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Abstract. In this paper, we study the problem of ecologically coloring a graph. Intuitively, an ecological coloring
of a graph is a role assignment to the nodes of the graph, such that two nodes surrounded by the same set of roles
must be assigned the same role (Borgatti and Everett, 1992). We prove that, for any graph G with nG distinct
neighborhoods and for any integer k with 1 ≤ k < nG, G admits an ecological coloring which uses exactly k roles,
and that this coloring can be computed in polynomial time. Our result strongly contrasts with the NP-completeness
result of the regular coloring problem, where it is required that two nodes with the same role must be surrounded
by the same set of roles (Fiala and Paulusma, 2005). Hence, we conclude that not only the ecological coloring is
easier to understand as a model of social relationships (Borgatti and Everett, 1994), but it is also feasible from a
computational complexity point of view.

1 Introduction

One of the main goals of the analysis of a social network consists of determining patterns of relationships
and interactions among social actors (such as persons and groups) in order to identify the social structure
of the network [BE05,B04]. To this aim, a social network is usually represented as a graph, whose nodes
denote the network members and whose edges denote their relationships, which is analyzed from a structural
point of view by means of methods that broadly fall into one of the following two categories: relational
analysis methods that are often used in order to identify central members or to partition the graph into
clusters, and positional analysis methods that examine the similarity between the connection of two network
members with the other members. Role assignment is one of the main positional analysis methods, whose
goal consists of classifying the members of a social network, so that members which are equally classified
can be considered to behave in a similar way or to play a similar role. If the number of roles is limited, this
kind of classification can turn out to be extremely useful while trying to understand the overall structure of
very complex social networks.

Different kinds of role assignment have been introduced in the literature. A strong structural role as-
signment, for example, imposes that if two actors play the same role, then they must have the same neigh-
borhood [LW71], while a regular role assignment imposes that if two actors play the same role, then they
must be surrounded by the same set of roles [WR83,BE89]. In this paper we are interested in another kind
of role assignment, that is, ecological role assignments, according to which if two netowrk members are
surrounded by the same set of roles, then they must play the same role: in other words, the role played by
a social actor is completely determined by the roles played by its neighbors [BE92]. The relationship im-
posed by an ecological role assignment is the opposite of the one imposed by a regular role assignment: a
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Fig. 1. The network of the 19 hijackers on September 11, 2001 (left) and an ecological coloring of the network itself (right)

role assignment that satisfies both constraints is called perfect [BE94]. As stated by Borgatti and Everett, an
ecological role assignment is easier to understand as a model of social relationships, in which a member’s
neighborhood tends to shape this member into that or this kind.

As an example of application of the ecological role assignment method, let us consider the terrorist net-
work containing the 19 hijackers that participated to the events of September 11, 2001 [K02,XC05a,XC05b]:
this network is depicted in the left part of Figure 1, where different node shapes correspond to different flights
(see [K02], where a more complicated network is also analyzed, which includes other terrorists who did not
get on the planes). The right part of the figure shows an ecological role assignment of the terrorist network
that uses three roles (represented by three different colors): it is interesting to observe that this role assign-
ment clearly partitions the network into three groups and that one of these three groups (that is, the gray one)
acts as an interface between the other two groups. It also worth noting that this assignment is clearly not
strong structural, it is not regular (for instance, node 16 and node 17 play the same role but are surrounded
by two different set of roles) and that it does not even correspond to a normal coloring of the network (since
several members of the network playing the same role are connected to each other). Indeed, it is easy to
prove that this network is not three-colorable, since it contains K4 (see nodes 4, 5, 6 and 8); moreover, by
exhaustive search it is also possible to show that this network does not admit any regular role assignment
which uses exactly three roles. In other words, the ecological role assignment is the only positional method
that can be applied to this network, if we insist on requiring that the number of roles is exactly three.

It should now be clear that computing a role assignment for a given network is equivalent to computing
a coloring of the network’s nodes, such that the constraint imposed by the role assignment is satisfied by
the colors assigned to the nodes. For instance, an ecological coloring of a graph is an assignment of colors
to the nodes of the graph such that if two nodes “see” the same set of colors, then they are assigned the
same color. Our main contribution is proving that, for any graph G with nG distinct neighborhoods and for
any integer k with 1 ≤ k ≤ nG, G admits an ecological coloring which uses exactly k colors, and that
this coloring can be computed in polynomial time by means of a bottom-up approach and by making use of
some combinatorial properties of graphs whose nodes have all distinct neighborhoods.

