k with k ≥ 0 such that
Xw is K(L)-unirational, then X is K-unirational.

In addition, if W is a rational variety and Xw is K(L)-rational, then X
is a K-rational variety.

Proof. We denote by s : W 99K Fk(X ) the rational section of the Fano
variety, by φ : PrK 99KW the dominant map which assures the unirationality
of W and by ψw : Pr′K(s(w)) 99K Xw the dominant map which assures the
unirationality of Xw, for a general w ∈W .

Then we can construct the map

PrK × Pr
′

K 99KX

such that the pair (t, t′) is sent to ψφ(t)(t
′). This is a rational dominant map,

and its coefficients are in K.
It follows furthermore that if φ and ψw are generically finite of degree

a and b respectively, then this map is generically finite of degree a · b. The
second assertion follows.

Definition 2.22. 1. We define the sequence of the td’s. These numbers
are given by: {

t0 = 0;

td = td−1 +
(d+td−1
td−1+1

)
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2. Let d be an integer such that d ≥ 3. We define the sequence of the
αd’s:

αd = td−3 + 1 +
1

td−3 + 2

(
d+ td−3 + 1

d

)
If we set k := td−3 + 1, then we have the following theorem.

Theorem 2.23. Let n ≥ αd and d ≥ 3. If X ⊂ PnK is a general hypersurface
of degree d then the Fano variety Fk(X) is not empty. For every L ∈ Fk(X)
there exists M ≥ n− 1 and a rational dominant map PMK(L) 99K X, in other
words X is K(L)-unirational.

The proof is in [Cil80, Theorem 3.2].
This results can be used together with Proposition 2.21 to conclude

whether a family is unirational or not.

Corollary 2.24. Let X →W be a family of hypersurfaces of degree d and
dimension n− 1 and W a unirational irreducible variety of dimension r. This
family is unirational if the following inequality holds:

n > td−3 + 1 +
1

td−3 + 2
[

(
d+ td−3 + 1

td−3 + 1

)
dr − 1] (2.25)

Proof. If this inequality holds, from Lemma 2.19 that we can rationally
determine on a general fibre Xw of the family a linear space L of dimension
td−3 + 1. If we look at the inequality from Theorem 2.23, we see that the
condition n ≥ αd is satisfied. It follows that the generic fibre is K-unirational.
Therefore, by Proposition 2.21, the family X is K-unirational.
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Segre Complexes

3.1 Quadratic complexes

Let G(k, n) be a Grassmann variety. We have proved in Lemma 2.11
that Pic(G(k, n)) ∼= Z, and a generator of this group is [H] ∼= OPN (1)|G(k,n),
where again N =

(
n+1
k+1

)
− 1 and the inclusion G(k, n) ⊂ PN is the Plücker

embedding. A line bundle H in this class is called the Plücker hyperplane line
bundle, and we denote it by OG(k,n)(1). We set OG(k,n)(d) := OG(k,n)(1)⊗d

for any d ∈ Z.
An element in Xd,k,n := |OG(k,n)(d)| is called a d-complex of type (k, n):

geometrically, this is the intersection of the Grassmannian variety with an
hypersurface of PN of degree d.

3.1.1 Linear line complexes and null polarities

Let X ∈ |OG(1,n)(1)| be a linear line complex. Then X is given by the
intersection of G(1, n) with an hyperplane H of PN whose equation is∑

0≤i<j≤n
aXi,jzi,j = 0. (3.1)

We can associate to the hyperplane H the antisymmetric matrix AX of order
n + 1 whose entries in the (i, j) positions for 0 ≤ i < j ≤ n are the aXi,j of
Equation (3.1).

Definition 3.1. Let X be a linear line complex. We define the null polarity
associated to X the rational map

ωX :Pn 99K (Pn)?

x 7→ AX · x.

In particular, if ωX(x) is defined, then this is a hyperplane of Pn which
contains x and all the lines in X passing through x.

21
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3.1.2 Quadratic complexes

In the following section, we will study the quadratic line complexes, i.e.
2-complexes of type (1, n).

Let X ∈X2,1,n be a quadratic line complex, and let s be a smooth point
of X. We define the intersections

X(s) := G(1, n) ∩ TX,s T (s) := G(1, n) ∩ TG(1,n),s.

Lemma 3.2. T (s) is isomorphic to a cone with vertex s over a Segre variety
Seg(1, n− 2), and X(s) is a cone with vertex s over an hyperplane section of
Seg(1, n− 2).

Proof. The first assertion follows from Lemma 2.7: in fact, T (s) = W1,s in the
notation of the Lemma. Then T (s) is the subvariety of G(1, n) containing the
lines which intersect s. A line through s in G(1, n) is given by {l|p ∈ l ⊂ Π},
where p ∈ s and the 2-plane Π ⊃ s are fixed. We obtain W1,s by taking the
union of all this lines, which clearly intersect in s, and the base of the cone
is the parameter space of the pairs (p,Π) as above, which is a Segre variety
Seg(1, n− 2).

Next, since X is smooth at s, we have that dim(TX,s) = dim(TG(1,n),s)−1,
TX,s is an hyperplane in TG(1,n),s and so X(s) is an hyperplane section of
T (s) passing through s, and from this we have the thesis.

Definition 3.3. Let X be a quadratic line complex. An element s ∈ G(1, n)
is said a general line if X(s) is irreducible. Otherwise, s is said to be special.

Lemma 3.4. Let s be a special line of X. Then X(s) is the union of a linear
space ΠX,s of dimension n− 1 and a cone CX,s over a Seg(1, n− 3).

