Lecture 1: Compact Kähler manifolds

Vincent Guedj

Institut de Mathématiques de Toulouse

PhD course, Rome, April 2021

Vincent Guedj (IMT)

Lecture 1: Compact Kähler manifolds

April 2021 1 / 19

The aim of today's lectures is to

The aim of today's lectures is to

• explain the definition and provide examples of Kähler metrics;

The aim of today's lectures is to

- explain the definition and provide examples of Kähler metrics;
- motivate the search for canonical Kähler metrics;

The aim of today's lectures is to

- explain the definition and provide examples of Kähler metrics;
- motivate the search for canonical Kähler metrics;
- discuss basic properties of quasi-plurisubharmonic functions.

The aim of today's lectures is to

- explain the definition and provide examples of Kähler metrics;
- motivate the search for canonical Kähler metrics;
- discuss basic properties of quasi-plurisubharmonic functions.

The precise plan is as follows:

The aim of today's lectures is to

- explain the definition and provide examples of Kähler metrics;
- motivate the search for canonical Kähler metrics;
- discuss basic properties of quasi-plurisubharmonic functions.

The precise plan is as follows:

• Lecture 1: a panoramic view of compact Kähler manifolds.

The aim of today's lectures is to

- explain the definition and provide examples of Kähler metrics;
- motivate the search for canonical Kähler metrics;
- discuss basic properties of quasi-plurisubharmonic functions.

The precise plan is as follows:

- Lecture 1: a panoramic view of compact Kähler manifolds.
- Lecture 2: uniform integrability properties of quasi-psh functions.

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$.

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

(日) (同) (三) (三)

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

(日) (同) (三) (三)

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

• (z_{α}) are local holomorphic coordinates;

< 回 ト < 三 ト < 三 ト

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

- 4 週 ト - 4 三 ト - 4 三 ト

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed $d\omega = 0$.

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed $d\omega = 0$. A manifold is Kähler if it admits a Kähler form.

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed $d\omega = 0$. A manifold is Kähler if it admits a Kähler form.

• Euclidean metric in local chart=local example of Kähler metric.

< 回 ト < 三 ト < 三 ト

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed $d\omega = 0$. A manifold is Kähler if it admits a Kähler form.

- Euclidean metric in local chart=local example of Kähler metric.
- Using cut-off functions destroy the condition $d\omega = 0$.

(日) (同) (日) (日) (日)

Let X be a compact complex manifold of dimension $n \in \mathbb{N}^*$. Using local charts and partition of unity, one can find plenty of *hermitian forms*,

$$\omega \stackrel{\textit{loc}}{=} \sum_{i,j=1}^{n} \omega_{\alpha\beta} \textit{id} z_{\alpha} \wedge \textit{d} \overline{z_{\beta}}.$$

where

- (z_{α}) are local holomorphic coordinates;
- $\omega_{\alpha\beta}$ are smooth functions such that $(\omega_{\alpha\beta})$ is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed $d\omega = 0$. A manifold is Kähler if it admits a Kähler form.

- Euclidean metric in local chart=local example of Kähler metric.
- Using cut-off functions destroy the condition $d\omega = 0$.
- Such a form is associated to a Riemannian metric on TX.

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} i dz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

イロン 不聞と 不同と 不同と

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$.

イロト 不得 トイヨト イヨト 二日

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \lambda \in \mathbb{C}^*$.

(日) (四) (王) (王) (王)

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \lambda \in \mathbb{C}^*$. Charts $x \in \mathbb{C}^n \mapsto [x_1, \ldots, 1, \ldots, x_n] \in U_j = \{[z] \in \mathbb{CP}^n, z_j \neq 0\} \sim \mathbb{C}^n$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \lambda \in \mathbb{C}^*$. Charts $x \in \mathbb{C}^n \mapsto [x_1, \ldots, 1, \ldots, x_n] \in U_j = \{[z] \in \mathbb{CP}^n, z_j \neq 0\} \sim \mathbb{C}^n$. The Kähler form $\omega = \frac{i}{2\pi} \partial \overline{\partial} \log[1 + ||x||^2]$ defines a Kähler form on \mathbb{CP}^n

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \ \lambda \in \mathbb{C}^*$. Charts $x \in \mathbb{C}^n \mapsto [x_1, \ldots, 1, \ldots, x_n] \in U_j = \{[z] \in \mathbb{CP}^n, \ z_j \neq 0\} \sim \mathbb{C}^n$. The Kähler form $\omega = \frac{i}{2\pi} \partial \overline{\partial} \log[1 + ||x||^2]$ defines a Kähler form on \mathbb{CP}^n This is the Fubini-Study Kähler form.

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space \mathbb{CP}^n = set of complex lines through $0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \ \lambda \in \mathbb{C}^*$. Charts $x \in \mathbb{C}^n \mapsto [x_1, \ldots, 1, \ldots, x_n] \in U_j = \{[z] \in \mathbb{CP}^n, \ z_j \neq 0\} \sim \mathbb{C}^n$. The Kähler form $\omega = \frac{i}{2\pi} \partial \overline{\partial} \log[1 + ||x||^2]$ defines a Kähler form on \mathbb{CP}^n This is the Fubini-Study Kähler form. Exercise: check that $\int_{\mathbb{CP}^n} \omega^n = 1$.

Example (Tori)

Euclidean form $\omega = \sum_{\alpha=1}^{n} idz_{\alpha} \wedge d\overline{z_{\alpha}}$ closed and invariant by translations \Rightarrow Kähler form on compact tori $X = \mathbb{C}^{n}/\Lambda$, where $\Lambda \subset \mathbb{R}^{2n}$ is a lattice.