Our results strongly contrast with the results obtained in [RS01,FP05] according to which deciding
whether a graph can be regularly colored with k colors is NP-complete, for any k ≥ 2. This somehow
implies that an ecological role assignment not only is easier to understand but it is also more useful from
a computational complexity point of view than a regular role assignment, since it can be always efficiently
computed. This allows the network analyzer to reduce the size of complex social networks to a desired size:
this feature is extremely important in network analysis for which different aspects can be studied depending
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on network dimension (for example, the degree of relevance in information retrieval and the degree of
relationship in e-communities discovery).

Making role assignment feasible is useful not only in the field of social network analysis, but also in the
field of graph drawing. Indeed, once a role assignment r of a graph G has been computed, a graph drawer
can focus on its corresponding color graph CG,r, that is, the graph whose nodes denote roles and where
there is an edge between two nodes u and v if and only if two adjacent nodes of G have been assigned role
u and v, respectively. For example, the drawing of the terrorist network shown in the right part of Figure 1
is very natural once we realize that the color graph of the ecological role assignment is a path of three nodes
with self-loops. Observe that if the number of roles is very small compared to the number of nodes in G,
then the graph drawer is allowed to make use of any graph drawing algorithm (even a non-efficient one).

Another field of application of our feasibility result is in the field of mobility models for mobile ad hoc
wireless networks (in short, MANET). In fact, considering that different nodes may move according to dif-
ferent mobility models and that the mobility behavior of a node may vary during time because of changes
of its environment, nodes of a network can move according to mobility models that are determined by the
roles played by the nodes themselves: these roles, in turn, can be determined by computing ecological role
assignments of the graph induced by the communication network [BCDRV07]. Observe that prior applica-
tions of social network analysis to the development of MANET mobility models assume that the structure
of the social network is known a priori and that this structure does not change over time [MHM07,MM07]:
in the role assignment based approach, instead, the social network structure is determined by the topology
of the MANET, which in turn changes over time due to the movement of the nodes.

The paper is structured as follows. In the rest of this section, we give some preliminary definitions and
results concerning the ecological coloring of a graph. In Section 2 we introduce the notion of neighborhood
distinct graph, we prove how we can restrict our attention to this kind of graphs and we show some interesting
structural properties of these graphs. In Section 3 we prove our main result, that is, that any graph can be
ecologically colored by using any reasonable number of colors. Finally, in Section 4 we conclude by stating
our main open question.

1.1 Preliminaries

Given a graph G = (V,E), for any node u ∈ V , N(u) denotes the neighborhood of u. A coloring of G
which uses k colors is a surjective function r : V → [k]5. The color graph CG,r = ([k], EG,r) includes the
edge (i, j) if and only there exist u, v ∈ V such that r(u) = i, r(v) = j and (u, v) ∈ E.

Given a coloring r of G which uses the k colors {c1, . . . , ck}, the colorhood of a node u ∈ V with
respect to r is defined as the set

Cr(u) = {ci : i ∈ [k] ∧ ∃v ∈ N(u)[r(v) = ci]}

A coloring r of a graph G = (V,E) is regular [BE89] if, for any u, v ∈ V ,

r(u) = r(v)⇒ Cr(u) = Cr(v)

Observe that any graph with no isolated nodes can be regularly colored with one color and with n colors,
where n is the number of nodes of the graph. The k-RERA decision problem consists in deciding whether
a graph G admits a regular coloring which uses k colors: in [RS01,FP05] it is proved that k-RERA is
NP-complete for any k ≥ 2.

5 In the following, for any positive integer n, [n] will denote the set {1, 2, . . . , n}.
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A coloring r of a graph G = (V,E) is ecological [BE92] if, for any u, v ∈ V ,

Cr(u) = Cr(v)⇒ r(u) = r(v)

Observe that any graph can be ecologically colored with one color. However, it is not true that any graph
can be ecologically colored with n colors, where n is the number of nodes of the graph (see the results
of Section 2). In general, an ecological coloring is not necessarily regular and a regular coloring is not
necessarily ecological. The left part of the following picture shows an example of an ecological coloring
of the path formed by five nodes which is not regular, while the right part shows an example of a regular
coloring of the same graph which is not ecological.