Proof. We need to show that a reducible hyperplane section H of S :=
Seg(1, n− 2) is the union of a (n− 2)-plane and a Seg(1, n− 3). If H is an
hyperplane section of S, then it can be seen as a polynomial of bidegree (1, 1)
in two sets of variables. If it is reducible, this is the product of two linear
polynomials, which corresponds to the pullbacks of the hyperplane sections
on each factor. Then H must be the union of these two pullbacks, which are
of the form p× Pn−2 and P1 × Pn−3.

From this description, we observe that if s is a general line, X(s) is
an irreducible cone swept-out by a family of (n − 2)-dimensional spaces
parametrized by a one dimensional space corresponding to the points of
s. In the proof of Lemma 3.2, we have that the base of the cone X(s) is
an hyperplane section S′ of the Segre variety Seg(1, n − 2). Then we can
restrict the first projection over the project line on S′, obtaining a map
π′ : S′ → s ∼= P1. The fibre of π is a linear space of dimension n− 3. Then
we can define a map π : X(s)→ s whose fibre over z ∈ s is the span of s and
(π′)−1(z).
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Since in G(1, n) these spaces correspond to set of lines passing through a
fixed point and contained in a fixed hyperplane, we have that for each z ∈ s,
the lines of X(s) containing z lie in a hyperplane HX(s, z).

If s is special, there is a point zs ∈ s such that all the lines passing through
zs lie on the linear space ΠX,s of Lemma 3.4. For each other z ∈ s \ {zs},
the lines lie in a fixed hyperplane HX,s(z). Then zs and HX,s(z) are called a
special point and a special hyperplane of the complex X respectively.

Remark 3.5. The propriety of special lines and points can be also analyt-
ically described. We introduce homogeneous coordinates in Pn and the
corresponding Plücker coordinates [z] = [zi,j ] with 0 ≤ i < j ≤ r in PN
(see Section 2.1). The equation of X is of the form f(z) = 0, where f is
a quadratic homogeneous polynomial which is defined modulo the ideal of
G(1, n).

Let s, t be incident lines in Pn, so that the pencil joining them corresponds
to a line ps,t ⊂ G(1, n). Let [s] = [si,j ] and [t] = [ti,j ] be the Plücker
coordinates of the two lines. Then ps,t consists of the ponts of the form
z = λs + µt, with [λ, µ] ∈ P1.

The equation of the intersection of ps,t with X can be written explicitly,
using this classic Euler’s result.

Theorem 3.6. Let f(x1, . . . , xn) be an homogeneous polynomial of degree k
over a field K with char(K) - k. Then the following equality holds:

k · f(x1, . . . , xn) =
n∑
i=1

xi
∂f

∂xi

Therefore, since f(s) = 0, using Euler’s formula one has

f(λs + µt) =
1

2

∑
0≤i<j≤n

(λsi,j + µti,j)
∂f(λs + µt)

∂zi,j
=

=λµ
∑

0≤i<j≤n
ti,j

∂f(s)

∂zi,j
+ µ2f(t) = 0

where we use that the ∂f(z)
∂zi,j

’s are linear polynomials and, since f is a quadratic
form, ∑

0≤i<j≤n
si,j

∂f(t)

∂zi,j
=

∑
0≤i<j≤n

ti,j
∂f(s)

∂zi,j
.

Thus, ps,t ⊂ X(s) if and only if, for every [λ, µ] ∈ P1 the linear part of
the equations above vanishes. Then ps,t ⊂ X(s) if and only if∑

0≤i<j≤n
ti,j

∂f(s)

∂zi,j
= 0. (3.2)
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This is a linear equation in PN which depends on f , but its intersection
with T (s) does not depend on the choice of f . This is a linear complex, and
we denote the associated null polatity by ωf,s. From what we have said so
far we deduce the following Proposition.

Proposition 3.7. Let s be a smooth point of X. Then:

1. the line s is general if and only if ωs is everywhere defined along s; then
for any z ∈ s, one has HX(s, z) = ωf,s(z), so that HX(s, z) varies in a
pencil;

2. the line s is special if and only if ωf,s is not defined at a point of s,
which coincides with the special point zs; for all other point z ∈ s, one
has that HX,s(z) = ωf,s(z) does not depend on z.

Given a point z ∈ Pn, this defines a linear space Πz of dimension n− 1
inside G(1, n): it is defined as the set of lines of Pn passing through z. We
denote by Xz the scheme theoretical intersection of X with Πz. Then two
cases can occur: either Xz = Πz, or Xz is a (n− 2)-dimensional quadric. We
define QX(z) as the variety in Pn described by the lines of Xz. If there are
no ambiguities, we omit the X and we denote it simply by Q(z).

Lemma 3.8. If Xz 6= Πz, then Q(z) is a quadric cone in Pn and rk(Q(z)) =
rk(Xz), or equivalently cork(Q(z)) = cork(Xz) + 1.

Proof. Let [z0, . . . , zn] be the homogeneous coordinates of Pn. If we assume
z = [1, 0, . . . , 0], then we have an isomorphism between Πz and the hyperplane
given by z0 = 0. Then, since char(K) 6= 2, we can assume Xz is given by the
equation z1 + · · ·+ zrk(Xz). From our description it is clear that this is the
same equation of Q(z).

Let X be a general quadratic line complex. Then for z ∈ Pn general, Xz

is smooth and Q(z) has corank equal to 1.

Definition 3.9. Let X be a quadratic line complex. For k = 0, . . . , n, we
define Dk(X) ⊆ Pn as the closed subscheme of points z such that cork(Xz) ≥
k, with the convention that cork(Xz) = n means that Xz = Πz.

Lemma 3.10. Let X be a general quadratic line complex. Then either Dk(X)
is empty or Dk(X) has dimension

dim(Dk(X)) = n−
(
k + 1

2

)
.