Example (Projective space)

The cplx projective space $\mathbb{CP}^n = \text{set of complex lines through } 0 \in \mathbb{C}^{n+1}$. Homogeneous coordinates $[z] = [z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n], \ \lambda \in \mathbb{C}^*$. Charts $x \in \mathbb{C}^n \mapsto [x_1, \ldots, 1, \ldots, x_n] \in U_j = \{[z] \in \mathbb{CP}^n, \ z_j \neq 0\} \sim \mathbb{C}^n$. The Kähler form $\omega = \frac{i}{2\pi} \partial \overline{\partial} \log[1 + ||x||^2]$ defines a Kähler form on \mathbb{CP}^n This is the Fubini-Study Kähler form. Exercise: check that $\int_{\mathbb{CP}^n} \omega^n = 1$.

Example (Hopf surface)

The surface $X = \mathbb{C}^2/\langle z \mapsto 2z \rangle \sim S^1 \times S^3$ does not admit any Kähler form.

イロト 不得下 イヨト イヨト 二日

• If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^2 -small.

• • • • • • • • • • • •

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^2 -small.
- A product of compact Kähler manifolds is Kähler,

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^2 -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) =$ Kähler form on $X \times Y$.

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^2 -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) =$ Kähler form on $X \times Y$.
- If $f: X \to Y$ is a holomorphic embedding and ω_Y Kähler,

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^{2} -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) =$ Kähler form on $X \times Y$.
- If $f : X \to Y$ is a holomorphic embedding and ω_Y Kähler, then $\omega_X = f^* \omega_Y$ is a Kähler form on X.

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^{2} -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) = \text{Kähler form on } X \times Y.$
- If $f : X \to Y$ is a holomorphic embedding and ω_Y Kähler, then $\omega_X = f^* \omega_Y$ is a Kähler form on X.
- \Rightarrow a submanifold of a compact Kähler manifold is Kähler.

< 回 ト < 三 ト < 三 ト

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^{2} -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) = \text{Kähler form on } X \times Y.$
- If $f : X \to Y$ is a holomorphic embedding and ω_Y Kähler, then $\omega_X = f^* \omega_Y$ is a Kähler form on X.
- \Rightarrow a submanifold of a compact Kähler manifold is Kähler.
- \Rightarrow any projective algebraic manifold is Kähler.

・ 回 ト ・ ヨ ト ・ ヨ ト

- If ω is Kähler, then so is $\omega + i\partial\overline{\partial}\varphi$ if $\varphi \in \mathcal{C}^{\infty}(X,\mathbb{R})$ is \mathcal{C}^{2} -small.
- A product of compact Kähler manifolds is Kähler, cf $\omega(x, y) = \omega_1(x) + \omega_2(y) = \text{Kähler form on } X \times Y.$
- If $f : X \to Y$ is a holomorphic embedding and ω_Y Kähler, then $\omega_X = f^* \omega_Y$ is a Kähler form on X.
- \Rightarrow a submanifold of a compact Kähler manifold is Kähler.
- \Rightarrow any projective algebraic manifold is Kähler.
- \Rightarrow any compact Riemann surface is Kähler.

・ 回 ト ・ ヨ ト ・ ヨ ト

Example (Local blow up of a point)

Let B be a ball centered at zero in \mathbb{C}^n

-

• • • • • • • • • • • •

Example (Local blow up of a point)

Let *B* be a ball centered at zero in \mathbb{C}^n and consider

$$\tilde{B} = \{(z, \ell) \in B \times \mathbb{P}^{n-1}, \ z \in \ell\}.$$

< ロ > < 同 > < 三 > < 三

Example (Local blow up of a point)

Let *B* be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension *n* such that

Vincent Guedj (IMT)

- **(())) (())) ())**

Vincent Guedj (IMT)

Example (Local blow up of a point)

Let *B* be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension *n* such that

• the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;

< 回 > < 三 > < 三 >

Example (Local blow up of a point)

Let *B* be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension n such that

- the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;
- π is a biholomorphism from $\tilde{B} \setminus E$ onto $B \setminus \{0\}$;

(4回) (4回) (4回)

Example (Local blow up of a point)

Let *B* be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension n such that

- the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;
- π is a biholomorphism from $\tilde{B} \setminus E$ onto $B \setminus \{0\}$;
- $\omega = \pi^* dd^c (\log |z| + |z|^2) [E]$ is a Kähler form on \tilde{B}

- 4 同 6 4 日 6 4 日 6

Example (Local blow up of a point)

Let B be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension n such that

- the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;
- π is a biholomorphism from $\tilde{B} \setminus E$ onto $B \setminus \{0\}$;
- $\omega = \pi^* dd^c (\log |z| + |z|^2) [E]$ is a Kähler form on \tilde{B}

• Can globalize this construction, blowing up an arbitrary point in X.

イロト イポト イヨト イヨト

Example (Local blow up of a point)

Let B be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension n such that

- the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;
- π is a biholomorphism from $\tilde{B} \setminus E$ onto $B \setminus \{0\}$;
- $\omega = \pi^* dd^c (\log |z| + |z|^2) [E]$ is a Kähler form on \tilde{B}
- Can globalize this construction, blowing up an arbitrary point in X.
- One can also blow up any submanifold $Y \subset X$ of codimension ≥ 2 .

