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Abstract

The Minimum-Energy Broadcast problem is to assign a transmission range to every
station of an ad-hoc wireless networks so that (i) a given source station is allowed to
perform broadcast operations and (ii) the overall energy consumption of the range
assignment is minimized.

We prove a nearly tight asymptotical bound on the optimal cost for the Minimum-
Energy Broadcast problem on square grids. We also derive near-tight bounds for
the Bounded-Hop version of this problem. Our results imply that the best-known
heuristic, the MST-based one, for the Minimum-Energy Broadcast problem is far
to achieve optimal solutions (even) on very regular, well-spread instances: its worst-
case approximation ratio is about π and it yields Ω(

√
n) hops, where n is the number

of stations.

As a by product, we get nearly tight bounds for the Minimum Disk Cover problem
and for its restriction in which the allowed disks must have non-constant radius.

Finally, we emphasize that our upper bounds are obtained via polynomial time
constructions.
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1 Introduction

An ad-hoc wireless network consists of a set S of radio stations connected by
wireless links. We assume that stations are located on the Euclidean plane. A
transmission range is assigned to every station: a range assignment r : S → R
determines a directed communication graph G(S,E) where edge (i, j) ∈ E if
and only if dist(i, j) ≤ r(i) where dist(i, j) is the Euclidean distance between
i and j. In other words, (i, j) ∈ E if and only if j belongs to the disk of radius
r(i) centered at i. The transmission range of a station depends on the energy
power supplied to the station. In particular, the power Ps required by a station
s to transmit data to another station t must satisfy the inequality

Ps

dist(s, t)α
≥ 1

where α ≥ 1 is the distance-power gradient. In this paper, we consider the case
α = 2 that holds in the empty space (see [19]).

Stations of an ad hoc network cooperate in order to provide specific network
connectivity properties by adapting their transmission ranges. A Broadcast
Range Assignment (for short Broadcast) is a range assignment that yields
a communication graph G containing a directed spanning tree rooted at a
given source station s. A fundamental problem in the design of ad hoc wire-
less networks is the Minimum-Energy Broadcast Problem (for short Minimum
Broadcast): it consists in finding a Broadcast of minimal overall energy power
[6,9,17]. A range assignment r can be represented by the corresponding fam-
ily D = {D1, . . . , Dℓ} of disks, and its overall energy power (i.e. cost(D)) is
defined as

cost(D) =
ℓ

∑

i=1

r2
i where ri is the radius of Di (1)

The Minimum Broadcast problem is known to be NP-hard [4] and the best-
known approximation algorithm is the MST-based heuristic [1,9]. The MST-
based heuristic first computes the minimum spanning tree of the complete
graph induced by S where the weight of edge (i, j) is dist(i, j)2. Then, it as-
signs a direction to the edges from the source s to the leaves; finally, it assigns
to each node i a range equal to the length of the longest edge outgoing from i.
This heuristic is efficient and easy to implement, so its worst-case approxima-
tion analysis has been the subject of several works over the last five years. In
particular, the first constant upper bound (≃ 40) on the approximation ratio
was determined in [4]. A rather sophisticated analysis, recently introduced in
[1], yields the tight upper bound 6. The tightness follows from the lower bound
proved in [3,9] by considering rather artificial input configurations.
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The worst-case analysis is often not sufficient to evaluate the practical interest
of a heuristic. It might be the case that the MST-based heuristic provides
nearly optimal solutions for most of natural and practically-relevant instances.
Recently, experimental studies have been presented on this issue [10,5,9].

1.1 Our results

Minimum Broadcast Problem. In this paper, we address the above issue
by adopting an analytical approach: we consider Minimum Broadcast and
some other related problems on square grids. Square grids have been often
considered in wireless networks since they model some well-spread, practically
relevant ad hoc network topologies [7,18,19]. One can see that the MST-based
heuristic, on a square grid of n points (without loss of generality, adjacent
points are placed at unit distance), returns, in the worst-case, a solution of
cost n − 1. Furthermore, in [10] it is experimentally observed that the MST-
based heuristic has bad behavior when applied on regular instances similar to
square grids. This motivates a theoretical analysis of the Minimum Broadcast
problem on grid networks. Our first contribution is the following result.

Theorem [Broadcast]. If B∗ is any optimal Broadcast for the square grid G
of n points, then

n

π
− O(

√
n) ≤ cost(B∗) ≤ 1.01013

n

π
+ O(

√
n)

The upper bound is achieved via a polynomial time construction.

The above upper bound implies that the MST-based heuristic yields, in the
worst-case, a solution cost which is about π times larger than the optimum.

Minimum Cover Problem. Any Broadcast yields a (disk) cover of the grid
and a communication graph that contains a spanning tree. A cover C of a set
S of points is a set of disks C = {D1, . . . , Dℓ} of radius at least 1, centered at
some points of S, that covers all points in S. The cost of C is defined as cost(C)
(see Eq. 1). The Minimum Cover problem consists in finding a cover for S
of minimum cost. Observe that this is a variant of the well-known NP-hard
Minimum Geometric Disk Cover [8,15].

In general, a cover does not suffice to provide a feasible solution for the Min-
imum Broadcast problem. A natural question here is whether (or when) the
minimum cover cost is asymptotically equivalent to the minimum broadcast
cost. This question is formally addressed by determining the cost of a mini-
mum cover for square grids.
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Theorem [Cover]. If C∗ is any optimal cover of the square grid G of n points,
then

n/5 ≤ cost(C∗) ≤ n/5 + O(
√

n)

The upper bound is achieved via a polynomial time construction.