In particular, if Dk(X) is non empty,
(
k+1

2

)
≤ n holds.
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Proof. Consider the incidence correspondence Ik ⊂ Pn×X2,1,n defined as

Ik = {(z,X)| cork(Xz) ≥ k},

and let π1 and π2 be the two projections. To compute the dimension of
F := π−1

1 (z) = {X ∈X2,1,n| cork(Xz) ≥ k} we observe that we can construct
a surjection p : F � Dk where Dk ⊂ |OΠz(2)| is the variety as in Lemma 1.5.
Let Q be a quadric in Dk and let Q′ be a quadric hypersurface in PN which
is a cone over Q. Then Q′ ∈ F and hence p(Q′) = Q. Then the fibre of p
over Q is given by the set P[{Q′+Q′′|Q′′ ∈ H0(G(1, n− 1),IΠz(2))}], where
IΠz is the ideal sheaf of Πz in G(k, n). Therefore this fibre is a projective
space of dimension h0(IΠz(2)).

In addition to this, we have the short exact sequence of cohomology of
sheaves on G(1, n):

0→ H0(IΠz(2))→ H0(OG(1,n)(2))→ H0(OΠz(2))→ 0.

So dimF = h0(IΠz(2)) + dimDk = h0(OG(1,n)(2)) − h0(OΠz(2)) +

h0(OΠz(2)) − 1 −
(
k+1

2

)
. Since Dk is irreducible and the fibre of p is a

projective space, it follows that also F is irreducible and has dimension
dim X2,1,n −

(
k+1

2

)
. Then dim Ik = dim X2,1,n + n−

(
k+1

2

)
. Now, if π2 is not

surjective, we have that for a general X, Dk(X) is empty. Otherwise, we
have that dim(Dk(X)) = n−

(
k+1

2

)
for a general X.

Definition 3.11. We set D(X) = D1(X), and we call it the discriminant
locus of X. From the lemma above, we have that dim(D(X)) is equal to n
or n− 1. If D(X) = Pn, we say that X is degenerate. Otherwise, D(X) is a
hypersurface. In particular we say that X is strongly non-degenerate if there
is no z ∈ Pn such that Xz = Πz.

From Lemma 3.10, if X is a general element in X2,1,n, then it is strongly
non-degenerate. To prove it, suppose that X is not strongly non-degenerate:
then there exists z ∈ Dn(X), but for X general Dn(X) is empty.

Remark 3.12. We can construct the loci Dk(X)’s as follows. We consider
the universal hyperplane bundle P(ΩPn)→ Pn, which is the projectivization
of the cotangent bundle ΩPn . The fibre of this bundle over a point z ∈ Pn
is the hyperplane z⊥ in Pn?. Then the bundle π : P(Sym2(ΩPn))→ Pn can
be intended as the bundle whose fibres over z is the set of quadrics in Πz.
Then a strongly non-degenerate complex corresponds to a section σX of π.
Conversely, also this bundle can be locally trivialized: each point corresponds
to a pair (z, L), where z ∈ Pn and L ∈ Sym2(ΩPn)z is a 1-dimensional
subspace: i.e., L corresponds to a projective quadric cone with z in its vertex.
So, for each section of P(Sym2(ΩPn)) we obtain a strongly non-degenerate
complex.
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Inside P(Sym2(ΩPn)) we can define the subschemes Dk whose points
correspond to quadrics of corank at least k. Then Dk(X) is the pullback of
Dk via σX .

Example 3.13. A complex X ∈ X2,1,2 is a conic in (P2)?. We have three
possible cases, which correspond to different types of conics:

1. X is irreducible. Then for any z ∈ Pn, Xz is a 0-dimensional length 2
subscheme. It follows that z ∈ D(X) if and only if Πz is tangent to X.
Thus, D(X) = X? ⊂ P2 is the dual conic to X;

2. X consists of two distinct lines X1, X2, each line Xi corresponding to
a pencil of lines in P2 with center xi. Then z ∈ D(X) if and only if z
lies on the line corresponding to X1 ∩X2. This is the line l = 〈x1, x2〉.
Then, since L1 ∩L2 is a singular point of X, we have that D(X) is the
non-reduced conic consisting of l counted with multiplicity 2;

3. X consists of a multiple line. Then X is degenerate.

Definition 3.14. Let X be a quadratic complex in X2,1,n, with n ≥ 3, and
let π be a plane of Pn. We can consider the scheme theoretical intersection
of X with G(1, π). If Xπ 6= G(1, π), then Xπ is a quadratic line complex
in X2,1,2, which is a conic, as we have seen in the Example 3.13. If Xπ is
non-degenerate, X is said to be non-degenerate on π. In addiction to this,
the conic D(Xπ) is called the conic of X on π.

Remark 3.15. Let X be a quadratic complex in X2,1,n, let s be a special
point of X and π a plane containing s. We assume that Xπ 6= G(1, π). Thus
we can study the restriction of the null polarity ωf,s of Proposition 3.7 on
the plane π. This is defined on any point z ∈ s \ {zs}, unless π ⊂ HX,s. This
also means that the conic of X on π is irreducible and tangent to s at zs
unless π is contained in the special hyperplane HX,s.

Let X be a strongly non-degenerate quadratic line complex. We define a
morphism

vX : Pn → |OPn(2)| (3.3)

given by vX(z) := Q(z).

Lemma 3.16. Let X be a general quadratic line complex. Then the image
of vX is isomorphic to the Veronese variety V2,n.

Proof. Let [x0, . . . , xn] be the homogeneous coordinates in Pn and let [xij ] be
the corresponding Plücker coordinates in P(n+1

2 )−1. We assume that f(xij) = 0
is the quadratic equation defining X. If we fix a point z = [z0, . . . , zn], Q(z)
is defined by the equation f(xizj − xjzi) = 0, which is clearly a quadric in
the zi’s, and vX is defined by linear system of quadrics. To show that this
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is complete, we specialize to a particular X. We assume X is given by the
equation

∑
0≤i<j≤n x

2
ij = 0. Then

f(xizj − xjzi) =
n∑
i=0

(
∑
j 6=i

z2
j )x2

i − 2
∑

0≤i<j≤n
(zizj)xixj .