イロン 不聞と 不同と 不同と

Example (Local blow up of a point)

Let B be a ball centered at zero in \mathbb{C}^n and consider

$$ilde{B} = \{(z,\ell) \in B imes \mathbb{P}^{n-1}, \ z \in \ell\}.$$

This is a complex manifold of $\mathbb{C}^n \times \mathbb{P}^{n-1}$ of dimension n such that

- the projection $\pi: (z, \ell) \in \tilde{B} \mapsto z \in B$ satisfies $E := \pi^{-1}(0) \sim \mathbb{P}^{n-1}$;
- π is a biholomorphism from $\tilde{B} \setminus E$ onto $B \setminus \{0\}$;
- $\omega = \pi^* dd^c (\log |z| + |z|^2) [E]$ is a Kähler form on \tilde{B}
- Can globalize this construction, blowing up an arbitrary point in X.
- One can also blow up any submanifold $Y \subset X$ of codimension ≥ 2 .
- The blow up of a Kähler manifold is a Kähler manifold.

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold.

(日) (同) (三) (三)

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$

(日) (同) (三) (三)

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$ there exists local holomorphic coordinates centered at p such that

$$\omega = \sum_{i,j=1}^{n} \omega_{lphaeta} i dz_{lpha} \wedge d\overline{z_{eta}} \quad \textit{with} \quad \omega_{lphaeta} = \delta_{lphaeta} + O(||z||^2).$$

A D A D A D A

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$ there exists local holomorphic coordinates centered at p such that

$$\omega = \sum_{i,j=1}^{n} \omega_{lphaeta} i dz_{lpha} \wedge d\overline{z_{eta}} \quad \text{with} \quad \omega_{lphaeta} = \delta_{lphaeta} + O(||z||^2).$$

Proposition (Local $\partial \overline{\partial}$ -lemma)

Let (X, ω) be a cplx hermitian manifold.

イロト 不得下 イヨト イヨト

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$ there exists local holomorphic coordinates centered at p such that

$$\omega = \sum_{i,j=1}^{n} \omega_{lphaeta} i dz_{lpha} \wedge d\overline{z_{eta}} \quad \text{with} \quad \omega_{lphaeta} = \delta_{lphaeta} + O(||z||^2).$$

Proposition (Local $\partial \overline{\partial}$ -lemma)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff locally $\omega = i\partial \overline{\partial} \varphi$,

イロト 不得下 イヨト イヨト

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$ there exists local holomorphic coordinates centered at p such that

$$\omega = \sum_{i,j=1}^{n} \omega_{lphaeta} \operatorname{idz}_{lpha} \wedge d\overline{z_{eta}} \quad \text{with} \quad \omega_{lphaeta} = \delta_{lphaeta} + O(||z||^2).$$

Proposition (Local $\partial \overline{\partial}$ -lemma)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff locally $\omega = i\partial \overline{\partial} \varphi$,

where φ is smooth and strictly plurisubharmonic.

イロト 不得下 イヨト イヨト

Proposition (Normal coordinates)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff for each $p \in X$ there exists local holomorphic coordinates centered at p such that

$$\omega = \sum_{i,j=1}^{n} \omega_{lphaeta} i dz_{lpha} \wedge d\overline{z_{eta}} \quad \text{with} \quad \omega_{lphaeta} = \delta_{lphaeta} + O(||z||^2).$$

Proposition (Local $\partial \overline{\partial}$ -lemma)

Let (X, ω) be a cplx hermitian manifold. The form ω is Kähler iff locally $\omega = i\partial \overline{\partial} \varphi$,

where φ is smooth and strictly plurisubharmonic.

 \hookrightarrow Not usually possible globally (max principle), but...

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

・ロト ・回ト ・ヨト ・ヨ

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem ($\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class,

- 4 間 と 4 画 と 4 画

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- 4 @ > 4 @ > 4 @ >

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

• Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.

< 回 > < 三 > < 三 >

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.
- $PSH(X, \omega)$ = the closure of \mathcal{K}_{ω} in L^1 will be the hero of Lecture 2.

- 4 回 ト 4 回 ト 4 回 ト

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.
- $PSH(X, \omega)$ =the closure of \mathcal{K}_{ω} in L^1 will be the hero of Lecture 2.

Theorem (Hodge decomposition theorem)

If X is compact Kähler then $H^{p,q}(X,\mathbb{C})$ is isomorphic to $\overline{H^{q,p}(X,\mathbb{C})}$

イロト 不得 トイヨト イヨト 二日

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.
- $PSH(X, \omega)$ =the closure of \mathcal{K}_{ω} in L^1 will be the hero of Lecture 2.

Theorem (Hodge decomposition theorem)

If X is compact Kähler then $H^{p,q}(X,\mathbb{C})$ is isomorphic to $\overline{H^{q,p}(X,\mathbb{C})}$ and $H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X,\mathbb{C}).$

(日) (四) (王) (王) (王)

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.
- $PSH(X, \omega)$ =the closure of \mathcal{K}_{ω} in L^1 will be the hero of Lecture 2.

Theorem (Hodge decomposition theorem)

If X is compact Kähler then $H^{p,q}(X, \mathbb{C})$ is isomorphic to $\overline{H^{q,p}(X, \mathbb{C})}$ and $H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X, \mathbb{C}).$

 \hookrightarrow In particular $b_1(X) = 2h^{1,0}(X)$ even,

▲日 → ▲圖 → ▲ 画 → ▲ 画 →

A Kähler form ω defines a deRham class $\{\omega\} \in H^2(X, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

If two Kähler forms ω, ω' define the same cohomology class, then there exists a (essentially unique) $\varphi \in C^{\infty}(X, \mathbb{R})$ such that $\omega' = \omega + i\partial\overline{\partial}\varphi$.

- Let \mathcal{K}_{ω} denote set of smooth functions φ s.t. $\omega + i\partial\overline{\partial}\varphi > 0$ is Kähler.
- $PSH(X, \omega)$ =the closure of \mathcal{K}_{ω} in L^1 will be the hero of Lecture 2.