2 2 1 3 3 3 2 1 2 3

The k-ECRA decision problem consists in deciding whether a graph G admits an ecological coloring
which uses k colors. The next result shows that the complexity of ecologically coloring a graph is signifi-
cantly different from the complexity of regularly coloring a graph.

Theorem 1. Any graph with at least two nodes which is not an independent set can be ecologically colored
with two colors.

Proof. Let G = (V,E) be a graph with |V | > 1 and let I be a maximal independent set of G. By coloring
all nodes in I with color 1 and all nodes in V −I with color 2 we obtain an ecological coloring ofG. Indeed,
for any node u ∈ I , Cr(u) = {2} or Cr = ∅ while, for any node u 6∈ I , Cr(u) = {1}∨Cr(u) = {1, 2}. ut

As a consequence of the above theorem, we have the following result which contrasts with the NP-
completeness of the 2-RERA decision problem proved in [RS01].

Corollary 1. The 2-ECRA decision problem belongs to P.

2 Neighborhood Distinct graphs

According to the definition of an ecological coloring, two nodes with the same neighborhood must be colored
with the same color. The number of distinct neighborhoods contained in a graph is thus an upper bound on
the number of colors that can be used by any ecological coloring. The following definition and results
formalize this statement.

Definition 1. A graph G = (V,E) is neighborhood distinct (in short, ND) if, for any u, v ∈ V , N(u) 6=
N(v).

Even though the notion of neighborhood distinct graphs might seem quite natural, as far as we know no
definition of these graphs has been given in the literature: the only definition similar to ours is the one given
in [MMPW07] which concerns closed-neighborhood anti-Sperner graphs. Observe that any ND graph with
n nodes can clearly be ecologically colored with n colors.

Given a graph G = (V,E), we define an equivalence relation ρN on the vertices of G as follows: two
vertices u, v ∈ V are equivalent if and only if N(u) = N(v). The neighborhood graph corresponding to G
is a ND graph GN = (VN , EN ) where VN is the set of equivalence classes with respect to the relation ρN ,
and (x, y) ∈ EN if all nodes in the equivalence class x are adjacent to all nodes in the equivalence class y.
The neighborhood degree nG of G is defined as the number of nodes in GN .
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Theorem 2. A graph can be ecologically colored with k colors if and only if its neighborhood graph can
be ecologically colored with k colors.

Proof. Let G = (V,E) be a graph and let GN = (VN , EN ) be its neighborhood graph. If r is an ecological
coloring of G, then, for each pair of nodes u, v ∈ V such that NG(u) = NG(v), it must hold r(u) = r(v):
this implies that all nodes in the same equivalence class have been assigned the same color. Hence, by
assigning to each equivalence class x ∈ VN the color r(u) with u ∈ x, we obtain an ecological coloring
of GN which uses the same number of colors as r. Conversely, if GN can be ecologically colored with k
colors, then assigning to each node u ∈ V the color of the node corresponding to the equivalence class u
belongs to yields an ecological coloring of G with k colors. The lemma is thus proved. ut

Corollary 2. Each graph G can be ecologically colored with nG colors and it cannot be ecologically col-
ored with k > nG colors.

Hence, any graph admits an ecological 1-coloring, an ecological 2-coloring (non e’ vero!) and an
ecological nG-coloring. In Section 3 we will prove that, actually, any graph can be ecologically k-colored,
for any k ∈ [nG]. To this aim, we need to prove a structural property of ND graphs which is stated in
Theorem 3. Proof of Theorem 3 makes use of the following lemma.

Lemma 1. Let F = {N1, . . . , Nn} be a family of n distinct subsets of [n]. Then, there exists i ∈ [n] such
that, for any pair Nj , Nk ∈ F , Nj 6= Nk ∪ {i}.