Then, varying z, the polynomial above spans the vector space of quadratic
forms in the xi’s. Since the linear system associated to a general quadratic
complex has dimension greater or equal to a specialized one, it follows that
also the general vX is a Veronese map of degree 2.

Proposition 3.17. Let X be a general quadratic complex in X2,1,n, with
n ≥ 3. Then:

1. D(X) is the set of special points of X;

2. Sing(D(X)) = D2(X). In particular if z ∈ D(X) \ D2(X) and
Sing(Q(z)) = s, then s is a special line of X, z = zs and TD(X),z =
HX,s. It follows that the dual variety D(X)? ⊂ Pn? is the set of the
special hyperplanes of X;

3. if s is a line not lying on D(X) and z is a non special point of s, then
HX(s, z) is the tangent hyperplane to X(z) along s;

4. deg(D(X)) = 2n− 2.

Proof. Since X is general, we can assume it is smooth.

1. Let s be a special line and z its corresponding special point. Then s
is a point of Xz, and the definition of special point means that s is a
double line for Q(z), and so z ∈ D(X).

Conversely, let z ∈ D(X). Then there is a line s through z which is
singular for Q(z): this means that s is a special line and z = zs.

2. We know that D2 ⊆ Sing(D(X)) by Remark 3.12.

To prove the other implication, use contraposition: we prove that the
points of D(X) \D2(X) are smooth. Let z ∈ D(X) \D2(X), so that
Sing(Q(z)) = s is a line through z. We show that the tangent space to
D(X) at z is an hyperplane: in particular, we show that this is exactly
HX,s.

Let l 6= s be a line through z. The line l lies on the tangent hyperplane
if and only its intersection multiplicity with D(X) is greater than 1.
Then, to prove our thesis is equivalent to show that the intersection
multiplicity of l with D(X) is equal to 1 except when l lies on HX,s.
We denote it by m. This number, by Remark 3.12, is equal to the
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intersection multiplicity at σX(z) of σX(l) with D, where σX is the
section of P(Sym2(ΩPn)) associated to X.

To compute m, we trivialize P(Sym2(ΩPn)) locally : let H be a general
hyperplane and we denote by p its intersection with s. For each point
w ∈ l, we consider the quadric Q′(w) cut by Q(w) on H and we
consider the 1-dimensional family of quadrics Q′l = {Q′(w)|w ∈ l}.
Then Q′(z) ∈ Q′l, it is singular at p and it lies on the discriminant
D1 of |OH(2)|. Then in this local trivialization σX(z) is Q′(z), Q′l
corresponds to σX(l) and D1 corresponds to D. Thus, m is also equal
at the intersection of the curve Q′l with D1 at Q′(z) in |OH(2)|.
By the description of the discriminant locus in Proposition 1.7, we have
that m ≥ 2 if and only if the tangent line to Q′l at Q

′(z) is a pencil Φ′l
of quadrics with base point p. Since H is general, this happens if and
only if the tangent line to the curve Ql := {Q(w)|w ∈ l} at Q(z) is a
pencil of quadrics Φl which have the line s in its base locus.

Now if we consider the plane π = 〈l, s〉, we have a family of reducible
conics given by the intersection of the Q(w)’s with π. Then m ≥ 2 if
and only if either G(1, π) ⊂ X or s is the fixed part of the family of
conics. This means that the intersection Xπ := G(1, π) ∩X does not
define a conic D(Xπ) or this is reducible with s as a component. From
Remark 3.15, his means that l ⊂ HX,s.

3. Let l 6= s be a line through z and contained in HX(s, z). The line
ps,l ⊂ G(1, n) generated by s and l is tangent to X at s by definition,
and then it implies that ps,l is tangent to Q(z) at s.

4. Let l be a general line in Pn, and we want to compute the number d of
intersection points of l with D(X). The number d is equal also to the
number of quadrics of rank n− 1 inside the family Ql.

If H is a general hyperplane, then we can consider the family of quadrics
Q′l given by the intersection of the elements of Ql with H. The generic
element of Q′l is a quadric of rank n; in the pencil there are d quadrics
of rank n − 1 which comes from the intersection of the n − 1 rank
quadrics in Ql with H, and one more rank n− 1 rank quadric Q′(z),
where z = H ∩ l. Then we have that d = δ − µ, where δ is the
intersection number of Q′l with the discriminant hypersurface D and µ
is the intersection multiplicity of Q′l with D at the point Q′(z).

By Lemma 3.16, we have that Ql is a conic of |OPn(2)|, and Q′l is also
a conic by generality of H. Since deg(D) = n, one has δ = 2n.

We need now to compute µ. We use again the notation of the proof
of the first point of the Proposition. The number µ is equal to the
intersection multiplicity of Φ′l with D at Q′(z), and Φl is cut out by Ql
on H. The general quadric of Ql is a cone of rank n with vertex varying
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in l, then by Bertini’s theorem l is in the base locus of Φl, because the
general element of Φl is smooth outside the base locus. Now, if we
compute the multiplicity m of a general point of l in this base locus
scheme, we have that, for the generality of H, that the general point of
l has multiplicity m inside the base locus of Φ′l and finally that µ = 2m.

To compute m we work locally: we assume that the pencil Φl is
generated by two quadrics Q1 and Q2 of rank n, and the base locus
of Φl is given by the vanishing of both equations. Then we give local
coordinates x1, . . . , xn−1 inside the first quadric centred at z such that
l is given by x2 = . . . = xn−1 = 0. Since l has to lie in B, its equation
will be

L1(x2, . . . , xn−1) + x1L2(x2, . . . , xn−1) +M(x2, . . . , xn) = 0

where L1 and L2 are linear homogeneous polynomials in x2, . . . , xn−1

and M is a polynomial of degree 2 in the same variables. Then the
multiplicity of z in B is equal to 1, since L1 cannot identically vanish
because Q2 has rank n.