From the above theorems, it turns out that the cost of the cover is significantly
lower than the cost of the broadcast. However, the next theorem shows that
this is not the case when we require that the disks are sufficiently large.

Theorem [Large Disk Cover] Let f(n) = ω(1). The cost of any cover of G
with disks of radius at least f(n) is at least n

π
− o(n). The upper bound is

achieved via a polynomial time construction.

We emphasize that there are important network scenarios in which the in-
stalling cost (i.e. the cost of installing an omni-directional transmitter at a
given location) is rather high and it must be “amortized” by a relevant use
of the antenna. In such cases, it is convenient to assign positive range to a
station only if such a range (so, disk) is large enough.

Bounded-Hop Broadcast. An important version of the Minimum Broad-
cast problem is the one in which feasible solutions must guarantee a bounded
number of hops : The number of links (i.e. hops) in the path from the source to
any other node must be not larger than a fixed bound. This problem version is
relevant since the number of hops is closely related to the delay transmission
time. The hop restriction finds another application in the context of reliability :
Assume that, in a communication network, link faults happen with probability
p and that all faults occur independently. Then, the probability that a multi-
hop transmission fails exponentially increases with the number of hops. For
further motivations in studying bounded hops communication see [2,11,13,21].

A main question here is the following: Does broadcasting with a bounded
number of hops require a significantly larger cost than broadcasting with an
unbounded number of hops? Intuitively speaking, one might figure out that
the right answer is the positive one since the cost is proportional to the area of
the solution disks and bounded-hop solutions require larger disks. Observe also
that the use of large disks yields large disk overlapping. Rather surprisingly,
this is not the case: we derive a broadcast for grids that uses only a constant
(i.e. not depending on n) number of disks and thus yields a constant number
of hops. This solution has a cost which is very close to that of the unbounded-
hops version.
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Theorem [Broadcast with few Hops]. A positive constant c exists such that
it is possible to construct in polynomial time a broadcast B for G with (only)
c disks (of radius Ω(

√
n)) and such that

cost(B) < 1.1171
n

π
+ O(

√
n).

By comparing the above theorem with Theorem [Large Disks Cover], we can
state that covering and broadcasting over grids have almost asymptotically-
equivalent cost when the solution disks have non-constant radius (notice that
any broadcast is also a cover). We also remark that the MST-based heuristic
always returns a solution for the grid that has an unbounded (i.e. Ω(

√
n))

number of hops. So, our almost optimal polynomial-time construction yields
bounded-hop solutions whose structure significantly departs from that of the
MST-based solutions.

Square grids are thus the first family of well-spread, natural instances that
perfectly capture the “hardness” of solving the Minimum Broadcast problem
via the MST-based heuristic. It is our opinion that the set of results presented
in this paper provides strong theoretical arguments that open new possibilities
in the design of an efficient heuristic that significantly improves over the MST-
based one (at least) in the case of well-spread and uniform-random instances.

1.2 Preliminaries

We consider a Cartesian coordinates system and a square grid G of side length
m − 1 with its bottom left vertex in the origin. G contains n = m2 points at
integer coordinates; the coordinates of point P of the grid will be denoted as
xp and yp. A G-disk D is a disk centered at any point of the grid and having
at least one point of the grid on its boundary. By an abusing of notation, we
also denote as D the set of points of grid G covered by D.

2 The Minimum Cover Problem on the Grid

In this section we study two versions of the disk cover problem of the grid G.
In the first version, we consider coverings by disks of arbitrary radius, while,
in the second one, disks are required to have a minimal non constant radius.
For both versions, we need to evaluate the number N(r) of points of the
infinite grid covered by a G-disk of radius r. This problem, known as Gauss’
Circle problem, has been extensively studied [14,16] in order to derive the best
exponent δ < 1 such that N(r) ≤ πr2 + crδ for some constant c. However, all
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these studies are not useful to provide a good bound on c: instead, we need an
upper bound on N(r) with a small constant c while the exponent δ can be 1.

Lemma 1 For any radius r ≥ 1, it holds that N(r) < πr2 + (π
√

2 − 2)r +
1
5

√
r + π

2
. Moreover, for r >

√
10, it holds that N(r) < πr2 + 2

√
2r − 5.

Proof. Let D be a G-disk of radius r centered in the origin of the Cartesian
coordinates system. For any point U in D, we consider the square centered
at U and of side length 1. Let P be the polygon obtained by the union of all
such interior disjoint squares. Notice that, in general, P is not contained in
D, but P is always contained into D′, the disk centered at the origin and of
radius r +

√
2

2
(see Figure 1).
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Fig. 1. Polygon P and D and D′ when r = 7.5

Let R1 be the region contained in the convex hull of P but not in P (see dotted
region in Figure 1). Furthermore, let R2 be the region in D′ not contained in
the square centered at the center of D and of side length 2⌊r⌋ + 1 (see the
dark gray region in Figure 1). R1 and R2 are disjoint regions and they are
both contained into D′. Hence,

N(r) = AREA(P) < AREA(D′) − (AREA(R1) + AREA(R2)) (2)