Proof. The proof is by contradiction. Assume that, for any i ∈ [n], there exists a pair of two distinct sets
Li, Si ∈ F such that Li = Si∪{i}: if there exist more than one such pairs of sets, then we arbitrarily choose
one of them as the only one associated with i. Observe that, for any distinct i, j ∈ [n], Li 6= Lj or Si 6= Sj

since otherwise the distinctness between Li and Si would imply that i = j.
Let us define a directed graph GF = (F , AF ) as follows. For any h, k ∈ [n], (Nh, Nk) ∈ AF if and

only if there exists i ∈ [n] such that Si = Nh and Li = Nk. Clearly, GF is acyclic, since otherwise there
would exist a sequence X0, . . . , Xh−1 of h distinct subsets of [n] such that Xi ⊂ Xi+1 for 0 ≤ i < h − 1
and Xh−1 ⊂ X0: this would imply that X0 ⊂ X0.

We now prove that also the undirected graph corresponding to GF does not contain any cycle. This
implies that GF contains at most n − 1 arcs: since, for any distinct i, j ∈ [n], Li 6= Lj or Si 6= Sj , this
contradicts the fact that there must be exactly n arcs in GF , thus proving that there must exist i ∈ [n] such
that, for any pair Nj , Nk ∈ F , Nj 6= Nk ∪ {i}.

Assume, by contradiction, that the undirected graph corresponding toGF contains a cycleX0, . . . , Xh−1

with h ≥ 3. Then, there must exist r with 0 ≤ r ≤ h−1 such that (Xr, Xr−1) ∈ AF∧(Xr, Xr+1) ∈ AF (in
the following, we assume that all operations are performed modulo h). Indeed, either r = 0 or there exists
an incoming arc incident to X0: in this latter case, we can follow the chain of incoming arcs starting from
X0 and, since GF is acyclic, we certainly encounter a node Xr with no incoming arcs (see, for example, the
cycle in Figure 2 for which r = 4).

Let i ∈ [n] be the element such that i ∈ Xr−1 ∧ i 6∈ Xr and let us prove that i ∈ Xs, for any s 6= r with
0 ≤ s ≤ h − 1. This is due to the fact that if i ∈ Xt, for some t with 0 ≤ t ≤ h − 1, and (Xt, Xs) ∈ AF
or (Xs, Xt) ∈ AF , then i ∈ Xs. Indeed, if (Xt, Xs) ∈ AF , then Xt ⊂ Xs; otherwise, if (Xs, Xt) ∈ AF ,
then Xt − Xs 6= {i} since s 6= r and, for any i ∈ [n], there exist only two adjacent nodes of GF whose
difference is equal to {i}. Hence, in both cases we have that i ∈ Xs. We then have that i ∈ Xr+1 (see, for
example, the cycle in Figure 2 where i 6∈ X4 ∧ i ∈ X5). On the other hand, there must exist j 6= i such that
j ∈ Xr+1 ∧ j 6∈ Xr: hence, Xr+1 −Xr ⊇ {i, j} which contradicts the fact that (Xr, Xr+1) ∈ AF (in the
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X4i 6∈ X4 j 6∈ X4

X3i ∈ X3

X2X2 ⊂ X3 ⇒ i ∈ X2

X1X1 = X2 ∪ {k 6= i} ⇒ i ∈ X1 X0 X0 ⊂ X1 ⇒ i ∈ X0

X6 X6 ⊂ X0 ⇒ i ∈ X6

X5
X5 ⊂ X6 ⇒ i ∈ X5
j ∈ X5

Fig. 2. The proof of Lemma 1

example, we have that X5 − X4 ⊇ {i, j}). This completes the proof of the fact that the undirected graph
corresponding to GF is acyclic and, hence, the proof of the lemma. ut

Theorem 3. Let G = (V,E) be a ND graph with n nodes. Then, there exists a node u ∈ V , such that the
graph induced by V − {u} is a ND graph with n− 1 nodes.

Proof. Without loss of generality, assume that V = [n] and let F = {N1, . . . , Nn} be the family of neigh-
borhoods of the n nodes. Since G is a ND graph, F satisfies the hypothesis of Lemma 1: hence, there exists
a node i such that, for any pair of two other nodes j and k, the neighborhoods of these two nodes do not
differ for i only. This implies that graph induced by V − {i} is a ND graph. ut

Theorem 4. Let G = (V,E) be a ND graph with n nodes. Then, G can be ecologically colored with n− 1
colors.