We have finally proved that m = 1, so µ = 2 and d = 2n− 2.

3.2 Discriminant hypersurface and its singularities

We go on assuming X to be general in X2,1,n, and we study the singular
points of D(X) along Dk(X), with k satisfying the condition of Lemma 3.10.

Let z ∈ Dk(X) \Dk+1(X). We know that the multiplicity of D(X) at
z is at least k from Remark 3.12 and Proposition 1.7. The quadric Q(z) is
a cone with vertex a linear space of dimension k, which will be denoted by
Σ(z). Let Σz be the space of dimension k−1 inside the Grassmannian G(1, n)
parametrizing all the lines in Σ(z) passing through z, which are special lines.
We can therefore construct a morphism

γX,z : s ∈ Σz 7→ HX,s ∈ (Πz)
? (3.4)

whose image is denoted by ΓX,z. We observe that HX,s defines unambiguously
a point of (Πz)

? (the dual space of Πz defined after Proposition 3.7) because
the lines through z and contained in an hyperplane forms a linear subspace
of the Grassmannian of codimension one inside Πz.

Lemma 3.18. In this setting, ΓX,z is a Veronese variety V2,k−1 ∈ (Πz)
?.

Proof. To describe the image of γX,z we consider another construction. Take
π ⊂ Σ(z) a linear subspace of dimension k − 1 not containing z. Since X is
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strongly non-degenerate, if w ∈ π, then Xw 6= Πw and by definition of Σ(z)
one has the line sw := 〈z, w〉 ⊂ Q(w). The tangent hyperplane to Q(w) along
sw is the special hyperplane HX,sw , which will be denoted by Hw. Then we
have a morphism

γX,z,π : w ∈ π 7→ Hw ∈ (Πz)
? (3.5)

whose image is ΓX,z as above.
We consider the map vX of Equation (3.3) restricted to the plane π.

Then from Lemma 3.16 we have that vX(π) is a Veronese variety V2,k−1, all
quadrics in vX(π) contain z and ΓX,z is the set of the tangent hyperplanes to
these quadrics in z. Then also the morphisms of (3.4) and (3.5) are defined
by a linear system of quadrics.

We show that the linear system of quadrics associated to γX,z is complete,
so also ΓX,z is a Veronese V2,k−1. This follows from the fact that vX(π) spans
a linear space of dimension

(
k+1

2

)
− 1 inside |OPn(2)⊗Iz,Pn | and no quadric

in it has a double point in z: so the tangent hyperplanes at z span a linear
space of the same dimension, and so the system is complete.

We observe that we have supposed the condition on k of Lemma 3.10, so
the Veronese variety ΓX,z spans a linear space of dimension

(
k+1

2

)
− 1: this

number is less than or equal to the dimension of (Πz)
?, which is n− 1.

Proposition 3.19. Let X be a general quadratic line complex and let z ∈
Dk(X)\Dk+1(X). Then the multiplicity of D(X) at z is exactly k and D(X)
has canonical singularities.

Proof. To prove this results, first we construct a cone CX,z which is an
hypersurface of degree k, then we show that this is isomorphic to the cone
CD(X),z.

We consider the dual of ΓX,z, Γ?X,z ⊂ Πz. This is a cone over V ?
2,k−1, the

latter being isomorphic to the discriminant hypersurface D1 of |OPk−1(2)| as
in Theorem 1.4 (for a proof of this fact, see [GKZ08, Ch.1, Example 4.15]).
Since dim |OPk−1(2)| =

(
k+1

2

)
− 1 then the vertex of Γ?X,z has dimension

n−
(
k+1

2

)
− 1 and the degree of the hypersurface (and thus of the cone) is k.

The set of lines in Γ?X,z then form cone CX,z whose vertex has dimension
n−

(
k+1

2

)
over a V ?

2,k−1. This has again degree k.
Now let s be a line through z, which corresponds to a point in Πz and to

an hyperplane s? in (Πz)
?. We have that s ⊂ CX,z if and only if s? is tangent

to ΓX,z.
Consider the map (3.4). Let Ωs be the pullback of s via γX,z of the

hyperplane s?. Since this map is a Veronese map, then Ωs is a quadric
hypersurface in Σz

∼= Pk−1 or the whole Σz (we consider it as a rank 0
quadric). Then s ⊂ CX,z if and only if Ωs is singular.

As in (3.3), we consider the map

vX : Pn → |OPn(2)|;
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in particular vX(s) is a conic passing through the point Q(z). The tangent line
to vX(s) at Q(z) is identified therefore with a pencil of quadric hypersurfaces.
The intersection of base locus scheme of the pencil with Σ(z) is Ω(s), which
is the quadric cone corresponding to Ωs in Σ(z). We have that cork(Ω(s)) =
cork(Ωs) + 1.

Now we have to locally trivialize D(X) as in Proposition 3.17. Let H be
a general hyperplane such that H ∩ s = z. Then, as in the cited Proposition
and from Proposition 1.7, we have that the intersection multiplicity of s
with D(X) at z is greater than or equal to k + 1 if and only if Ω′(s), the
intersection of Ω(s) with H, is singular. Since cork(Ω′(s)) = cork(Ω(s))− 1,
Ω′(s) is singular if and only if Ωs is singular. Then we have that s ⊂ CD(X),z

if and only if s ⊂ CX,z.

This also shows that the tangent space of Dk(X) at z is the vertex of
CX,z. This implies that Dk(X) is smooth at z /∈ Dk+1(X).

