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Quasi-plurisubharmonic functions on Kähler manifolds

The aim of today’s lectures is to

explain the definition and provide examples of Kähler metrics;

motivate the search for canonical Kähler metrics;

discuss basic properties of quasi-plurisubharmonic functions.

The precise plan is as follows:

Lecture 1: a panoramic view of compact Kähler manifolds.

Lecture 2: uniform integrability properties of quasi-psh functions.
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Kähler manifolds

Kähler metrics

Let X be a compact complex manifold of dimension n ∈ N∗.

Using local
charts and partition of unity, one can find plenty of hermitian forms,

ω
loc
=
∑n

i ,j=1 ωαβ idzα ∧ dzβ.

where

(zα) are local holomorphic coordinates;

ωαβ are smooth functions such that (ωαβ) is hermitian at all points.

Definition

The hermitian form ω is Kähler if its is closed dω = 0.
A manifold is Kähler if it admits a Kähler form.

Euclidean metric in local chart=local example of Kähler metric.

Using cut-off functions destroy the condition dω = 0.

Such a form is associated to a Riemannian metric on TX .
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Kähler manifolds

Examples

Example (Tori)

Euclidean form ω =
∑n

α=1 idzα ∧ dzα closed

and invariant by translations
⇒ Kähler form on compact tori X = Cn/Λ, where Λ ⊂ R2n is a lattice.

Example (Projective space)

The cplx projective space CPn = set of complex lines through 0 ∈ Cn+1.
Homogeneous coordinates [z ] = [z0 : · · · : zn] = [λz0 : · · · : λzn], λ ∈ C∗.
Charts x ∈ Cn 7→ [x1, . . . , 1, . . . , xn] ∈ Uj = {[z ] ∈ CPn, zj 6= 0} ∼ Cn.
The Kähler form ω = i

2π∂∂ log[1 + ||x ||2] defines a Kähler form on CPn

This is the Fubini-Study Kähler form. Exercise: check that
∫
CPn ω

n = 1.

Example (Hopf surface)

The surface X = C2/〈z 7→ 2z〉 ∼ S1×S3 does not admit any Kähler form.
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Kähler manifolds

Basic constructions

If ω is Kähler, then so is ω + i∂∂ϕ if ϕ ∈ C∞(X ,R) is C2-small.

A product of compact Kähler manifolds is Kähler, cf
ω(x , y) = ω1(x) + ω2(y) = Kähler form on X × Y .

If f : X → Y is a holomorphic embedding and ωY Kähler, then
ωX = f ∗ωY is a Kähler form on X .

⇒ a submanifold of a compact Kähler manifold is Kähler.

⇒ any projective algebraic manifold is Kähler.

⇒ any compact Riemann surface is Kähler.
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Kähler manifolds

Blow-ups

Example (Local blow up of a point)

Let B be a ball centered at zero in Cn

and consider

B̃ = {(z , `) ∈ B × Pn−1, z ∈ `}.

This is a complex manifold of Cn × Pn−1 of dimension n such that

the projection π : (z , `) ∈ B̃ 7→ z ∈ B satisfies E := π−1(0) ∼ Pn−1;

π is a biholomorphism from B̃ \ E onto B \ {0};
ω = π∗ddc(log |z |+ |z |2)− [E ] is a Kähler form on B̃

Can globalize this construction, blowing up an arbitrary point in X .

One can also blow up any submanifold Y ⊂ X of codimension ≥ 2.

The blow up of a Kähler manifold is a Kähler manifold.
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Kähler manifolds

Local characterizations

Proposition (Normal coordinates)

Let (X , ω) be a cplx hermitian manifold.

The form ω is Kähler iff for each
p ∈ X there exists local holomorphic coordinates centered at p such that

ω =
n∑

i ,j=1

ωαβ idzα ∧ dzβ with ωαβ = δαβ + O(||z ||2).

Proposition (Local ∂∂-lemma)

Let (X , ω) be a cplx hermitian manifold. The form ω is Kähler iff locally

ω = i∂∂ϕ,

where ϕ is smooth and strictly plurisubharmonic.

↪→ Not usually possible globally (max principle), but...
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Kähler manifolds

The (global) ∂∂-lemma

A Kähler form ω defines a deRham class {ω} ∈ H2(X ,R).

Theorem (∂∂-lemma)

If two Kähler forms ω, ω′ define the same cohomology class, then there
exists a (essentially unique) ϕ ∈ C∞(X ,R) such that ω′ = ω + i∂∂ϕ.

Let Kω denote set of smooth functions ϕ s.t. ω+ i∂∂ϕ > 0 is Kähler.