Theorem (Hodge decomposition theorem)

If X is compact Kähler then $H^{p,q}(X,\mathbb{C})$ is isomorphic to $\overline{H^{q,p}(X,\mathbb{C})}$ and $H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X,\mathbb{C}).$

 \hookrightarrow In particular $b_1(X) = 2h^{1,0}(X)$ even, while $b_1(S^1 \times S^3) = 1$ so no Hopf.

E SQA

イロト イポト イヨト イヨト

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

→ 4 Ξ →

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

• for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,

- 4 同 6 4 日 6 4 日 6

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,

A (10) A (10) A (10)

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

- 4 回 ト 4 回 ト 4 回 ト

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

Maps $\varphi_U \circ \varphi_V^{-1}$ induce an automorphisme of $U \cap V \times \mathbb{C}$ of the form $\varphi_U \circ \varphi_V^{-1} : (x, \zeta) \in U \cap V \times \mathbb{C} \mapsto (x, g_{UV}(x) \cdot \zeta) \in U \cap V \times \mathbb{C}$

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

Maps $\varphi_U \circ \varphi_V^{-1}$ induce an automorphisme of $U \cap V \times \mathbb{C}$ of the form $\varphi_U \circ \varphi_V^{-1} : (x, \zeta) \in U \cap V \times \mathbb{C} \mapsto (x, g_{UV}(x) \cdot \zeta) \in U \cap V \times \mathbb{C}$ where g_{UV} =non vanishing holomorphic functions.

イロト 不得 トイヨト イヨト 二日

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

Maps $\varphi_U \circ \varphi_V^{-1}$ induce an automorphisme of $U \cap V \times \mathbb{C}$ of the form $\varphi_U \circ \varphi_V^{-1} : (x, \zeta) \in U \cap V \times \mathbb{C} \mapsto (x, g_{UV}(x) \cdot \zeta) \in U \cap V \times \mathbb{C}$ where g_{UV} =non vanishing holomorphic functions. Can consider • tensor products $L_1 \otimes L_2$ with transition functions $g_{UV}^1 \cdot g_{UV}^2$.

イロト 不得下 イヨト イヨト 二日

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

Maps $\varphi_U \circ \varphi_V^{-1}$ induce an automorphisme of $U \cap V \times \mathbb{C}$ of the form $\varphi_U \circ \varphi_V^{-1} : (x, \zeta) \in U \cap V \times \mathbb{C} \mapsto (x, g_{UV}(x) \cdot \zeta) \in U \cap V \times \mathbb{C}$ where g_{UV} =non vanishing holomorphic functions. Can consider

- tensor products $L_1 \otimes L_2$ with transition functions $g_{UV}^1 \cdot g_{UV}^2$.
- L^* dual line bundle with dual fibers L_x^* , st $L \otimes L^* =$ trivial line bundle.

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition

A holomorphic line bundle $L \xrightarrow{\pi} X$ is a complex manifold s.t.

- for each $x \in X$, $L_x = \pi^{-1}(x) \sim \mathbb{C}$ is a complex line,
- the projection map $\pi: L \to X$ is holomorphic,
- for each $x \in X$, there exists an open neighborhood $U \subset X$ of x and $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}$

a biholomorphism taking L_x isomorphically onto $\{x\} \times \mathbb{C}$.

Maps $\varphi_U \circ \varphi_V^{-1}$ induce an automorphisme of $U \cap V \times \mathbb{C}$ of the form $\varphi_U \circ \varphi_V^{-1} : (x, \zeta) \in U \cap V \times \mathbb{C} \mapsto (x, g_{UV}(x) \cdot \zeta) \in U \cap V \times \mathbb{C}$ where g_{UV} =non vanishing holomorphic functions. Can consider

- tensor products $L_1 \otimes L_2$ with transition functions $g_{UV}^1 \cdot g_{UV}^2$.
- L^* dual line bundle with dual fibers L_x^* , st $L \otimes L^*$ =trivial line bundle. \hookrightarrow Picard group. In the sequel $L^j := L \otimes \cdots \otimes L_x^j$ (*j* times).

Vincent Guedj (IMT)

Holomorphic sections

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = Id.$

→ Ξ →

Holomorphic sections

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

(日) (同) (三) (三)

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

• In practice $s = \{s_U\}$ collection of holom maps satisfying $s_V = g_{UV}s_U$.

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

- In practice $s = \{s_U\}$ collection of holom maps satisfying $s_V = g_{UV}s_U$.
- Can add two holomorphic sections and multiply by a complex number.

(人間) トイヨト イヨト

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

- In practice $s = \{s_U\}$ collection of holom maps satisfying $s_V = g_{UV}s_U$.
- Can add two holomorphic sections and multiply by a complex number.
- If s_0, \ldots, s_N is a basis of $H^0(X, L)$ =vector space, can consider $x \in X \mapsto \phi_1(x) = [s_0(x) : \cdots : s_N(x)] \in \mathbb{CP}^N$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

- In practice $s = \{s_U\}$ collection of holom maps satisfying $s_V = g_{UV}s_U$.
- Can add two holomorphic sections and multiply by a complex number.
- If s_0, \ldots, s_N is a basis of $H^0(X, L)$ =vector space, can consider $x \in X \mapsto \phi_L(x) = [s_0(x) : \cdots : s_N(x)] \in \mathbb{CP}^N$

Definition

A holomorphic line bundle L is called very ample if ϕ_L is an embedding.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Definition

A holomorphic section of L is a holomorphic map $s : X \to L \ s.t. \ \pi \circ s = \text{Id.}$ We let $H^0(X, L)$ denote the set of (global) holomorphic sections.