Proof. LetG = (V,E) be a ND graph with n nodes. From Theorem 3 it follows that there exist two nodes u
and v such that the graph Gu,v induced by V −{u, v} is a ND graph with n−2 nodes. Let r be any coloring
of G that assigns n− 2 different colors to the nodes of Gu,v and that assigns the same new color to u and v.
In order to prove that r is ecological, we proceed by contradiction and assume that there exist two nodes p
and q such that r(p) 6= r(q) and Cr(p) = Cr(q). We then distinguish the following cases.

1. {p, q} = {u, v}. In this case, r(p) = r(q), and, hence, we get a contradiction.
2. {p, q} ⊆ V − {u, v}. In this case, since Gu,v is ND and since all its nodes are colored with different

colors, Cr(p) must be different from Cr(q), and, hence, we get a contradiction.
3. p ∈ {u, v} ∧ q ∈ V − {u, v}. In this case, since all the nodes of Gu,v are colored with different colors

and since Cr(p) = Cr(q), we have that N(p)∩ (V − {u, v}) = N(q)∩ (V − {u, v}). Moreover, p and
q cannot be adjacent, since otherwise r(q) ∈ Cr(p)−Cr(q), contradicting the fact that Cr(p) = Cr(q).
Since G is ND, exactly one node among p and q must be adjacent to the node in {u, v} − {p}: this
implies that either r(p) ∈ Cr(p)− Cr(q) or r(p) ∈ Cr(q)− Cr(p), and, hence, we get a contradiction.

4. p ∈ V − {u, v} ∧ q ∈ {u, v}. This case is symmetric to the previous one.

It follows that there cannot exist two nodes p and q such that r(p) 6= r(q) and Cr(p) = Cr(q): that is, r is
an ecological coloring of G with n− 1 colors, and the theorem is proved. ut

We conclude this section by stating another interesting property of ND graphs. To this aim, we need the
following definition.
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Definition 2. Let G = (V,E) be a graph and I = {I1, . . . , Ih−1, Ih} be a partition of V into non h ≥ 1
empty sets such that I1, . . . , Ih−1 are independent sets. We say I is an ecological family forG if either h = 1
or for any i, j ∈ [h] with i 6= j and for any u ∈ Ii and v ∈ Vj there exists t ∈ [h] such that u is adjacent to
some node in It and v is not adjacent to any node in It. We call h the size of I.

Lemma 2. Let G = (V,E) be an ND graph of n nodes and let I = {I1, . . . , Ih} be an ecological family
for G of size h ≥ 1. Then, there exists an ecological family I ′ for G of size h+ 1 or h+ 2. Furthermore, I ′
can be computed in polynomial time.

Proof. If Ih is not an independent set, then let Ih1 be a maximal independent set for the subgraph of G
induced by Ih, Ih2 = Ih − Ih1 and I ′ = I − {Ih} ∪ {Ih1, Ih2}. Let u ∈ Ii ∈ I and v ∈ Ij ∈ I with
i 6= j and let It ∈ I be such that u is adjacent to some node in It and v is not adjacent to any node in It.
This is still true in I ′ with It eventually replaced Ih1 or Ih2. Hence, assume i = j = h, that is, u ∈ Ih1 and
v ∈ Ih2. in this case, since Ih1 is a maximal independent set for the subgraph of G induced by Ih, v has to
be adjacent to some node in Ih1 while u is not adjacent to any other node in Ih1.

Assume now that Ih is an independent set. In this case, we first show that there exist p, q ∈ [h] such that
the subgraph of G induced by Ip ∪ Iq is not an independent set and is not a bipartite complete graph. The
proof proceeds by contradiction. Assume that all pairs of independent sets in I induce either a complete
bipartite graph or an independent set. This, in turn, implies that, since at least one independent set is not a
singleton, there must exist at least two nodes u and v in the same independent set which, for any i ∈ [h],
are adjacent either to all nodes or to no node in Ii. That is, u and v have the same neighborhood, thus
contradicting the ND property of G.