Remark 3.20. We do not dwell on canonical singularities in this thesis, however
we recall that these are the only singularities a canonical variety can have
(see Section 3.4). For a hypersurface in Pn, roughly speaking, canonical
singularities are ordinary points with multiplicity less or equal to n−1, which
is satisfied here by condition of Lemma 3.10.

Remark 3.21. The case n = 3 is classical: D(X) is in this case a Kümmer
quartic surface and D2(X) consists of 16 nodes, i.e. double points with
tangent cone of rank 3 (see [GH78, Ch.6, §2]).

3.3 The double cover of the discriminant

Definition 3.22. Let be a f : X → Y be a finite covering. Then f is
quasi-étale if the branch locus has codimension larger or equal to 2 in Y .

Remark 3.23. If n ≥ 3 and odd, then for z ∈ D(X) \ D2(X) the quadric
Xz ⊂ Πz has corank 1 and hence even rank. Then Xz has two distinct
rulings of maximal dimension

n− 3

2
. So we construct a quasi-étale covering

δX : D(X)→ D(X), where δ−1
X (z) is identified with the two rulings.

Remark 3.24. If we denote by Dk(X) the pullback of Dk(X) by δX , then
from Remark 3.23 it follows that D(X) is smooth outside D3(X).

We want now to construct a double cover of D(X) for any n ≥ 3, i.e.,
also for n even. We introduce the following notation. Let X be a general
complex in X2,1,n, and let H be a general hyperplane of Pn. Then we denote
by DH(X) the intersection of D(X) with H. We denote by XH the complex
X ∩G(1, H) which is a general element in X2,1,n−1. Then we can consider
the discriminant hypersurface D(XH) ⊂ H.

Lemma 3.25. In the above setting one has:
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1. If z ∈ DH(X) ∩ D(XH) is smooth for both hypersurfaces, then they
have the same tangent hyperplane in z;

2. Sing(D(XH)) ⊂ DH(X) and Sing(DH(X)) ⊂ D(XH).

Proof. Since H is a general hyperplane, Sing(DH(X)) is the transversal
intersection of Sing(D(X)) with H. Furthermore, for any z ∈ DH(X), the
hyperplane H is not tangent to the tangent cone CD(X),z, so CDH(X),z is
exactly the transversal intersection of the latter with H.

Secondly, if we denote by QH(z) the intersection of QX(z) with H, it is
clear that this quadric corresponds to QXH

(z) for any z ∈ H.
If z is smooth for D(XH), then Sing(QH(z)) is a line s. If z is smooth

also for DH(X), then is smooth for D(X) and Sing(QX(z)) = s′ is an other
line. From discussion above, we have that s = s′. Then from Proposition 3.17,
we have that the tangent space TD(XH),z is the special hyperplane HXH ,s,
which coincides with H ∩HX,s, which is the tangent hyperplane to DH(X)
to z. This proves the first part.

For the second part, let z be a point in Sing(D(XH)).
Then dim(Sing(QXH

(z))) ≥ 2. Then it follows that dim(Sing(QX(x))) ≥ 1
and this prove the first inclusion. The second inclusion follows directly from
the first observation of the lemma.

Proposition 3.26. Let X ∈ X2,1,n, with n ≥ 3, and assume D2(X) has
dimension n− 3, then

deg(D2(X)) =
4

3
n(n2 + 2)− 4(n2 − 2)

Proof. It suffices to prove the result for a general complex. In particular,XH is
also general , and from hypothesis D2(XH) has the right dimension, i.e. n−4.
Assume this is not true: this implies that D2(XH) is empty by Lemma 3.10,
but this is a contradiction because for H general, if z ∈ Dk(X) ∩H, then
z ∈ Dk(XH). We denote by dn the degree of D2(X) with X ∈ X2,1,n, and
we proceed by induction.

For n = 3, d3 = 16 and this is true by the classical result cited in
Remark 3.21.

Now we consider a general flag Σ ⊂ H ⊂ Pn, where Σ is a 3-plane and H
is a hyperplane. We consider the two surfaces DΣ(X) and DΣ(XH), which
are cut on Σ by D(X) and D(XH) respectively. Since Σ is general, they are
smooth away from the intersection of Σ with D2(X) and D2(XH) respectively.
These intersections are two sets of points whose cardinalities are dn and dn−1

respectively. From the description above, these singular points are nodes. The
two surfaces intersect in a curve C with multiplicity 2 by the first assertion
of Lemma 3.25. Then C has degree 2(n− 1)(n− 2), and it passes through
the nodes of both by the second part of Lemma 3.25.
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Now we consider the linear system of surfaces of degree 2(n − 1) in Σ
which intersect DΣ(XH) with multiplicity 2 along C. This system contains
DΣ(X) and the general surface in it has hence dn double points along C.
This linear system cuts on C a flat family of divisor on C. Since in the linear
system there are the ones consisting of the union of DΣ(XH) and a general
quadric, we have that dn = dn−1 + 4(n − 1)(n − 2). Using the induction
hypothesis we obtain then the result.

Next we recall the following definition (see [Cat81]):

Definition 3.27. Let S be a surface and let N = {x1, . . . , xt} be the set of
nodes of S, or points of type A1, i.e., isolated double points with tangent cone
of rank 3. We say that the set N is even if, given a minimal desingularization
p : S̃ → S, the sum Ñ of all the irreducible rational curves Ñi = p−1(xi) of
self–intersection -2 (also called (−2)-curves) is divisible by 2 in Pic(S̃).