- In practice $s = \{s_U\}$ collection of holom maps satisfying $s_V = g_{UV}s_U$.
- Can add two holomorphic sections and multiply by a complex number.
- If s_0, \ldots, s_N is a basis of $H^0(X, L)$ =vector space, can consider $x \in X \mapsto \phi_L(x) = [s_0(x) : \cdots : s_N(x)] \in \mathbb{CP}^N$

Definition

A holomorphic line bundle L is called very ample if ϕ_L is an embedding. L is called ample if ϕ_{L^k} is very ample for some k >> 1.

イロト 不得 トイヨト イヨト 二日

The Picard group of \mathbb{CP}^n is \mathbb{Z} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$

< ロ > < 同 > < 三 > < 三

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

(日) (同) (三) (三)

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

• Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \zeta \in [z]\}.$$

- Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$
- The transition functions of $\mathcal{O}(1)$ are $\frac{z_i}{z_i}$.

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

- Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$
- The transition functions of $\mathcal{O}(1)$ are $\frac{z_i}{z_i}$.
- Holomorphic section $z_j s_j = z_i s_i = P =$ homog. polynomial of deg 1

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

- Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$
- The transition functions of $\mathcal{O}(1)$ are $\frac{z_i}{z_i}$.
- Holomorphic section $z_j s_j = z_i s_i = P =$ homog. polynomial of deg 1
- Similarly $H^0(\mathbb{P}^n, \mathcal{O}(j))$ =space of homogeneous polynomials of deg j.

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

- Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$
- The transition functions of $\mathcal{O}(1)$ are $\frac{z_i}{z_i}$.
- Holomorphic section $z_j s_j = z_i s_i = P =$ homog. polynomial of deg 1
- Similarly $H^0(\mathbb{P}^n, \mathcal{O}(j))$ =space of homogeneous polynomials of deg j.

• Note: dim
$$H^0(\mathbb{P}^n, \mathcal{O}(j)) = \left(egin{array}{c} n+j \\ j \end{array}
ight) = rac{j^n}{n!} + O(j^{n-1}) \sim j^{\dim \mathbb{P}^n}$$

The Picard group of \mathbb{CP}^n is \mathbb{Z} . It is generated by the hyperplane bundle $\mathcal{O}(1)$ which is dual to the universal bundle of \mathbb{P}^n ,

$$\mathcal{O}(-1) = \{([z], \zeta) \in \mathbb{P}^n \times \mathbb{C}^{n+1}, \ \zeta \in [z]\}.$$

- Can trivialize in the open sets $U_i = \{[z] \in \mathbb{P}^n, z_i \neq 0\}.$
- The transition functions of $\mathcal{O}(1)$ are $\frac{z_i}{z_i}$.
- Holomorphic section $z_j s_j = z_i s_i = P =$ homog. polynomial of deg 1
- Similarly $H^0(\mathbb{P}^n, \mathcal{O}(j))$ =space of homogeneous polynomials of deg j.

• Note: dim $H^0(\mathbb{P}^n, \mathcal{O}(j)) = \begin{pmatrix} n+j \\ j \end{pmatrix} = \frac{j^n}{n!} + O(j^{n-1}) \sim j^{\dim \mathbb{P}^n}.$

• The hyperplane bundle is very ample.

イロト 不得 トイヨト イヨト 二日

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.

< 回 ト < 三 ト < 三 ト

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.
- The canonical line bundle of \mathbb{P}^n is $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.
- The canonical line bundle of \mathbb{P}^n is $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.
- Canonical bundle of hypersurface of degree d in \mathbb{P}^n is $\mathcal{O}(d n 1)$.

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.
- The canonical line bundle of \mathbb{P}^n is $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.
- Canonical bundle of hypersurface of degree d in \mathbb{P}^n is $\mathcal{O}(d n 1)$.

 \hookrightarrow Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.
- The canonical line bundle of \mathbb{P}^n is $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.
- Canonical bundle of hypersurface of degree d in Pⁿ is O(d − n − 1).

 → Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.
- Canonical bundle of a complex torus $X = \mathbb{C}^n / \Lambda$ is 0 (i.e. $X \times \mathbb{C}$).

イロト 不得 トイヨト イヨト 二日

Definition

The canonical bundle K_X of a complex manifold X is the line bundle st

- local holom section in a coordinate chart (z_1, \ldots, z_n) is $dz_1 \wedge \cdots \wedge dz_n$;
- transition functions are jacobians of coordinate changes.
- This is the most important holomorphic line bundle on X.
- The canonical line bundle of \mathbb{P}^n is $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.
- Canonical bundle of hypersurface of degree d in Pⁿ is O(d − n − 1).

 → Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.
- Canonical bundle of a complex torus $X = \mathbb{C}^n / \Lambda$ is 0 (i.e. $X \times \mathbb{C}$).
- Canonical bundle of a product: $K_{X_1 \times X_2} = \pi_1^* K_{X_1} \otimes \pi_2^* K_{X_2}$.

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$.

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$. A line bundle is positive if it admits a smooth metric whose curvature is a Kähler form.

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$. A line bundle is positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line bundle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$. A line bundle is positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line bundle. In other words: $L \rightarrow X$ is positive iff it is ample.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$. A line bundle is positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line bundle. In other words: $L \rightarrow X$ is positive iff it is ample.

"Proof": L^j very ample $\Rightarrow L^j = \phi^*_{L^j} \mathcal{O}(1)$ has a Fubini-Study type metric.