We now provide lower bounds for AREA(R1) and AREA(R2). For the sake
of convenience, r will be written as ⌊r⌋ + η, with η ∈ [0, 1). Let h1, h2, . . . ht

and v1, v2, . . . vt (t ≥ 1) be the lengths of the horizontal and vertical segments,
respectively, on the boundary of P in Quadrant I, in clockwise order. Observe
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that

t
∑

i=2

hi = ⌊r⌋ +
1

2
− h1, h1 =

⌊

√

r2 − ⌊r⌋2

⌋

+
1

2
, and vi ≥ 1, for 1 ≤ i < t

It follows that

AREA(R1) = 4
t−1
∑

i=1

vi · hi+1

2
≥ 2⌊r⌋ − 2

⌊

√

r2 − ⌊r⌋2

⌋

≥ 2r − 2η − 2
√

2rη − η2

(3)

The value AREA(R2) is computed by summing up the contributions of four
identical circular caps; each of these areas is lower bounded by the area of an
isosceles triangle having, respectively, bases

v = 2

√

√

√

√

(

r +

√
2

2

)2

−
(

⌊r⌋ +
1

2

)2

= 2

√

2rη − η2 + (
√

2 − 1)r + η +
1

4

and height

h = r +

√
2

2
−

(

⌊r⌋ +
1

2

)

= η +

√
2 − 1

2

Hence,

AREA(R2) > 4
h · v

2
= (2η +

√
2 − 1) · 2

√

2rη − η2 + (
√

2 − 1)r + η +
1

4

> (2η +
√

2 − 1) · 2
√

2rη + (
√

2 − 1)r (4)

By combining Inequalities (3) and (4), we get

AREA(R1) + AREA(R2) >

2r + 2
√

r



(2η +
√

2 − 1)
√

2η +
√

2 − 1 −
√

2η − η2

r
− η√

r



 ≥

2r + 2
√

r
(

(2η +
√

2 − 1)
3

2 −
√

2η − η
)

>

2r − 1

5

√
r (5)

where the last inequality follows since f(η) = (2η +
√

2 − 1)
3

2 −√
2η − η gets

a minimum value in ηmin ∼ 0.18 and f(ηmin) > −1/10. Finally, Inequalities

7



(2) and (5) imply that

N(r) < π

(

r +
1√
2

)2

− 2r +
1

5

√
r = πr2 + (π

√
2 − 2)r +

1

5

√
r +

π

2
(6)

This proves the first statement of the lemma.

Inequality (6) implies that N(r) < πr2 + 2
√

2r − 5 when r > 20. The second
statement of the lemma is then exhaustively verified for any r ∈ (

√
10, 20].

2

The above lemma is now exploited to prove asymptotically tight lower and
upper bounds on the minimum cost of a cover of grid G.

Theorem 2 If C∗ is any minimum cover of the square grid G of n points,
then

n/5 ≤ cost(C∗) ≤ n/5 + O(
√

n)

The upper bound is achieved via a polynomial time construction.

Proof. We first observe that, for any r > 0, it holds that

N(r) ≤ 5r2. (7)

Indeed, N(1) = 5, N(
√

2) = 9, and Lemma 1 implies that N(r) ≤ 5r2, for any
r ≥ 2. Let D1, D2, . . . Dt be the G-disks of an optimal cover and let cost∗ be
its cost. Let ri be the radius of Di, 1 ≤ i ≤ t. Since Di covers N(ri) points,
Inequality (7) implies that

n ≤
t

∑

i=1

N(ri) ≤
t

∑

i=1

5r2
i = 5 · cost∗

and so cost
∗ ≥ n

5
.

A cover of G with cost n
5

+ O(
√

n) is shown in Figure 2 for m = 11. Observe
that the number of grey G-disks (i.e. disks not completely contained in G)
is O(

√
n), and the number of white G-disks (i.e. disks completely contained

in G) is not greater than n
5
. Since all G-disks have unit radius, then the cost

n
5

+ O(
√

n) follows. The above construction can be clearly computed in linear
time in n. 2

The cover resulting by the construction in Theorem 2 uses only G-disks of unit
radius. The next theorem investigates the cost of covers using only G-disks of
large, non constant radius.

8



Fig. 2. An asymptotically optimum disk cover for G with m = 11.

Theorem 3 Let f(n) = ω(1). The cost of any cover of G with G-disks of
radius at least f(n) is at least n

π
− o(n).

Proof. Let D1, D2, . . . Dt be the G-disks of a cover of G and let cost be its
cost. Let ri be the radius of Di, 1 ≤ i ≤ t. As Di covers N(ri) points, Lemma
1 implies that

n <
t

∑

i=1

N(ri) <
t

∑

i=1

(

πri
2 + (π

√
2)ri +

1

5

√
ri +

π

2

)

< (8)

<
t

∑

i=1

(

πri
2 + 2πri

)

= πcost + 2π
t

∑

i=1

ri

By hypothesis ri ≥ f(n), hence we get

cost =
t

∑

i=1

ri
2 ≥ f(n)

t
∑

i=1

ri

and thus
t

∑

i=1

ri ≤
cost

f(n)

From the above inequality and from Inequality 8, we get n < πcost+2πcost
f(n)

and, finally,

cost > n

(

f(n)

πf(n) + 2π

)

=
n

π

(

1 − 2

f(n) + 2

)

=
n

π
− o(n).

2

As we shall see in the next section, the lower bound of this theorem is almost
tight.
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3 The Minimum Broadcast Problem on the Grid

The aim of this section is to prove lower and upper bounds on the cost of an op-
timal broadcast. In particular, in order to prove the lower bound, we introduce
the following definitions. A chain H is a sequence of G-disks D1, D2, . . . , Dk,
k ≥ 1, such that Di+1 is centered at some point contained in Di for 1 ≤ i < k.
We also say that a chain H activates a disk D if (i) D does not belong to H,
(ii) the center of D is contained in Dk, and (iii) D does not contain the center
of D1. Furthermore, we define

U(H) =
k
⋃

i=1

Di

where the union refers to points of the infinite grid contained in disks Di.