Remark 3.28. We recall a basic construction. Let X be an irreducible smooth
projective variety and let L be an invertible sheaf over X. We suppose
moreover that there exists a non zero section s ∈ H0(X,L 2). If π : L→ X is
the total space of L , we can pull L 2 back over L, obtaining the line bundle
π?L 2, which has a non-zero section s̄ which is given by π?s − t2, where t
is the tautological section of H0(L, π?L ). If we set Y := div(s̄) ⊂ L, the
morphism π|Y : Y → X is finite and of degree 2, ramified over R := div(s).
See [Cal06, Ch. 6, §1] for details.

The following theorem comes from [Cat81, Proposition 2.11].

Theorem 3.29. Let S be a reduced surface of degree d in P3 with an even
set of nodes N . Then there exists a quasi–étale double cover φ : T → S which
is a finite map ramified only at the nodes of N . If S is smooth outside N ,
then T is smooth.

Proof. We assume that S is smooth outside N : this will prove also the last
statement and does not change the rest of the proof. Using the notation of
Definition 3.27 let L be a divisor in Pic(S̃) such that 2L = Ñ =

∑t
i=1 Ñi.

Then we can use Theorem 3.29 to construct a double cover of S̃ ramified at
the zero locus of the square root of the section of OS̃(2L) corresponding to
Ñ . We denote this map by p : T̃ → S̃. The curves Ni in S̃ are (−2)-curves
and then B = p−1(Ñi) are (−1)-curves in T̃ . We can now contract these
curves obtaining a map π′ from T̃ to a smooth surface T and a commutative
diagram

T̃ S̃

T S

p

π′ π

φ

and thus the map φ is a double cover of S ramified only at the nodes N .
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Remark 3.30. The double cover constructed above is not unique: it depends
on the square root of the section associated to Ñ . Therefore to achieve the
uniqueness we need that Pic(S̃) has no 2–torsion.

Next we focus on the case n = 4.

Lemma 3.31. Let X ∈X2,1,4 be general and let H be a general hyperplane
in P4. Then DH(X) is a sextic in P3 with 40 even nodes.

Proof. The surfaceDH(X) has degree 6 and lies inH, which is a P3. Moreover
it has a set NH of 40 nodes at the intersections of H with the curve D2(X),
which has degree 40 (see Proposition 3.26).

By Lemma 3.25, the surface DH(X) is tangent to D(XH), which is
a Kummer quartic, along a curve Γ of degree 12. Consider a minimal
desingularization Σ of DH(X). We denote by ÑH the sum of the 40 (−2)–
curves which map to the nodes of DH(X). We also denote by Γ̃ the strict
transform of Γ on Σ. By pulling back the section of OH(4) given by D(XH),
we have the linear equivalence relation

ÑH + 2Γ̃ ∼ ξ⊗4 (3.6)

where ξ is the pull–back to Σ of OH(1). From (3.6) we deduce that the 40
nodes of DH(X) are even.

Remark 3.32. (a) By the proof of the previous lemma, we see that ÑH is
a section of L2, where L = ξ2 ⊗ OΣ(−Γ). According to Remark 3.28 and
to Theorem 3.29, this defines a smooth quasi–étale double cover D̃H(X) of
DH(X) ramified at the 40 nodes of NH .

(b) If H is no longer generic, but it is simply tangent to D(H) at a point
p, but still intersects the curve D2(X) transversally at 40 points forming
a set NH , then DH(X) has an additional double point at p. However the
previous considerations can be repeated verbatim: in this case there is still a
quasi–étale double cover D̃H(X) of DH(X) ramified at the 40 nodes of NH ,
the only difference is that D̃H(X) is no longer smooth, but it has two nodes
mapping to the point p.

(c) Similarly, assume that H is no longer generic, but is simply tangent
to the curve D2(X) at a point q. Then DH(X) has no longer a set NH of
40 nodes. The singularities of DH(X) consist of 38 nodes, the transversal
intersection points of H with D2(X), plus another singularity at q. One may
check with a local computation that this singularity is a double point of type
A3, whose resolution consist of a chain N1 +N2 +N3 of (−2)–curves, with
N1 · N2 = N2 · N3 = 1 and N1 · N3 = 0. In this case it is also easy to see
that the sum NH of N1 +N3 plus the 38 (−2)–curves coming from a minimal
resolutions of the remaining double points is divisible by 2 in the Picard
group of a minimal resolution of DH(X), so that we still have a double cover
as above. Again in this case D̃H(X) is no longer smooth but has a node over
q.
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Theorem 3.33. If X ∈ X2,1,4 is general, then there exists a quasi-étale
smooth double cover f : D(X)→ D(X) which is branched along D2(X).

Proof. Fix a general plane α in P4. We denote by Γ the smooth sextic curve
cut out by α on D(X) and we consider the pencil P of hyperplane sections
DH(X) of D(X) cut out by the hyperplanes H through α. The base locus
of P is Γ. By the generality of α, the surfaces DH(X) in P all have exactly
40 even nodes at the intersection of H with D2(X), and no other singularity,
except for finitely many surfaces for which cases (b) or (c) in Remark 3.32
occur. In any event, by Remark 3.32, for all surfaces DH(X) in P , there is a
double cover fH : D̃H(X)→ DH(X), which is smooth, except if either case
(b) of Remark 3.32 occurs, in which the double cover has a pair of nodes over
the additional node of DH(X), or case (c) of Remark 3.32 occurs, in which
the double cover has a node over the A3 point of DH(X).

Consider now the open subset U = D(X) − Γ. We claim that there
is a smooth quasi–étale double cover f : Ũ → U which is branched over
U ∩D2(X). Indeed, by taking into account Lemma 3.31 and Remark 3.32,
(a), we see that the construction of the double cover fH : D̃H(X)→ DH(X)
depends algebraically on the hyperplane H passing through α. Therefore we
can consider the algebraic variety

Ũ =
⋃
α⊂H

(D̃H(X) ∩ f−1
H (U)),

which is double cover f : Ũ → U , where f is the restriction of fH to
D̃H(X)∪ f−1

H (U), for all H containing α. Since each fH : D̃H(X)→ DH(X)
is quasi–étale branched over H ∩D2(X), then also f : Ũ → U is quasi–étale
branched over U ∩D2(X).