PSH(X , ω) =the closure of Kω in L1 will be the hero of Lecture 2.

Theorem (Hodge decomposition theorem)

If X is compact Kähler then Hp,q(X ,C) is isomorphic to Hq,p(X ,C) and

Hk(X ,C) = ⊕p+q=kH
p,q(X ,C).

↪→ In particular b1(X ) = 2h1,0(X ) even, while b1(S1×S3) = 1 so no Hopf.
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Projective manifolds

Holomorphic line bundle

Definition

A holomorphic line bundle L
π→ X is a complex manifold s.t.

for each x ∈ X, Lx = π−1(x) ∼ C is a complex line,

the projection map π : L→ X is holomorphic,

for each x ∈ X, there exists an open neighborhood U ⊂ X of x and

ϕU : π−1(U)→ U × C
a biholomorphism taking Lx isomorphically onto {x} × C.

Maps ϕU ◦ ϕ−1
V induce an automorphisme of U ∩ V × C of the form

ϕU ◦ ϕ−1
V : (x , ζ) ∈ U ∩ V × C 7→ (x , gUV (x) · ζ) ∈ U ∩ V × C

where gUV =non vanishing holomorphic functions. Can consider

tensor products L1 ⊗ L2 with transition functions g1
UV · g2

UV .
L∗ dual line bundle with dual fibers L∗x , st L⊗ L∗ =trivial line bundle.

↪→ Picard group. In the sequel Lj := L⊗ · · · ⊗ L (j times).
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Projective manifolds

Holomorphic sections

Definition

A holomorphic section of L is a holomorphic map s : X → L s.t. π ◦ s = Id.

We let H0(X , L) denote the set of (global) holomorphic sections.

In practice s = {sU} collection of holom maps satisfying sV = gUV sU .

Can add two holomorphic sections and multiply by a complex number.

If s0, . . . , sN is a basis of H0(X , L)=vector space, can consider

x ∈ X 7−→ φL(x) = [s0(x) : · · · : sN(x)] ∈ CPN

Definition

A holomorphic line bundle L is called very ample if φL is an embedding.
L is called ample if φLk is very ample for some k >> 1.
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Projective manifolds

Example: the hyperplane bundle

The Picard group of CPn is Z.

It is generated by the hyperplane bundle
O(1) which is dual to the universal bundle of Pn,

O(−1) = {([z ], ζ) ∈ Pn × Cn+1, ζ ∈ [z ]}.

Can trivialize in the open sets Ui = {[z ] ∈ Pn, zi 6= 0}.
The transition functions of O(1) are zi

zj
.

Holomorphic section zjsj = zi si = P = homog. polynomial of deg 1

Similarly H0(Pn,O(j)) =space of homogeneous polynomials of deg j .

Note: dimH0(Pn,O(j)) =

(
n + j
j

)
= jn

n! + O(jn−1) ∼ jdimPn
.

The hyperplane bundle is very ample.
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Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Canonical line bundle

Definition

The canonical bundle KX of a complex manifold X is the line bundle st

local holom section in a coordinate chart (z1, . . . , zn) is dz1∧ · · ·∧dzn;

transition functions are jacobians of coordinate changes.

This is the most important holomorphic line bundle on X .

The canonical line bundle of Pn is KPn = O(−n − 1).

Canonical bundle of hypersurface of degree d in Pn is O(d − n − 1).

↪→ Three cases: d < n + 1, or d = n + 1, orelse d > n + 1.

Canonical bundle of a complex torus X = Cn/Λ is 0 (i.e. X × C).

Canonical bundle of a product: KX1×X2 = π∗1KX1 ⊗ π∗2KX2 .

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 12 / 19



Projective manifolds

Curvature of holomorphic line bundles

Given s = {sU} ∈ H0(X , L), can measure the size of s(x) ∈ Lx by using
metric h = {hU}

with hU = e−ϕU st ϕV = ϕU + log |gUV | setting

|s|h(x) := |sU(x)|e−ϕU(x) = |sV (x)|e−ϕV (x).

Definition

The curvature of the metric h is Θh := i∂∂ϕU = i∂∂ϕV . A line bundle is
positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line
bundle. In other words: L→ X is positive iff it is ample.

”Proof”: Lj very ample ⇒ Lj = φ∗
Lj
O(1) has a Fubini-Study type metric.

Converse more delicate, can be proved by Hörmander’s L2 techniques. �
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O(1) has a Fubini-Study type metric.