Hence, let p, q ∈ [h] such that the subgraph of G induced by Ip ∪ Iq is not an independent set and is not
a bipartite complete graph. We now find a partition of Ip into Ip1 ∪ Ip2 and a partition of Iq into Iq1 ∪ Iq2
such that Ip1 6= ∅, Iq1 6= ∅, Ip2 ∪ Iq2 6= ∅ and Ip1 ∪ Iq1 is an independent set.

Since , the subgraph of G induced by Ip ∪ Iq is not an independent set and is not a bipartite complete
graph, it has to contain at least 3 nodes; without loss of generality, assume |Ip| ≥ 2. Furthermore, there exist
three nodes u1, u2 ∈ Ip and v1 ∈ Iq such that (u1, v1) ∈ E and (u2, v1) 6∈ E. Let Iq1 = {x ∈ Iq : (u2, x) 6∈
E}, Ip1 = {x ∈ Ip : (x, y) 6∈ E∀y ∈ Iq1}, Ip2 = Ip− Ip1 and Iq2 = Iq− Iq1: notice that v1 ∈ Ip1, u2 ∈ Iq1
and u1 ∈ Ip2. Finally, Ip1 ∪ Iq1 is an independent set by construction. Notice that Iq2 could be empty: this
happens if no node in Iq is adjacent to v1, that is, only if G is not connected and V1 is an isolated node in
the subgraph induced by Ip ∪ Iq.

We now define I ′ as follows:

1. I ′ = I − {Ip, Iq} ∪ {Ip1, Ip2, Iq1, Iq2} if Iq2 6= ∅;
2. I ′ = I − {Ip, Iq} ∪ {Ip1, Ip2, Iq1} if Iq2 = ∅.

It remains to show that I ′ is an ecological family for G. To this aim, consider a pair of nodes u ∈ Ii ∈ I and
v ∈ Ij ∈ I with i 6= j and let It ∈ I be such that u is adjacent to some node in It and v is not adjacent to
any node in It. This is still true in I ′ with It eventually replaced by one set out of Ip1, Ip2, Iq1, Iq2. Hence,
assume i = j. One of the following cases may occur:

– u ∈ Ip1 and v ∈ Ip2: in this case, by construction, u is not adjacent to any node in Iq1 and v has to be
adjacent to some node in Iq1 (otherwise, v should be contained in Ip1);

– u ∈ Iq1 and v ∈ Iq2: this case may occur only if Iq2 6= ∅ and, if so, it is similar to the previous one.

Hence, I ′ is an ecological family for G and its size is either h+ 1 or h+ 2. ut
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3 The ecological coloring algorithm

In this section we prove the existence of ecological colorings with any feasible number of colors. According
to Theorem 2 we can state our main result in terms of ND graphs.

Let G = (V,E) be an ND graph of n nodes and k < n the number of colors we are interested in. Our
algorithm works in two phases. During the first phase, an ecological family for G of size either k− 1 or k is
computed by using Lemma 2. If the size of such a family is k an ecological coloring is directly derived from
the family. Conversely, if the size of the ecological family is smaller than k then the second phase is started
and the informations conveyed by the ecological family are used to compute the k-ecological coloring of G.
The algorithm is described in Figure 3.

Input: ND graph G = (V, E) with |V | = n and integer k with 1 ≤ k ≤ n.
Output: An ecological coloring r for G which uses k colors.
1: Phase 1: apply Algorithm Partitioning with input G and k to compute an ecological family I for G of size h ≤ k;
2: if h = k then
3: for (i = 1; i ≤ k; i + +) do
4: ∀u ∈ Ii: r(u)← i;
5: else
6: Phase 2: apply Algorithm Refining with input I and k to compute an ecological coloring r for G which uses k colors;

Fig. 3. The ecological coloring algorithm

In the next two subsections the two phases are detailed and the proof that they are in fact correct is
drawn. This allows us to prove our main result, stated in the following theorem.

Theorem 5. For any ND graph G = (V,E) with n nodes and for any k ∈ [n], G admits an ecological
coloring which uses k colors. Such a coloring can be computed in polynomial time.