Consider the diagram

Ũ D(X)

U D(X)

(3.7)

where, abusing notation, we may denote by f both vertical arrows, and
D(X) is the integral closure of D(X) in the field of functions of Ũ . The map
f : D(X) → D(X) is a finite (hence surjective) double cover and D(X) is
projective, so also D(X) is projective. The horizontal arrows in (3.7) are
open inclusions. Since D(X)− U = Γ, the map f is quasi–étale. Moreover,
since all points of Γ are smooth for D(X), by the purity of the branch locus
we have that f is étale along Γ.

Finally, it is clear that this construction does not depend on α. Indeed, if
H is a general hyperplane, the restriction of f : D(X) → D(X) to DH(X)
is exactly fH : D̃H(X)→ DH(X). Since DH(X) is smooth, we deduce that
D(X) is also smooth.
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Remark 3.34. It is possible that if X ∈X2,1,n is general, and n > 6 is even
then there exists a quasi-étale smooth double cover f : D(X)→ D(X) which
is branched along D2(X). We do not dwell on this here.

3.4 Further remarks on the double cover of the dis-
criminant

In this final section we make some interesting remarks on the double cover
of D(X) from Theorem 3.33.

Definition 3.35. A smooth projective variety is called of general type if the
canonical ring R(X,KX) = ⊕m≥0H

0(X,mKx) is (finitely generated over the
base field K, and) of maximal trascendence degree n+ 1. In addition to this,
Y = Proj(R(X,KX)) is called the canonical model of X. The associated
morphism is called the canonical map and denoted by ΦKX

: X → Y .
A variety is called canonical if it is the canonical model of a certain

variety.

Remark 3.36. If C is a smooth curve of genus g ≥ 3, there are two possible
cases about its canonical map:

1. ΦKC
is a canonical embedding in Pg−1 or

2. ΦKC
has degree 2 and its image is a rational normal curve (in this case

C is called hyperelliptic).

Take now S to be a surface with pg(S) ≥ 3 and such that ΦKX
is a map

of degree 2 whose image is a surface F . Babbage [Bab34] conjectured that
pg(F ) = 0, similarly to the case of curves. However, it was proved that in the
above situation the surface F must satisfy one of the two following condition
([Bea79]):

1. F is a canonical variety or;

2. pg(F ) = 0.

A first example of the former case has been found in [Cat81, §3]: one has
canonical quintic surfaces F in P3 with 20 even nodes whose quasi–étale
double cover branched at the nodes is a surface X such that ΦKX

coincides
with the double cover in question.

The situation in the case n = 4 is very similar to Catanese’s example
mentioned above., i.e., we have the following result.

Proposition 3.37. Let X be a general complex in X2,1,4. Then D(X) is
a canonical sextic threefold and the double cover f : D(X) → D(X) is the
canonical morphism of D(X).
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Proof. D(X) has degree 6 and its singular locus is D2(X). We proved in
Proposition 3.19 that D2(X) is a double locus with canonical singularities.
Let D̃(X) be the desingularization of D(X) obtained by blowing up D2(X).
By adjunction the canonical bundle of D̃(X) is the pull–back ζ to D̃(X) of
OP4(1), which proves that D(X) is a canonical threefold.

Next, consider the double cover f : D(X) → D(X), or rather the asso-
ciated double cover f̃ : D̃(X)→ D̃(X). This is branched along the divisor
E which is a P1–bundle over D2(X) contracted to D2(X) in the resolution
D̃(X)→ D(X). This divisor is therefore divisible by 2 in Pic(D̃(X)). Let η
be such that η2 ∼ OD̃(X)(E). One has

f̃?(KD̃(X))
∼= KD̃(X) ⊕ (η ⊗KD̃(X)) = ζ ⊕ (ζ ⊗ η). (3.8)

Now we claim that h0(ζ ⊗ η) = 0. Indeed, if not, one has h0(2ζ ⊗
OD̃(X)(−E)) > 0, which implies that D2(X) is contained in a quadric. This
is impossible, as we are going to show. Indeed, if D2(X) is contained in
a quadric, then the 40 nodes NH of the surface DH(X), with H a general
hyperplane, are also contained in a quadric Q. Let us keep the notation of
Lemma 3.31. Since the curve Γ has degree 12, then a quadric Q containing
NH also contains Γ, hence Γ has to be the complete intersection of DH(X)
with Q. From (3.6) we then deduce that ÑH ∼ 0, a contradiction.

In conclusion, since h0(ζ ⊗ η) = 0, from (3.8) we deduce that

h0(KD̃(X)) = h0(ζ) = 5

which proves that f : D(X)→ D(X) is the canonical morphism of D(X).

We finish with the following remark: D(X) may be obtained as the
section with a general hyperplane H of an EPW-sextic Y in P5, as described
in [OGr06]. The 4–fold Y has a surface Z of degree 40 of double points,
whose section with H is D2(X). Arguing as in the proof of Theorem 3.33,
one recovers O’Grady’s result that there exists a smooth quasi–ètale double
cover X → Y , branched along Z, and X is a hyperkäler 4–fold, which is a
deformation of the Hilbert scheme of degree 2 of a K3 surface.

Remark 3.38. Given a general X ∈X2,1,n for n ≥ 3 (the first interesting case
is n = 5), does there exist a hypersurface F in P2n−3 of degree 2n− 2, not a
cone, whose section with a generic linear space of dimension n is D(X)?

If so, and if F has the right singularities, by recalling Remark 3.34 we
ask: would it be possible to construct a quasi–étale double cover of F which
is hyperkäler variety?
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