For any r ≥ 1, consider any disk D of radius r; we define

M(r) = min{|U(H) ∩ D| : H is a chain that activates D}.

Notice that M(r) does not depend on the choice of D and that any disk of
a broadcast tree not containing the source is activated by a chain of disks
belonging to the tree. The cardinality of the intersection between the disk
and the chain is at least M(r), where r is the radius of the disk. In order to
evaluate the broadcast cost, we need a lower bound on M(r).

Lemma 4 For any r ≥ 1, it holds that M(r) ≥ 2
√

2r − 5.

Proof. Given a G-disk D of radius r, we first show that for any chain H that
activates D, there exists a chain H̄ of G-disks of radius 1 or

√
2 that activates

D, and H contains at least as many points as H̄. Then we prove that H̄ covers
at least 2

√
2r − 5 points of D, and this concludes the proof.

Let P be the center of any G-disk DP in the chain H having radius greater
than

√
2 and let Q be the center of the next G-disk DQ in the chain H (Q

coincides with the center of D if DP is the last G-disk in the chain).

If xP = xQ we replace DP by a vertical chain constituted by unit radius G-
disks from P to Q. Such vertical chain is contained into DP . The case yP = yQ

is similar.

Let now xP 6= xQ and yP 6= yQ. Without loss of generality, assume xQ < xP

and yQ < yP . Consider the pair of points U = (xQ + 1, yP ) and V = (xQ +
1, yQ + 1): replace DP by a horizontal chain (empty if P = U) constituted by
unit radius G-disks from P to U , followed by a vertical chain (empty if U = V )
constituted by unit radius G-disks from U to V followed by a G-disk centered
at V and of radius

√
2. Notice that the chain replacing DP is contained in DP .
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This replacement procedure is applied to each G-disk of radius greater than√
2. Let H̄ be the suffix of the resulting chain having all its G-disks but the

first one contained in D.

In order to prove a lower bound on the number of points covered by chain H̄
inside D, we need to prove the following claim.

Claim Let S = (xS, yS) and T = (xT , yT ) be two points. Any chain from
S to T of G-disks of radius 1 or

√
2 covers at least 3h + v + 2 points,

where h = |xS −xT | and v = |yS − yT |. If the first G-disk in the chain has
radius

√
2 then the chain covers at least 3h + v + 4 points.

Proof. Without loss of generality, assume S = (xT + h, yT + v). Let
us consider a chain H̄ from S to T and let (xi, yi) be the center of the
i-th G-disk Di in the chain. We say that a chain is monotone if and only
if xS = x1 ≥ x2 ≥ . . . ≥ xk ≥ xT and yS = y1 ≥ y2 ≥ . . . ≥ yk ≥ yT .
It is immediate to see that, for any H̄, there exists a monotone chain H′

covering no points but H̄, so we can assume that H̄ is monotone.
We now prove by induction on h that the number of points of G covered
by ∪k

i=1Di is at least 3h + v + 2.
If h = 0 the assertion is trivially true since the chain contains at least
max{1, v} G-disks. Let us thus assume that h > 0. In this case, without
loss of generality, we can assume that xT < xk ≤ xS: otherwise, we can
change the chain as shown in Figure 3.

S

T

h

v

S

T

h

v

h

S

T

v

S

T

v

h

Fig. 3. Two possible transformations of chains.

Now draw an arrow from the center of Di to the center of Di+1, for
i = 1, . . . , k − 1, and draw an arrow from the center of Dk to T . Such
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arrows are of one of the following three types: ←, ↓,ւ. Let n↓ be the
number of arrows of type ↓ and let nւ be the number of arrows of type
ւ: then, n↓ + nւ = v.
We now focus on the sequences of consecutive arrows of type ↓. Let j ∈
[xT + 1, xS] and let fj be the number of consecutive arrows of type ↓
connecting centers of G-disks having the x-coordinate equals to j (as the
chain is monotone, for any j there exists at most one such sequence).
Since the G-disks in each sequence are consecutive, the j-th sequence
covers at least 3 + fj points having x-coordinate equal to j. Notice that
both T and (xS +1, yS) are covered by the chain and that they are non not
considered in any sequence. Furthermore, since the chain is monotone, if
there is an arrow of type ւ arriving at some point (j, l) then the sequence
of consecutive arrows of type ↓ connecting centers of G-disks having the
x-coordinate equal to j must start at some y-coordinate smaller than l. It
follows that point (j, l+2) is covered by the chain but it is not considered
in any sequence.
Hence, the number of points covered by the chain is at least

xS
∑

j=xT +1

(3 + fj) + 2 + nւ = 3h + n↓ + nւ + 2 = 3h + v + 2.

If the first G-disk in the chain has radius
√

2 we have to count also (xS +
1, yS + 1) and (xS + 1, yS − 1). 2

Let W be the center of the first disk DW in H̄. Let θ be the angle between the x-
axis and the line connecting W to the center of D. Without loss of generality,
we assume θ ≤ π

4
, otherwise symmetrical reasonings hold. We consider two

cases:

W ∈ D. If the radius of DW is 1 then at most three points in DW are outside
D; if the radius of DW is

√
2 then at most five points in DW are outside D.