Given $s = \{s_U\} \in H^0(X, L)$, can measure the size of $s(x) \in L_x$ by using metric $h = \{h_U\}$ with $h_U = e^{-\varphi_U}$ st $\varphi_V = \varphi_U + \log |g_{UV}|$ setting $|s|_h(x) := |s_U(x)|e^{-\varphi_U(x)} = |s_V(x)|e^{-\varphi_V(x)}$.

Definition

The curvature of the metric h is $\Theta_h := i\partial \overline{\partial} \varphi_U = i\partial \overline{\partial} \varphi_V$. A line bundle is positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line bundle. In other words: $L \rightarrow X$ is positive iff it is ample.

"Proof": L^j very ample $\Rightarrow L^j = \phi_{L^j}^* \mathcal{O}(1)$ has a Fubini-Study type metric. Converse more delicate, can be proved by Hörmander's L^2 techniques. \Box

The transition functions g_{UV} of a holomorphic line bundle $L \to X$ satisfy $g_{UV} \cdot g_{VU} = 1$ and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

The transition functions g_{UV} of a holomorphic line bundle $L \rightarrow X$ satisfy

 $g_{UV} \cdot g_{VU} = 1$ and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

 \hookrightarrow class in $H^1(X, \mathcal{O}^*)$ =set of holomorphic line bdles modulo isom .

イロト 不得 トイヨト イヨト 二日

The transition functions g_{UV} of a holomorphic line bundle $L \rightarrow X$ satisfy

$$g_{UV} \cdot g_{VU} = 1$$
 and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

 \hookrightarrow class in $H^1(X, \mathcal{O}^*)$ =set of holomorphic line bdles modulo isom .

Definition (First Chern class)

The Chern class $c_1(L)$ is the image $L \in H^1(X, \mathcal{O}^*) \mapsto c_1(L) \in H^2(X, \mathbb{Z})$ under the map induced by the exact sequence $0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$.

イロト 不得下 イヨト イヨト 二日

The transition functions g_{UV} of a holomorphic line bundle $L \rightarrow X$ satisfy

$$g_{UV} \cdot g_{VU} = 1$$
 and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

 \hookrightarrow class in $H^1(X, \mathcal{O}^*)$ =set of holomorphic line bdles modulo isom .

Definition (First Chern class)

The Chern class $c_1(L)$ is the image $L \in H^1(X, \mathcal{O}^*) \mapsto c_1(L) \in H^2(X, \mathbb{Z})$ under the map induced by the exact sequence $0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$.

Analytically $c_1(L) \in H^2(X, \mathbb{Z}) \mapsto c(L) \in H^2(X, \mathbb{R})$ induced by $\mathbb{Z} \subset \mathbb{R}$.

イロト 不得下 イヨト イヨト 二日

The transition functions g_{UV} of a holomorphic line bundle $L \rightarrow X$ satisfy

$$g_{UV} \cdot g_{VU} = 1$$
 and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

 \hookrightarrow class in $H^1(X, \mathcal{O}^*)$ =set of holomorphic line bdles modulo isom .

Definition (First Chern class)

The Chern class $c_1(L)$ is the image $L \in H^1(X, \mathcal{O}^*) \mapsto c_1(L) \in H^2(X, \mathbb{Z})$ under the map induced by the exact sequence $0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$.

Analytically $c_1(L) \in H^2(X, \mathbb{Z}) \mapsto c(L) \in H^2(X, \mathbb{R})$ induced by $\mathbb{Z} \subset \mathbb{R}$.

Proposition

One has $c(L) = \{\Theta_h\}$ for any smooth hermitian metric h of L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The transition functions g_{UV} of a holomorphic line bundle $L \rightarrow X$ satisfy

$$g_{UV} \cdot g_{VU} = 1$$
 and $g_{UV} \cdot g_{VW} \cdot g_{WU} = 1$.

 \hookrightarrow class in $H^1(X, \mathcal{O}^*)$ =set of holomorphic line bdles modulo isom .

Definition (First Chern class)

The Chern class $c_1(L)$ is the image $L \in H^1(X, \mathcal{O}^*) \mapsto c_1(L) \in H^2(X, \mathbb{Z})$ under the map induced by the exact sequence $0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$.

Analytically $c_1(L) \in H^2(X, \mathbb{Z}) \mapsto c(L) \in H^2(X, \mathbb{R})$ induced by $\mathbb{Z} \subset \mathbb{R}$.

Proposition

One has $c(L) = \{\Theta_h\}$ for any smooth hermitian metric h of L.

Definition

The first Chern class of X is $c_1(X) = c_1(-K_X)$.

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Definition (-Proposition)

dim
$$H^0(X, K_X^j) \sim j^{
u}$$
 where $u \in \{-\infty, 0, \dots, n\} = K$ odaira dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1).

イロト 不得 トイヨト イヨト 二日

Definition (-Proposition)

dim
$$H^0(X, K_X^j) \sim j^{\nu}$$
 where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

• either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

- either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;
- or $kod(X) = 0 \Leftrightarrow K_X = 0$ is trivial $\Leftrightarrow X$ is an elliptic curve;

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

- either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;
- or $kod(X) = 0 \Leftrightarrow K_X = 0$ is trivial $\Leftrightarrow X$ is an elliptic curve;
- orelse $kod(X) = 1 \Leftrightarrow K_X$ is positive $\Leftrightarrow X$ is hyperbolic.

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

- either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;
- or $kod(X) = 0 \Leftrightarrow K_X = 0$ is trivial $\Leftrightarrow X$ is an elliptic curve;
- orelse $kod(X) = 1 \Leftrightarrow K_X$ is positive $\Leftrightarrow X$ is hyperbolic.

• The classification in dimension n = 2 is (almost) complete.