Proof. Lemma 3 insures that Algorithm Partitioning computes indeed an ecological family I for G.
If |I| = k, lines 2–4 are executed. We now show that they compute an ecological coloring for G. Let

u and v be two nodes such that r(u) = p 6= r(v) = q. Hence, u ∈ Ip ∈ I and v ∈ Iq ∈ I. Since I is an
ecological family for G, then there exists t such that u is adjacent to some node in It and v is not adjacent
to any node in It. Since r(x) = t if and only if x ∈ It, Cr(u) 6= Cr(v). Hence, r is an ecological coloring
of G.

Conversely, if the else statement is executed then the computed coloring is ecological by Lemma 4.
The theorem is completely proved. ut

3.1 Phase 1: computing an ecological family

This phase iteratively applies Lemma 2 in order to construct an ecological family for G. More formally,
algorithm Partitioning performing this task is described in Figure 4.

Lemma 3. Let G be a ND graph with n nodes and k a positive integer such that k ≤ n. Algorithm
Partitioning computes an ecological family for G of size either k − 1 or k.

Proof. The condition of the while loop (line 2) requires |I| < k − 1: since k ≤ n, then Lemma 2 can be
actually applied to set I at each iteration.

Given an ecological family of size h for a graph G, Lemma 2 computes an ecological family for G of
size either h+ 1 or h+ 2. The lemma is thus proved. ut
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Input: ND graph G = (V, E) with |V | = n and integer k with 1 ≤ k ≤ n.
Output: An ecological family I for G of size at most k.
1: I = {V };
2: while |I| < k − 1 do
3: Let I′ the ecological family for G obtained by applying Lemma 2 to I;
4: I ← I′;

Fig. 4. Partitioning: Phase 1 of the ecological coloring algorithm

3.2 Phase 2: the last refinement

If Phase 1 ends with an ecological family for G of size k−1, the second phase is started and the size (k−1)
ecological family for G is used to compute the k-ecological coloring of G. Algorithm Refining shown in
Figure 5 first tries to increase by 1 the size of the ecological family (according to Lemma 2) in order to color
it in the same way as in lines 2–4 of Algorithm in Figure 3. If this is not possible, then it both increases the
size of I by 2 (always according to Lemma 2) and it computes a (k−2)-coloring r2 of I. In order to perform
the last step, it builds the color graph CG,r1 (see Subsection 1.1) of G with respect to the (k − 1)-coloring
r1 deriving from I and applies to it Theorem 3. Finally, by exploiting both r2 and the ecological family of
size k + 1, it computes the ecological coloring r for G that uses k colors.

Input: An ecological family I = {I1, I2, . . . , Ik−1} for an ND graph G = (V, E) with |V | = n, and a positive integer k ≤ n .
Output: An ecological coloring r of G which uses k colors.
1: Let r1 be the coloring according to which all nodes in Ii are colored with color i, i = 1, . . . , k − 1;
2: if ∃1 ≤ p ≤ k − 1 and u, v ∈ Ip such that Cr1(u) 6= Cr1(v) then
3: Ip1 ← {x ∈ Ip : Cr1(x) = Cr1(u)};
4: ∀u 6∈ Ip1, r(u)← r1(u); ∀u ∈ Ip1, r(u)← k;
5: else
6: Let Ip, Iq ∈ I such that Ip ∪ Iq induces a non complete bipartite graph with at least two nodes in Ip and at least two nodes

in Iq;
7: Partition Ip into Ip1, Ip2 and Iq into Iq1, Iq2 such that all of them are not empty, Ip1 ∪ Iq1 is an independent set, and both

Ip1 ∪ Iq2 and Ip2 ∪ Iq1 are not independent sets (see proof of Lemma 2);
8: CG,r1 ← color graph of G with respect to r1;
9: Color Gr1 with k − 2 colors, let r2 be such a coloring;

10: Transform r2 into a coloring r3 of G: ∀I ∈ Vr1 ,∀u ∈ I : r3(u)← r2(I);
11: Compute r: ∀u 6∈ Ip1 ∪ Iq2 : r(u)← r3(u); ∀u ∈ Ip1 : r(u)← k − 1; ∀u ∈ Iq2 : r(u)← k;

Fig. 5. Refining: Phase 2 of the ecological coloring algorithm

Lemma 4. Let G be a graph and I an ecological family for G of size k − 1. Then, Algorithm Refining
computes an ecological coloring of G with k colors.