From this observation and by the Claim, it follows that H̄ covers at least
3h + v − 1 points in D. Hence,

M(r) ≥ 3h+v−1 = 3⌊r cos θ⌋+⌊r sin θ⌋−1 ≥ 3r cos θ+r sin θ−4−1 ≥ 2
√

2r−5

where the last inequality follows since the minimum of 3 cos θ + sin θ in the
interval [0, π

4
] is 2

√
2.

W 6∈ D. In this case, the radius of DW is necessarily
√

2, thus at most six
points in DW are outside D. From this observation and by the Claim, it
follows that H̄ covers at least 3h + v − 2 points in D. Since W is not
contained in D, the distance between W and the center of D is greater than
r. Hence,

M(r) ≥ 3h + v − 2 ≥ 3r cos θ + r sin θ − 2 ≥ 2
√

2r − 2 > 2
√

2r − 5.
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2

Theorem 5 The cost of any broadcast of G is at least n
π
− O(

√
n).

Proof. Let D1,D2, . . .Dt be the G-disks of an optimal broadcast of G and
let cost

∗ be its cost. Let ri be the radius of Di, 1 ≤ i ≤ t. If there exists a disk
Di with radius ri ≥

√

n
π
, the thesis holds. Hence, we assume that ri <

√

n
π
,

1 ≤ i ≤ t. In order to exploit Lemma 1, we partition the set {D1,D2, . . .Dt}
into two sets: X and its complement X, where

X = {Di | ri >
√

10}

From Lemma 1, it follows that

t
∑

i=1

N(ri) =
∑

Di∈X

N(ri) +
∑

Di∈X

N(ri) ≤
∑

Di∈X

(πri
2 + 2

√
2ri − 5) +

∑

Di∈X

N(ri)

= π · cost
∗ + 2

√
2

∑

Di∈X

ri − 5|X| +
∑

Di∈X

(

N(ri) − πri
2
)

(9)

As a consequence, we have that

π · cost
∗ ≥

t
∑

i=1

N(ri) − 2
√

2
∑

Di∈X

ri + 5|X| −
∑

Di∈X

(

N(ri) − πri
2
)

(10)

Now, we derive a lower bound on
∑t

i=1 N(ri). Observe that the communication
graph yielded by the optimal broadcast contains a directed spanning tree T
rooted at the source node. We partition {D1,D2, . . .Dt} into two sets Y and
Y , where Y is the set of G-disks that cover the source point. We observe
that every G-disk Di ∈ Y is activated by a chain of G-disks whose centers
induce a directed path in T . This implies that the number of intersection
points between the activating chain and Di is at least M(ri). Now we prove
the following inequality:

t
∑

i=1

N(ri) ≥ n +
∑

Di∈Y

M(ri)

We consider a numbering of the T disks such that the disks on a root→leaf
path have strictly increasing numbers. Let

E = {(p, i) | ∃i : 1 ≤ i ≤ t ∧ p ∈ Di} and

13



F = {(p, j) | (p, j) ∈ E ∧ j = min{k | (p, k) ∈ E}}
In other words, (p, j) ∈ F if and only if Dj is the “first” disk that covers p.
Clearly, it holds that |E| =

∑

i N(ri), F ⊆ E, and |F | ≥ n. Now, for every i ∈
Y , let Hi be the chain that activates Di. Define Ei = {(p, i) | p ∈ U(Hi)∩Di}.
The following properties hold: (a) Ei ⊆ E − F ; (b) if i 6= j then Ei ∩ Ej = ∅;
(c) |Ei| ≥ M(ri). As for (a), clearly Ei ⊆ E. Furthermore, if (p, i) ∈ Ei then
p ∈ U(Hi)∩Di; thus, there exists a disk Dj ∈ Hi such that p ∈ Dj and j < i.
This implies that min{k | (p, k) ∈ E} ≤ j < i and so (p, i) 6∈ F . The proofs
of (b) and (c) are immediate from the definitions of Ei and M(·). Finally, it
holds that

t
∑

i=1

N(ri) = |E| = |F | + (|E| − |F |) ≥ n +
∑

i∈Y

|Ei| ≥ n +
∑

i∈Y

M(ri).

Lemma 4 implies that

∑

Di∈Y

M(ri) =
∑

Di∈Y ∩X

M(ri) +
∑

Di∈Y ∩X

M(ri) ≥

≥ 2
√

2
∑

Di∈Y ∩X

ri − 5|Y ∩ X| +
∑

Di∈Y ∩X

M(ri)

From the above inequality, Inequality (10), and simple calculations, we get:

π·cost
∗ ≥ n−2

√
2

∑

Di∈Y ∩X

ri+5|X|−5|Y ∩X|+
∑

Di∈Y ∩X

M(ri)−
∑

Di∈X

(

N(ri) − πri
2
)

and

cost
∗ >

n

π
− 2

√
2

π

∑

Di∈Y ∩X

ri+ (11)

+
1

π

∑

Di∈Y ∩X

(

M(ri) − N(ri) + πri
2
)

− 1

π

∑

Di∈Y ∩X

(N(ri) − πri
2)

Now we bound
∑

Di∈Y ∩X ri. Consider the sets

Bk = {Dj ∈ Y | 2k−1 ≤ rj < 2k}, 1 ≤ k ≤ l

where l = ⌈log rmax⌉ + 1 and rmax = max{rj | Dj ∈ Y }. It holds that

∑

Di∈Y ∩X

ri ≤
∑

Di∈Y

ri =
l

∑

k=1

∑

Di∈Bk

ri ≤
l

∑

k=1

1

2k−1

∑

Di∈Bk

ri
2 (12)