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

- either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;
- or $kod(X) = 0 \Leftrightarrow K_X = 0$ is trivial $\Leftrightarrow X$ is an elliptic curve;
- orelse $kod(X) = 1 \Leftrightarrow K_X$ is positive $\Leftrightarrow X$ is hyperbolic.
- The classification in dimension n = 2 is (almost) complete.
- In higher dimension $n \ge 3$ needs to consider singular models (MMP).

Definition (-Proposition)

dim $H^0(X, K_X^j) \sim j^{\nu}$ where $\nu \in \{-\infty, 0, \dots, n\} = Kodaira$ dimension.

The Kodaira dimension $kod(X) := \nu$ is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

- either $kod(X) = -\infty \Leftrightarrow K_X$ is negative $\Leftrightarrow X \sim \mathbb{P}^1$;
- or $kod(X) = 0 \Leftrightarrow K_X = 0$ is trivial $\Leftrightarrow X$ is an elliptic curve;
- orelse $kod(X) = 1 \Leftrightarrow K_X$ is positive $\Leftrightarrow X$ is hyperbolic.
- The classification in dimension n = 2 is (almost) complete.
- In higher dimension $n \ge 3$ needs to consider singular models (MMP).

 \hookrightarrow Seeking for canonical Kähler metrics might help (next Lectures),

Vincent Guedj (IMT)

Let (X, ω) be a compact Kähler manifold,

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{\text{loc}}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{\textit{loc}}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Definition

The Ricci form of
$$\omega$$
 is $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\overline{pq}})}{\partial z_{\alpha} \partial \overline{z}_{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{\textit{loc}}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Definition

The Ricci form of
$$\omega$$
 is $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\overline{pq}})}{\partial z_\alpha \partial \overline{z}_\beta} i dz_\alpha \wedge d\overline{z}_\beta$.
The scalar curvature of ω is $\operatorname{Scal}(\omega) =: \operatorname{Tr}_{\omega}(\operatorname{Ric}(\omega)) = n \frac{\operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^n}$.

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{loc}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Definition

The Ricci form of
$$\omega$$
 is $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\overline{pq}})}{\partial z_\alpha \partial \overline{z}_\beta} i dz_\alpha \wedge d\overline{z}_\beta.$
The scalar curvature of ω is $\operatorname{Scal}(\omega) =: \operatorname{Tr}_{\omega}(\operatorname{Ric}(\omega)) = n \frac{\operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^n}.$

• $\operatorname{Ric}(\omega)$ =globally well defined closed (1,1)-form.

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{loc}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Definition

The Ricci form of
$$\omega$$
 is $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(g_{\overline{pq}})}{\partial z_\alpha \partial \overline{z}_\beta} i dz_\alpha \wedge d\overline{z}_\beta.$
The scalar curvature of ω is $\operatorname{Scal}(\omega) =: \operatorname{Tr}_{\omega}(\operatorname{Ric}(\omega)) = n \frac{\operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^n}.$

• $\operatorname{Ric}(\omega)$ =globally well defined closed (1,1)-form.

•
$$\operatorname{Ric}(\eta) = \operatorname{Ric}(\omega) - dd^{c}\left(\frac{\eta^{n}}{\omega^{n}}\right)$$
, with $dd^{c} = \frac{i}{\pi}\partial\overline{\partial}$.

Let (X, ω) be a compact Kähler manifold, $\omega \stackrel{loc}{=} \sum_{\alpha, \beta} g_{\alpha \overline{\beta}} i dz_{\alpha} \wedge d\overline{z}_{\beta}$.

Definition

The Ricci form of
$$\omega$$
 is $\operatorname{Ric}(\omega) = -\frac{1}{\pi} \sum \frac{\partial^2 \log \det(\overline{g_{\overline{pq}}})}{\partial z_\alpha \partial \overline{z}_\beta} i dz_\alpha \wedge d\overline{z}_\beta$.
The scalar curvature of ω is $\operatorname{Scal}(\omega) =: \operatorname{Tr}_{\omega}(\operatorname{Ric}(\omega)) = n \frac{\operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^n}$.

•
$$\operatorname{Ric}(\omega)$$
 =globally well defined closed (1,1)-form.

•
$$\operatorname{Ric}(\eta) = \operatorname{Ric}(\omega) - dd^{c}\left(\frac{\eta^{n}}{\omega^{n}}\right)$$
, with $dd^{c} = \frac{i}{\pi}\partial\overline{\partial}$.

Proposition

The cohomology class of $\operatorname{Ric}(\omega)$ is $c_1(X) = -c_1(K_X)$.

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$.

• • • • • • • • • • • •

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\text{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\text{Scal}(\omega) \equiv \text{cst.}$

/□ ▶ 《 ⋽ ▶ 《 ⋽

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

• Clearly Kähler-Einstein \Rightarrow cscK.

→ 3 → 4 3

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

- Clearly Kähler-Einstein \Rightarrow cscK.
- Converse is true if $c_1(X) = \lambda\{\omega\}$ (Exercise).

• • = • • = •

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

- Clearly Kähler-Einstein \Rightarrow cscK.
- Converse is true if $c_1(X) = \lambda\{\omega\}$ (Exercise).
- Can rescale to $\lambda \in \{-1, 0, +1\}$ since $\operatorname{Ric}(\varepsilon \omega) = \operatorname{Ric}(\omega)$.

くほと くほと くほと

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

- Clearly Kähler-Einstein \Rightarrow cscK.
- Converse is true if $c_1(X) = \lambda\{\omega\}$ (Exercise).
- Can rescale to $\lambda \in \{-1, 0, +1\}$ since $\operatorname{Ric}(\varepsilon \omega) = \operatorname{Ric}(\omega)$.
- Existence of K-E necessitates that $c_1(X)$ has a sign.