Converse more delicate, can be proved by Hörmander’s L2 techniques. �
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Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 13 / 19



Projective manifolds

Curvature of holomorphic line bundles

Given s = {sU} ∈ H0(X , L), can measure the size of s(x) ∈ Lx by using
metric h = {hU} with hU = e−ϕU st ϕV = ϕU + log |gUV | setting

|s|h(x) := |sU(x)|e−ϕU(x) = |sV (x)|e−ϕV (x).

Definition

The curvature of the metric h is Θh := i∂∂ϕU = i∂∂ϕV . A line bundle is
positive if it admits a smooth metric whose curvature is a Kähler form.

Theorem (Kodaira embeding theorem)

A cpct complex manifold X is projective iff it admits a positive line
bundle. In other words: L→ X is positive iff it is ample.

”Proof”: Lj very ample ⇒ Lj = φ∗
Lj
O(1) has a Fubini-Study type metric.

Converse more delicate, can be proved by Hörmander’s L2 techniques. �

Vincent Guedj (IMT) Lecture 1: Compact Kähler manifolds April 2021 13 / 19



Projective manifolds

First Chern class

The transition functions gUV of a holomorphic line bundle L→ X satisfy

gUV · gVU = 1 and gUV · gVW · gWU = 1.

↪→ class in H1(X ,O∗)=set of holomorphic line bdles modulo isom .

Definition (First Chern class)

The Chern class c1(L) is the image L ∈ H1(X ,O∗) 7→ c1(L) ∈ H2(X ,Z)
under the map induced by the exact sequence 0→ Z→ O → O∗ → 0.

Analytically c1(L) ∈ H2(X ,Z) 7→ c(L) ∈ H2(X ,R) induced by Z ⊂ R.

Proposition

One has c(L) = {Θh} for any smooth hermitian metric h of L.

Definition

The first Chern class of X is c1(X ) = c1(−KX ).
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Projective manifolds

Classification

Definition (-Proposition)

dimH0(X ,K j
X ) ∼ jν where ν ∈ {−∞, 0, . . . , n} =Kodaira dimension.

The Kodaira dimension kod(X ) := ν is a (birational) invariant.

Example

If X is a compact Riemann surface (n = 1). Then

either kod(X ) = −∞⇔ KX is negative ⇔ X ∼ P1;

or kod(X ) = 0⇔ KX = 0 is trivial ⇔ X is an elliptic curve;

orelse kod(X ) = 1⇔ KX is positive ⇔ X is hyperbolic.

The classification in dimension n = 2 is (almost) complete.

In higher dimension n ≥ 3 needs to consider singular models (MMP).

↪→ Seeking for canonical Kähler metrics might help (next Lectures).
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Curvatures

Scalar and Ricci curvatures

Let (X , ω) be a compact Kähler manifold,

ω
loc
=
∑

α,β gαβ idzα ∧ dzβ.

Definition

The Ricci form of ω is Ric(ω) = − 1
π

∑ ∂2 log det(gpq)
∂zα∂zβ

idzα ∧ dzβ.

The scalar curvature of ω is Scal(ω) =: Trω(Ric(ω)) = nRic(ω)∧ωn−1

ωn .

Ric(ω) =globally well defined closed (1, 1)-form.

Ric(η) = Ric(ω)− ddc
(
ηn

ωn

)
, with ddc = i

π∂∂.

Proposition

The cohomology class of Ric(ω) is c1(X ) = −c1(KX ).
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Curvatures

Kähler-Einstein and cscK metrics

Definition

A Kähler metric is Kähler-Einstein if there exists λ ∈ R st Ric(ω) = λω.

A Kähler metric has constant scalar curvature if Scal(ω) ≡ cst.

Clearly Kähler-Einstein ⇒ cscK.

Converse is true if c1(X ) = λ{ω} (Exercise).

Can rescale to λ ∈ {−1, 0,+1} since Ric(εω) = Ric(ω).

Existence of K-E necessitates that c1(X ) has a sign.

Not always true (X = S1 × S2) but building blocks of classification.

↪→ Constructing K-E metrics is a main goal of these lectures.
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Curvatures

Examples

Example

The flat metric ω =
∑

idzα ∧ dzβ on X = Cn/Λ satisfies Ric(ω) = 0.

Example

The Fubini-Study metric ω = ddc log[1 + |z |2] on Pn satisfies

ωαβ =
δαβ

[1 + |z |2]
−

zαzβ
[1 + |z |2]2

hence log det(ωαβ) = log 1
[1+|z|2]n+1 = −(n + 1) log[1 + |z |2] yields

Ric(ω) = (n + 1)ω.

↪→ Many more (non explicit) examples in next Lectures.
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