14



Replace the G-disks in B1 ∪ B2 ∪ . . . Bk by a G-disk with radius (2k+1) and
centered in the source point. This operation produces a new broadcast with
cost

cost
∗ −

∑

Di∈B1∪B2∪...Bk

ri
2 + (2 · 2k)2

Hence, from the optimality of the previous broadcast it must be

∑

Di∈B1∪B2∪...Bk

ri
2 ≤ (2 · 2k)2

From the above inequality and from Inequality (12) we have

∑

Di∈Y ∩X

ri ≤
l

∑

k=1

22k+2

2k−1
=

l
∑

k=1

2k+3 < 2l+4 < 26rmax = O(
√

n) (13)

where the last step follows from the initial assumption that broadcast G-disks
have radii less than

√

n
π
. It is possible to exhaustively prove that M(r)−N(r)+

πr2 > 0 when r ≤
√

10, i.e., r ∈ {1,
√

2, 2,
√

5,
√

8, 3,
√

10}. Hence,

∑

Di∈Y ∩X

(

M(ri) − N(ri) + πri
2
)

> 0 (14)

Moreover, the number of G-disks in Y ∩ X is bounded by constant N(
√

10).
Thus,

∑

Di∈Y ∩X

(

N(ri) − πri
2
)

= O(1) (15)

Finally, by combining Inequality (11) with bounds (13), (14) and (15) we get
the thesis. 2

We now present an efficient construction of broadcasts whose cost is almost
optimal.

Theorem 6 Given any source s ∈ G, it is possible to construct, in polynomial
time, a Broadcast for G of cost 1.01013n

π
+ O(

√
n).

Proof. In order to provide a Broadcast of cost 1.01013n
π
+O(

√
n), we assume

that m − 1 is a multiple of 6. If this is not the case, we can add O(m) new
unit radius G-disks to our construction in order to broadcast to the remaining
points.

Consider the Broadcast shown in figure 4. Its cost can be computed by sum-
ming up the following three contributions.

15



S

Fig. 4. An almost optimal Broadcast for the grid where m = 19.

• A chain of G-disks of radius 1 from the source point to the middle point of
G. The cost of this chain is O(m).

• A big G-disk of radius r = m−1
2

centered in the middle point of G. This disk
has cost r2 = n

4
− Θ(m).

• A set of G-disks of radius 1 that broadcast to all nodes of G out of the big
G-disk. In order to compute the cost of this set, assume that the origin of
the Cartesian plane lies in the middle point of G and compute only the cost
of the G-disks in Quadrant I, multiplied by 4. Furthermore, observe that the
contribution of Quadrant I consists of m−1

6
horizontal chains of unit-radius

G-disks whose length depends on their y-coordinates. So the cost of this
contribution is:

C = 4

r

3
∑

i=0

(

r −
⌊

√

r2 − (3i)2

⌋)

<
4

3
r2 − 4

r

3
−1

∑

i=0

(

√

r2 − (3i)2 − 1
)

<

<
4

3
r2 +

4

3
r− 4− 4

∫ r

3

0

√

r2 − (3x)2dx <
4

3
r2 +

4

3
r− 4− 4

3

∫ r

0

√
r2 − x2dx <

<
4

3
r2 +

4

3
r − 4 − 4

3

[

r2

2
arcsin

x

r
+

x

2

√
r2 − x2

]r

0

=

=
(

4 − π

3

)

n

4
+ O(m)

Finally, the cost of this Broadcast is n
4
+

(

4−π
3

)

n
4
+O(m) = 1.01013n

π
+O(

√
n).

The construction of this solution can be clearly performed in time polynomial
in n.

2

We believe that the construction of optimal broadcasts for the grid is some-
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what connected to the “square” version of the famous problem known as
Apollonian Circle Packing [12,20]. The latter consists in the covering of the
square by an infinite set of disks, where recursively new disks are inscribed in
the enclosed space between triples of already defined mutually tangent disks
and/or the sides of the square. The first disk is the one inscribed in the square
(see Figure 5).

Fig. 5. The first few steps of the Apollonian Circle Packing of the square.

More precisely, we observe that if it were possible to evaluate the connectivity
cost (see proof of Lemma 7) of the disk covering yielded by the Apollonian
Circle Packing problem of the grid then it would be possible to obtain the
optimal bound on the Broadcast cost.

Even when the G-disks must be very large, we are able to provide a Broad-
cast whose cost is very close to the lower bound, as shown in the following
result. The next construction makes use of a geometric approximation of the
Apollonian Circle Packing: we use octagons rather than disks.

Lemma 7 Let 0 < c < 1 be a constant. For any source s ∈ G, it is possible
to construct, in polynomial time, a broadcast B for G with disks of radius at
least c

√
n and such that

cost(B) = f(c)
n

π
+ O(

√
n)

where

f(c) < π
(

0.35483 + 24.6814c2−log
1+

√
2
3 − 0.5551c + 0.5c2

)

Proof. Without loss of generality, we assume that n > 4(
√

2+1)4

c2
. The Broad-

cast B is based on a suitable partition of the grid into triangles and octagons.
The partition works as follows.

17



First we partition the square m×m into 4 equal isosceles right-angled triangles
and an octagon as shown in Fig. 6.

ll'

Fig. 6. The first step of the partition.