Proof. Notice that the coloring computed at line 1 is the same as that computed at line 4 of the Algorithm
in Figure 3 and, hence, it is ecological.

When the if-statement is executed (line 2), the partition I − {Ip} ∪ {Ip1, Ip2} computed at line 3 is
ecological by Lemma 2. Hence, the coloring r computed at line 4 can be easily proved to be ecological by
the same arguments in the proof of Lemma 3.

Conversely, assume the else statement is executed (lines 5–11). In this case, since each pair of nodes
contained in the same independet set has the same colorhood, then any pair of independent sets that induces
a non complete bipartite graph contains at least four nodes, with at least two nodes in each independent set.
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Fig. 6. Two different ecological colorings of the same graph

Hence, the pair of sets Ip and Iq at line 6 is in fact found. By the same arguments in the proof of Lemma 2 it
follows that the partition described at line 7 can be computed and should result into an ecological partition
for G of size k + 1. In turn, this sholud result in a (k + 1)-coloring of G.

Hence, it is now needed to decrease the number of colors. To this aim, the color graph CG,r1 is consid-
ered. Observe that, since r1 is ecological, CG,r1 is a ND graph with k− 1 nodes. From Theorem 4 it follows
that CG,r can be ecologically colored with k − 2 colors: hence, coloring r2 of line 9 can be computed.
Line 10 then computes a new coloring r3 of G which uses k − 2 colors as follows: for any node x of G,
r3(x) = r2(r1(x)). It is easy to prove that r3 is ecological. Indeed, since all nodes contained in the same
independent set have the same colorhood, then for any node u ∈ V it holds that Cr3(u) = Cr2(r1(u)). As
a consequence, since for any u, v ∈ V such that r3(u) 6= r3(v) it holds that r2(r1(u)) 6= r2(r1(v)) and
r2 is ecological, hence Cr3(u) = Cr2(r1(u)) 6= Cr2(r1(v)) = Cr3(v). Finally, coloring r is computed by
modifying r3 at line 11. Nodes u ∈ Ip1 are assigned color r(u) = k−1 and nodes u ∈ Iq1 are assigned color
r(u) = k; colors of all the remaining nodes are left unchanged. This still results in an ecological coloring
for G. In order to prove this last assertion, let us consider two nodes u and v such that r(u) 6= r(v) and
prove that Cr(u) 6= Cr(v).

If u, v 6∈ Ip ∪ Iq, then the assertion follows since Cr3(x) ⊆ Cr(x) for any x 6∈ Ip ∪ Iq. The same
reasoning applies if u, v ∈ Ip ∪ Iq and r3(u) 6= r3(v). Finally, if u, v ∈ Ip ∪ Iq and r3(u) = r3(v), then
(without loss of generality) u ∈ Ip1 and v ∈ Iq2: in this case assume by contradiction that Cr(u) = Cr(v).
This might happen only if, in the graph induced by Ip∪Iq, u is adjacent only to nodes in Iq1 and v is adjacent
only to nodes in Ip2: this is not possible, since Ip1 ∪ Iq1 is an independent set.

The lemma is thus proved. ut

4 Conclusions and open questions

In this paper we have proved that any graph can be ecologically colored by making use of any reasonable
number of colors. However, different ecological colorings can be produced for a given graph and for a given
number of colors (as shown in Figure 6).

The ECRA(R) decision problem consists in deciding whether a graph G admits an ecological coloring
whose color graph is R. By making use of one of the standard NP-completeness proofs of the 3-colorability
problem, it is easy to prove that ECRA(K3) is NP-complete. In particular, the reduction introduces, for any
variable u, the gadget shown in the left part of the following picture, while, for any clause c = {l0, l1, l2}, it
introduces the gadget shown in the right part of the picture, where the nodes on the left corresponds to the
nodes on the right of the previous gadget and the node T corresponds to the node T of the previous gadget.
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It is easy to prove that the Boolean formula is satisfiable if and only if the resulting graph can be colored
with three colors. Moreover, since any node of the graph belongs to at least one clique of three nodes, any
three coloring of the graphs is an ecological coloring whose color graph is K3.

It is then a very interesting open question to look for a complete classification of the complexity of the
ECRA(R) problem similar to the one proposed in [FP05].
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