< 回 ト < 三 ト < 三 ト

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

- Clearly Kähler-Einstein \Rightarrow cscK.
- Converse is true if $c_1(X) = \lambda\{\omega\}$ (Exercise).
- Can rescale to $\lambda \in \{-1, 0, +1\}$ since $\operatorname{Ric}(\varepsilon \omega) = \operatorname{Ric}(\omega)$.
- Existence of K-E necessitates that $c_1(X)$ has a sign.
- Not always true $(X = S_1 \times S_2)$ but building blocks of classification.

イロト 人間ト イヨト イヨト

Definition

A Kähler metric is Kähler-Einstein if there exists $\lambda \in \mathbb{R}$ st $\operatorname{Ric}(\omega) = \lambda \omega$. A Kähler metric has constant scalar curvature if $\operatorname{Scal}(\omega) \equiv \operatorname{cst.}$

- Clearly Kähler-Einstein \Rightarrow cscK.
- Converse is true if $c_1(X) = \lambda\{\omega\}$ (Exercise).
- Can rescale to $\lambda \in \{-1, 0, +1\}$ since $\operatorname{Ric}(\varepsilon \omega) = \operatorname{Ric}(\omega)$.
- Existence of K-E necessitates that $c_1(X)$ has a sign.
- Not always true ($X = S_1 \times S_2$) but building blocks of classification.

 \hookrightarrow Constructing K-E metrics is a main goal of these lectures.

Example

The flat metric $\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$ on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example

The flat metric
$$\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$$
 on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

Example

The Fubini-Study metric $\omega = dd^c \log[1 + |z|^2]$ on \mathbb{P}^n

Vincent Guedj (IMT)

Lecture 1: Compact Kähler manifolds

▲ ■ ▶ ■ つへへ April 2021 18 / 19

Example

The flat metric
$$\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$$
 on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

Example

The Fubini-Study metric $\omega = dd^c \log[1 + |z|^2]$ on \mathbb{P}^n satisfies

$$\omega_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{[1+|z|^2]} - \frac{z_{\alpha}\overline{z_{\beta}}}{[1+|z|^2]^2}$$

Vincent Guedj (IMT)

Lecture 1: Compact Kähler manifolds

▲ 重 ▶ 重 少 ९ ペ
April 2021 18 / 19

Example

The flat metric
$$\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$$
 on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

Example

The Fubini-Study metric $\omega = dd^c \log[1 + |z|^2]$ on \mathbb{P}^n satisfies

$$\omega_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{[1+|z|^2]} - \frac{z_{\alpha}\overline{z_{\beta}}}{[1+|z|^2]^2}$$

hence
$$\log \det(\omega_{lphaeta}) = \log rac{1}{[1+|z|^2]^{n+1}} = -(n+1)\log[1+|z|^2]$$

Vincent Guedj (IMT)

Lecture 1: Compact Kähler manifolds

▲ ■ ▶ ■ つへへ April 2021 18 / 19

Example

The flat metric
$$\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$$
 on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

Example

The Fubini-Study metric $\omega = dd^c \log[1 + |z|^2]$ on \mathbb{P}^n satisfies

$$\omega_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{[1+|z|^2]} - \frac{z_{\alpha}\overline{z_{\beta}}}{[1+|z|^2]^2}$$

hence $\log \det(\omega_{\alpha\beta}) = \log \frac{1}{[1+|z|^2]^{n+1}} = -(n+1)\log[1+|z|^2]$ yields $\operatorname{Ric}(\omega) = (n+1)\omega.$

Example

The flat metric
$$\omega = \sum i dz_{\alpha} \wedge d\overline{z_{\beta}}$$
 on $X = \mathbb{C}^n / \Lambda$ satisfies $\operatorname{Ric}(\omega) = 0$.

Example

The Fubini-Study metric $\omega = dd^c \log[1 + |z|^2]$ on \mathbb{P}^n satisfies

$$\omega_{lphaeta} = rac{\delta_{lphaeta}}{[1+|z|^2]} - rac{z_lpha \overline{z_eta}}{[1+|z|^2]^2}$$

hence $\log \det(\omega_{lphaeta}) = \log rac{1}{[1+|z|^2]^{n+1}} = -(n+1)\log[1+|z|^2]$ yields

$$\operatorname{Ric}(\omega) = (n+1)\omega.$$

 \hookrightarrow Many more (non explicit) examples in next Lectures.

Vincent Guedj (IMT)

Lecture 1: Compact Kähler manifolds

April 2021 18 / 19

• F.Zheng Complex differential geometry, International Press, Boston, MA, 2000.

-

• • • • • • • • • • • •

• F.Zheng

Complex differential geometry, International Press, Boston, MA, 2000.

R.Lazarsfeld

Positivity in Algebraic Geometry. I, Springer-Verlag, Berlin, 2004.

< ∃ > <

F.Zheng

Complex differential geometry, International Press, Boston, MA, 2000.

R.Lazarsfeld

Positivity in Algebraic Geometry. I, Springer-Verlag, Berlin, 2004.

• C.Voisin,

Hodge theory and complex algebraic geometry. I, Cambridge University Press, Cambridge, 2007.

< ∃ > <

F.Zheng

Complex differential geometry, International Press, Boston, MA, 2000.

R.Lazarsfeld

Positivity in Algebraic Geometry. I, Springer-Verlag, Berlin, 2004.

C.Voisin,

Hodge theory and complex algebraic geometry. I, Cambridge University Press, Cambridge, 2007.

• G.Székelyhidi,

An Introduction to Extremal Kähler Metrics., Graduate Studies in Mathematics, AMS, 2014.