Then, while there is a triangle with a cathetus of length greater than cm, it
is partitioned into 5 isosceles right-angled triangles and an octagon as shown

in Figure 7. Notice that since n > 4(
√

2+1)4

c2
, every triangle and every octagon

of the partition contains at least a grid point.

la

l

lb lc

Fig. 7. The generic step of the partition.

Broadcast B is constructed in two phases. In the first phase a cover C of all
grid points is obtained. In the second one, some disks are added to guarantee
a Broadcast.

In order to obtain a cover, we proceed as follows.

• At the beginning, all points are uncovered.
• For each triangle, select one of its grid points and add a disk with radius

c
√

2m centered at the selected point. Notice that the disk covers all points
contained in the triangle.

• For each octagon, let P be the grid point which is the closest to the center
of the octagon and add the disk with radius r+

√
2

2
and centered in P , where

r is the circumradius of the octagon. Notice that the disk covers all points
contained in the octagon since P has distance at most

√
2

2
from the center

of the octagon.
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We first observe that the above construction can be computed in polynomial
time in n. Now we evaluate the cost of C.

Let t be the number of triangles and let OCT be the set of octagons of the
partition. For each octagon x ∈ OCT , let rx be its circumradius. It holds that

cost(C) ≤ 2c2tn +
∑

x∈OCT

(

rx +

√
2

2

)2

(16)

Let l be the length of the cathetus of the 4 initial triangles and let l′ be the
side length of the initial octagon. It must be that 2l + l′ ≤ √

n and l′ =
√

2l.
So, we get

l ≤ m

2+
√

2
l′ ≤ m

√
2

2+
√

2
(17)

The partition of a triangle of chatetus length x (see Figure 7) yields an octagon
of side length w, two (big) triangles of chatetus length y, and 3 (small) triangles
with cathetus length z. Since w =

√
2z, y = z + w, and y + 2z + w = x, it

holds that

y = x√
2+1

z = x

(
√

2+1)2
w =

√
2x

(
√

2+1)2

From the above equations and Inequalities (17), we can state that the cathetus
lengths li of the triangles, yielded during the construction of the partition,
satisfy

li ≤
m

(2 +
√

2)(
√

2 + 1)i
with 0 ≤ i ≤ k + 1 (18)

where k is the minimum integer such that lk ≤ cm. It thus follows that

k ≤
⌈

log(1+
√

2)

1

(2 +
√

2)c

⌉

= O(1) (19)

Let ti be the number of triangles of the construction with cathetus length li
and let ri be the circumradius of the octagons generated by the partition of
triangles with cathetus length li. Since all the octagons, but the initial one,
are generated by the partition of triangles with cathetus length li, for some
0 ≤ i ≤ k + 1, Inequality (16) implies that
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cost(C) ≤ 2c2tn +
k−1
∑

i=0

ti

(

r2
i +

√
2ri +

1

2

)

+

(

r′ +

√
2

2

)2

(20)

where r′ is the circumradius of the initial octagon. Since the circumradius of
an octagon of side length w is w√

2−
√

2
, in virtue of Inequality (18), we get

ri ≤
√

2li

(
√

2 + 1)2

1
√

2 −
√

2
=

(
√

2 − 1)(2 −
√

2)
3

2

2(
√

2 + 1)i

√
n (21)

Now, we provide a bound on ti. Observe first that t0 = 4, t1 = 8, and ti =
2ti−1 + 3ti−2. Thus,

ti = 3i+1 + (−1)i (22)

In virtue of the above equation and Inequality (19), it holds that

t = tk + tk+1 = 3k+1 + 3k+2 = 12 · 3k (23)

We are now ready to bound the terms of the right member of Inequality (20).
From Inequality (23), it holds that

2c2tn = 24 · 3kc2n < 18(2 −
√

2)2((2 +
√

2)c)2−log
1+

√
2
3n (24)

By Inequalities (21) and (22), we obtain

k−1
∑

i=0

tir
2
i <

(
√

2 − 1)2(2 −
√

2)3

4

k−1
∑

i=0

3i+1 + (−1)i

(
√

2 + 1)2i
n (25)

<
58 − 41

√
2

2



3
k−1
∑

i=0

(

3

3 + 2
√

2

)i

+ 1



 n

=
58 − 41

√
2

2





9 + 6
√

2

2
√

2



1 −
(

3

3 + 2
√

2

)k


 + 1



 n

=
95 − 67

√
2

4
n − 15

√
2 − 21

4

(

3

3 + 2
√

2

)k

n

<
95 − 67

√
2

4
n − 261

√
2 − 369

4

(

(2 +
√

2)c
)2−log

1+
√

2
3
n (26)

From Inequalities (21), (22), and (19), we derive

20



√
2

k−1
∑

i=0

tiri = O(m)
k−1
∑

i=0

(

3√
2 + 1

)i

= O(m) (27)

From Inequalities (22) and (19), we get

1

2

k−1
∑

i=0

ti = O(1)
k−1
∑

i=0

3i = O(1) (28)

Moreover, r′ = l′√
2−

√
2

=
√

2−
√

2
2

√
n, and so

(

r′ +

√
2

2

)2

=
2 −

√
2

2
n + O(m) (29)

Finally, by combining Inequality (20) with bounds (24, (23), (25), (27), (28),
and (29), we obtain

cost(C) = 18(2 −
√

2)2((2 +
√

2)c)2−log
1+

√
2
3n +

95 − 67
√

2

4
n +

−261
√

2 − 369

4

(

(2 +
√

2)c
)2−log

1+
√

2
3
n +

2 −
√

2

2
n + O(m)

=

(

99 − 69
√

2

4
+

801 − 549
√

2

4
((2 +

√
2)c)2−log

1+
√

2
3

)

n +

+ O(m) (30)

Now, we describe the second phase. We add disks in order to provide a Broad-
cast from a source point s. We now apply the following procedure.

