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First properties

Brief recap on plurisubharmonic functions

A function u : Ω ⊂ Cn → R ∪ {−∞} is psh if it is usc and for all z ,

u(z) ≤ Iu(z , r) :=
1

vol(B(z , r))

∫
B(z,r)

u(ζ)dV (ζ).

u is well defined at all points since u(z) = limr→0 Iu(z , r).

Either u ≡ −∞ or u ∈ L1
loc , we exclude u ≡ −∞.

A smooth function u is psh iff ddcu ≥ 0 is a semi-positive form.

Non smooth function u is psh iff ddcu ≥ 0 is a positive current.

u ∈ Lploc for all p and ∇u ∈ Lqloc for all q < 2 (∇ log |z1| /∈ L2
loc).

↪→ psh functions are ”exponentially integrable” [Skoda].
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First properties

ω-plurisubharmonic functions

Let (X , ω) be a compact Kähler manifold.

Definition

A quasi-plurisubharmonic function ϕ : X → R ∪ {−∞} is locally the sum
of a psh and a smooth function. In particular ϕ is u.s.c. and in L1.

Note in particular that a quasi-psh function is bounded from above on X .

Definition

A function ϕ : X → R ∪ {−∞} is ω-plurisubharmonic if it is
quasi-plurisubharmonic and ω + ddcϕ ≥ 0 in the weak sense of currents.

We let PSH(X , ω) denote the set of all ω-psh functions.

We endow PSH(X , ω) with the L1-topology.
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First properties

Basic operations

Proposition

1 If ω ≤ ω′ then PSH(X , ω) ⊂ PSH(X , ω′).

2 ϕ ∈ PSH(X , ω) 7→ Aϕ ∈ PSH(X ,Aω) is an isomorphism ∀A > 0.

3 If ω′ = ω + ddcρ then PSH(X , ω′) = PSH(X , ω)− ρ.

4 ϕ,ψ ∈ PSH(X , ω)⇒ max(ϕ,ψ), ϕ+ψ
2 , log[eϕ + eψ] ∈ PSH(X , ω).

5 χ ◦ ϕ ∈ PSH(X , ω) if ϕ ∈ PSH(X , ω) with χ′′ ≥ 0 and 0 ≤ χ′ ≤ 1.

Most items are straightforward. The last one follows from

ddcχ ◦ ϕ = χ′′ ◦ ϕ dϕ ∧ dcϕ+ χ′ ◦ ϕ ddcϕ

≥ χ′ ◦ ϕ (ω + ddcϕ)− χ′ ◦ ϕω ≥ −ω

if ϕ ∈ PSH(X , ω) with χ′′ ≥ 0 and 0 ≤ χ′ ≤ 1.
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First properties

Examples 1

Constant functions are ω-psh since ω ≥ 0.

If ϕ ∈ PSH(X , ω) then ϕε = (1− ε)ϕ is strictly ω-psh.

If ϕ is strictly ω-psh and χ is C2-small then ϕ+ χ ∈ PSH(X , ω).

Example

If P is a homogeneous polynomial of degree d in z ∈ Cn+1, then

ϕ(z) = 1
d log |P|(z)− log |z | ∈ PSH(Pn, ωFS).

More generally if L→ X is a positive holomorphic line bundle with metric
h = e−φ of curvature ω = Θh = ddcφ > 0 and if s ∈ H0(X , L), then

ϕ(z) = log |s|h = log |s| − φ ∈ PSH(X , ω)
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First properties

Examples 2

Example

Assume X = Pn = Cn ∪ {z0 = 0} and ω = ωFS .

Consider

L(Cn) := {u ∈ PSH(Cn), u(z ′) ≤ 1
2 log[1 + |z ′|2]|+ C for all z ′ ∈ Cn}

Since ω = ddc 1
2 log[1 + |z ′|2]| in Cn, there is a one to one correspondence

u ∈ L(Cn) 7→ u − 1
2 log[1 + |z ′|2]| ∈ PSH(Pn, ω).

Example

In homogeneous coordinates 1
2 log[1 + |z ′|2]| = log |z |. For w ∈ Cn+1,

G (z ,w) = log |z ∧ w | − log |z | − log |w | ∈ PSH(Pn, ω)

is a ”Green function”. It satisfies supPn G = 0, G (z ,w) = G (w , z) and

(ω + ddc
z G )n = δw .
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Topology

Compactness properties

Proposition

For all A ≥ 0, the sets

PSHA(X , ω) = {ϕ ∈ PSH(X , ω), −A ≤ sup
X
ϕ ≤ 0}

are compact for the L1-topology.

The map ϕ 7→ supX ϕ is continuous by Hartogs lemma.

Boundedness: ϕ ∈ PSH0(X , ω) 7→ ω + ddcϕ ∈ T is homeomorphism.

There exists C > 0 s.t. supX ϕ− C ≤
∫
X ϕdVprob ≤ supX ϕ.

↪→ Can normalize either by supX ϕ = 0 or by
∫
X ϕdV = 0.
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Topology

Approximation

Theorem (Demailly ’92)

Given ϕ ∈ PSH(X , ω), there exists a smooth family (ϕε) of strictly ω-psh
functions which decrease to ϕ.