(1) Observe that the source s is at distance m
2

from the center P of the disk

that covers the initial octagon. Hence, there exists a chain of at most
⌈

1
2c

⌉

disks with radius cm connecting s to P . The centers of such disks are not
necessarily grid points; however, since each center is at distance at most√

2
2

from a grid point, then the communication from s to P is guaranteed

by replacing each disk D with radius cm by a disk D′ with radius cm+
√

2
2

centered at the closest grid-point to the center of D.
(2) Notice that, by construction, each octagon O, but the initial one, is ad-

jacent to one (and only one) octagon O′ which is larger than O. Let Q be

the center of O and r be its circumradius. There exists a chain of
⌈

r
cm

⌉

disks with radius cm connecting Q to some point R in O′. By similar
arguments to the first item, it is possible to guarantee communication
from R to Q by using

⌈

r
cm

⌉

disks with radius at most cm +
√

2
2

.
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(3) Observe that, by construction, the hypotenuse of any triangle T coincides
(or is included) to the edge of one octagon O. Since the cathetus of T has

size at most cm, then there exists a disk D of radius
√

2
2

cm+
√

2
2

, centered
at a grid point contained in O, such that D contains the center of the
disk covering T .

Again, this phase can be performed in polynomial time in n. Since the cost of
each disk, added in the second phase, is c2n + O(m), we can bound the costs
C1, C2 and C3, due to each of the three steps of the second phase, as follows:

C1 =
⌈

1

2c

⌉

(

c2n + O(m)
)

≤ cn

2
+ c2n + O(m)

C2 =
k−1
∑

i=0

ti

⌈

ri

cm

⌉

(c2n + O(m))

<
k−1
∑

i=0

(

3i+1 + (−1)i
)





(
√

2 − 1)(2 −
√

2)
3

2

c2(
√

2 + 1)i
+ 1



 (c2n + O(m))

<
3c(

√
2 − 1)(2 −

√
2)

3

2

2

k−1
∑

i=0

(

3√
2 + 1

)i

n + 3c2
k−1
∑

i=0

3in+

+
(
√

2 − 1)(2 −
√

2)
3

2

2
cn + c2n + O(m)

=





3c
√

2 −
√

2

2





(

3√
2 + 1

)k

− 1



 +

+
3c2(3k − 1)

2
+

(
√

2 − 1)(2 −
√

2)
3

2

2
c + c2



 n + O(m)

<





9(
√

2 − 1)(2 −
√

2)
3

2

4
((2 +

√
2)c)2−log

1+
√

2
3 − 3c

√

2 −
√

2

2
+

+
3(2 −

√
2)2

8
((2 +

√
2)c)2−log

1+
√

2
3

− 3c2

2
+

(
√

2 − 1)(2 −
√

2)
3

2

2
c + c2



 n + O(m)

C3 = tc2n + O(m) = 12 · 3kc2n + O(m) =

= 9(2 −
√

2)2((2 +
√

2)c)2−log
1+

√
2
3n + O(m)

Finally, the cost to transform the cover into a broadcast is bounded by
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(

(27
√

2 − 36)
√

2 −
√

2 + 225 − 150
√

2

4
((2 +

√
2)c)2−log

1+
√

2
3+

+
1 + (3

√
2 − 7)

√

2 −
√

2

2
c +

c2

2

)

n + O(m)

From this bound and Inequality (30) we get:

cost(B) <

(

99 − 69
√

2

4
+

+
(27

√
2 − 36)

√

2 −
√

2 + 1026 − 699
√

2

4
((2 +

√
2)c)2−log

1+
√

2
3+

+
1 + (3

√
2 − 7)

√

2 −
√

2

2
c +

c2

2



 n + O(m)

<
(

0.35483 + 24.6814c2−log
1+

√
2
3 − 0.5551c + 0.5c2

)

n + O(m).

2

The following upper bound is an easy consequence of the previous lemma.

Theorem 8 For any source point, there exists a (polynomial-time computable)

Broadcast B for G that uses disks with radius at least
√

n

106 and such that

cost(B) < 1.1171
n

π
+ O(

√
n)

As a consequence, B consists of a constant number of disks thus yielding a
constant number of hops. This implies that the asymptotically optimal cost
of bounded-hop solutions is very close to that of unbounded ones in grid
networks. Finally, observe that Theorem 5 implies that the upper bound of
Theorem 8 is almost tight.

4 Future research

Our asymptotical bounds on the Broadcast Problem on grids are not tight:
achieving tight bounds here is an interesting theoretical open problem. As
for determining a better upper bound, we observe that if it were possible to
evaluate the cost of the Apollonian Circle Packing (see Section 3) of the grid
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[12,20] then it would be possible to obtain the optimal bound on the Broadcast
cost. We strongly believe that this is the only way to obtain such an optimal
bound. The former problem is known to be a hard mathematical problem.

However, as mentioned in the Introduction, we believe that our results open
new promising directions in the design of new, good heuristics for a wide and
practically relevant class of input configurations: well-spread, regular instances
and uniform random instances [7,18]. This is, in our opinion, the most relevant
challenge in this topic.
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