So PSH(X , ω) is the closure, in L1, of the set Kω of Kähler potentials.

Theorem (Demailly ’90)

Assume L→ X is a positive line bundle and h is a metric of curvature
ω = Θh > 0. Fix ϕ ∈ PSH(X , ω). Then there exists sj ∈ H0(X , Lj) s.t.

1
j log |sj |jh

L1

−→ ϕ.

The proof uses Hörmander’s L2 techniques for solving the ∂-equation.
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Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth

and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Topology

Quasi-plurisubharmonic envelopes

Definition

Given h : X → R ∪ {−∞} which is bounded from above, one considers:

Pω(h) := (sup{u ∈ PSH(X , ω), u ≤ h})∗ .

If h is bounded below then Pω(h) is a bounded ω-psh function.

If h too singular, can get Pω(h) ≡ −∞ (e.g. h = 2[log |z0| − log |z |]).

Theorem (Berman-Demailly ’12/ Tosatti, Chu-Zhou ’18)

If h is (C1,1-)smooth then Pω(h) is C1,1-smooth and

(ω + ddcPω(h))n = 1{Pω(h)=h}(ω + ddch)n.

↪→ These envelopes play a central role in forthcoming lectures.

Vincent Guedj (IMT) Lecture 2: Quasi-plurisubharmonic functions April 2021 9 / 15



Skoda’s uniform integrability theorem

Lelong numbers

Singularities of quasi-psh functions are at worst logarithmic measured by:

Definition

The Lelong number of a function ϕ ∈ PSH(X , ω) at a point x0 ∈ X is

ν(ϕ, x0) = sup {γ ≥ 0, ϕ(x) ≤ γ log d(x , x0) + O(1)} .

Classical properties (Siu ’70s) of Lelong numbers are:

(x , ϕ) 7→ ν(ϕ, x) is u.s.c. & invariant under local biholomorphism;

sets Ec(ϕ) = {x ∈ X , ν(ϕ, x) ≥ c} are analytic for each c > 0;

if n = 1 then ν(ϕ, x0) = sup{γ ≥ 0, ϕ(z)− γ log |x − x0| is sh at x0};
if n ≥ 2, then ν(ϕ, x0) = sup{γ ≥ 0, π∗(ω + ddcϕ)− γ|[E ] ≥ 0}
where π : X̃ → X denotes the blow up of X at x0 and [E ] = π−1(x0).
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Skoda’s uniform integrability theorem

Uniform upper bound on Lelong numbers

For a psh function u in Cn one also has the following description of ν:

Proposition (Demailly ’85)

ν(u, z0) = sup{γ ≥ 0, ddcu ∧ (ddc log |z − z0|)n−1 ≥ γδz0}.

↪→ See Lecture 3: ddcu ∧ (ddc log |z − z0|)n−1 is well defined.

On a compact manifold, one can use a cut off function χ so that:

G (x) = εχ(x) log |x − x0| ∈ PSH(X , ω);

(ω + ddcϕ) ∧ (ω + ddcG )n−1 ≥ εn−1ν(ϕ, x0).

Thus ν(ϕ, x0) ≤ ε−(n−1)
∫
X ωϕ ∧ (ωG )n−1 = ε−(n−1)

∫
X ω

n.

Proposition

For all ϕ ∈ PSH(X , ω) and x ∈ X , ν(ϕ, x) ≤ M = M(X , {ω}).
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Skoda’s uniform integrability theorem

Skoda’s theorem

Given a psh function u in Cn, one has

ν(u, x0) ≥ n =⇒ u(x) ≤ n log |x − x0|+ C

=⇒ e−2u(x) ≥ C ′

|x − x0|2n
⇒ e−2u /∈ L1

loc({x0}).

There is a partial converse:

Theorem (Skoda’s integrability theorem ’72)

If ν(u, x0) < 1 then e−2u ∈ L1
loc({x0}).

Functions log |z | and log |z1| show optimality and gap unavoidable.

Since ν(λu, x0) = λν(u, x0) one can rescale and reformulate.

Uniform control on (u, x0) and compactness ⇒ uniform integrability ?
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Skoda’s uniform integrability theorem

Uniform integrability

Theorem (Skoda’s uniform integrability theorem)

Let (X , ω) be a compact Kähler manifold.

There exists α,C > 0 such that
for all ϕ ∈ PSH0(X , ω),∫

X exp(−αϕ)dVX ≤ C .

Theorem (Zeriahi’s generalization ’01)

Let (X , ω) be a compact Kähler manifold. Let P be a compact subfamily
of PSH(X , ω) with zero Lelong numbers. Then for each λ > 0, there
exists Cλ > 0 such that for all ϕ ∈ P,∫

X exp(−λϕ)dVX ≤ Cλ.
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Skoda’s uniform integrability theorem

Proof in the projective case

In the projective setting we have the following neat version of this result:

Theorem (Projective Skoda / DiNezza-G-Guenancia ’20)

Let V ⊂ PN be a projective variety of complex dimension n and degree d
and set ω = ωFS |V . For all ϕ ∈ PSH0(V , ω),∫

V exp
(
− 1

ndϕ
)
ωn ≤ (4n)nd exp

{
− 1

nd

∫
V ϕω

n
}

↪→ Sketch of proof on the ”white board”.
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