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Abstract

The d-DIM h-HOPS MST problem is defined as follows: given a set S of points in the d-dimensional Euclidean space and
s ∈ S, find a minimum-cost spanning tree for S rooted at s with height at most h. We investigate the problem for any constant h
and d > 0. We prove the first nontrivial lower bound on the solution cost for almost all Euclidean instances (i.e. the lower bound
holds with high probability). Then we introduce an easy-to-implement, fast divide et impera heuristic and we prove that its solution
cost matches the lower bound.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a positive integer h, an h-tree T is a rooted tree such that the number of hops (edges) in the path from
the root to any other node is not greater than h. The cost of T , denoted as cost(T ), is the sum of its edge weights.
The Minimum h-hops Spanning Tree problem (h-HOPS MST) is defined as follows: Given a graph G(V, E) with
nonnegative edge weights and a node s ∈ V , find a minimum-cost h-tree rooted at s and spanning V . The h-HOPS
MST problem and the related problem in which the constraint is on the tree diameter find applications in several
areas: Networks [4], distributed system design [21,7] and bit-compression for information retrieval [6].

The efficient construction of a (minimum) spanning tree of a communication network yields good protocols for
broadcast and antibroadcast1 operations. The hop restriction limits the maximum number of links or connections in
the communication paths between source and destination nodes: It is thus closely related to restricting the maximum
delay transmission time of such fundamental communication protocols. The hop restriction finds another relevant
application in the context of reliability: Assume that, in a communication network, link faults happen with probability
p and that all faults occur independently. Then, the probability that a multi-hop transmission fails exponentially
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Computers”).
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increases with the number of hops. Summarizing, a fixed bound on the maximum number of hops is sometimes a
necessary constraint in order to achieve fast and reliable communication protocols. For further motivations in studying
the h-HOPS MST problem see [5,11,15,23].

In [1] Alfandari and Paschos proved that METRIC 2-HOPS MST (i.e. the problem version where edge weights of
the input graph yield a metric) is NP-hard and no PTAS exists unless P = NP. The first constant factor approximation
algorithm was given by Shmoys et al. in [22]: they presented a 3.16 approximation algorithm. After this, a series
of constant factor approximation algorithms was published, see [8,17,14]. Currently, the best factor is 1.52 due to
Mahdian et al. [18]. All such algorithms are not practically efficient.

Several previous works [5,11,23] focused on the h-HOPS MST problem version (and some generalizations) where
nodes are points of the Euclidean 2-dimensional space, the graph is complete, and the edge weights are the Euclidean
distances. This problem version will be called 2-DIM h-HOPS MST. As for the case h = 2, the problem can be
easily reduced to the classic Facility Location Problem on the plane. Indeed, the distance of the root from vertex i
can be seen as the cost of opening a facility at vertex i . It thus follows that all the approximation algorithms for the
latter problem apply to the 2-DIM 2-HOPS MST as well. In particular, the best result is the PTAS given by Arora et
al in [3]. The algorithm works also in higher dimensions; however, it is based on a complex dynamic programming
technique that makes any implementation very far to be practical. For h ≥ 2, neither hardness results nor polynomial-
time (exact) algorithms are known for the 2-DIM h-HOPS MST problem. Even more, for h ≥ 3, no polynomial-time,
constant-factor approximation algorithms are known.

Another series of papers have been devoted to evaluating and comparing solutions for the 2-DIM h-HOPS MST
problem returned by some heuristics on random 2-dimensional instances by performing computer experiments [9,20,
23]. Almost all such works adopt the uniform input random model, i.e. points are chosen independently and uniformly
at random from a fixed square of the plane. The motivation on this input model is twofold: on the one hand, the
uniform distribution is the most suitable choice when nothing is known about the real input distribution or when the
goal is to perform a preliminary study of the heuristic on arbitrary instances. On the other hand, uniform distribution
well models important applications in the area of ad-hoc wireless and sensor networks. In such scenarios, once base
stations are efficiently located, a large set of small wireless (mobile or not) devices are well-spread over a geographical
region. Needless to say, efficient and reliable protocols for broadcast and accumulation are a primary goal [10] for
such networks. We emphasize that no theoretical analysis is currently available on the expected performance of any
efficient algorithm for the 2-DIM h-HOPS MST problem.

In [2,16] a polynomial-time O(log n)-approximation algorithm is given for the h-HOPS MST problem, but its time
complexity is nO(h). Gouveia in [11,12] and Gouveia and Requejo [13] provided lower bounds on the optimal cost
of the h-HOPS MST based on integer programming models. Voss in [23] presented a tabu-search heuristic for the h-
HOPS MST problem but its time complexity is very high when the graph is dense. In [20] heuristics based on Prim’s
algorithm and Evolutionary techniques have been experimentally tested. Finally, in [9] experimental tests have been
performed on greedy heuristics and on the one analysed in this paper.

In the sequel, with the term random set of points, we mean a finite set of points chosen independently and uniformly
at random from a fixed d-dimensional hypercube (d-cube).

Our first result is a lower bound on the cost of any h-tree spanning a random set of points.

Theorem 1. Let h, d ≥ 1 be constants. Let S be a random set of n points in a d-cube of side length L. Then, with
high probability, for any h-tree T spanning S, it holds that

cost(T ) =


Ω
(

L · n
1
h

)
if d = 1

Ω
(

L · n
1− 1

d+
d−1

dh+1−d

)
otherwise.

Here and in the sequel the term with high probability (in short, w.h.p.) means that the event holds with probability at
least 1 − e−c·n , for some constant c > 0. So, according to our input model, claiming that a given bound holds w.h.p.
is equivalent to claiming that it holds for almost all inputs.

We then introduce a simple Divide et Impera heuristic denoted as h-PARTY. It makes a partition into cells of the
smallest d-cube containing S. In each nonempty cell, it selects an arbitrary subroot s′ and connects s′ to the root s;
finally, it recursively solves the nonempty cell subinstances of the problem with h − 1 hops. Choosing the “correct”
size of the cells is the critical technical issue. This is solved thanks to the lower bound function in Theorem 1.
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Fig. 1. The spanning trees yielded by the h-PARTY heuristics on the same random set of 400 points and h = 3, 8.

Theorem 2. Let h, d ≥ 1 be constants. Let S be a set of n points in a d-cube of side length L and let s ∈ S. For any
h-tree T returned by h-PARTY on input (S, s), it holds that

cost(T ) =


O
(

L · n
1
h

)
if d = 1

O
(

L · n
1− 1

d+
d−1

dh+1−d

)
otherwise.

Theorems 1 and 2 imply that, for any fixed h, h-PARTY returns a solution which is, with high probability, a constant
factor approximation of the optimum. So, even though this fast algorithm provides no provably-good approximation
in the worst case, it works well on almost all Euclidean instances.

h-PARTY is the first heuristic for the 2-DIM h-HOPS MST that works in O(n) time and it can be thus efficiently
applied to very large instances. In fact, the heuristic has been implemented and tested on instances of hundreds of
thousands of points [9] (see Fig. 1 for two outputs of the heuristic).

Notice that, differently from Theorem 1, the bound in Theorem 2 holds for any Euclidean instance. It thus follows
that random instances are those having the largest cost.

2. Preliminaries

In the proof of our results we make use of the well-known Hölder inequality. We present it in the following
convenient forms. Let xi , i = 1, . . . , k be a set of k nonnegative reals and let p, q ∈ R such that p ≥ 1 and q ≤ 1.
Then, it holds that

k∑
i=1

x p
i ≥ k


k∑

i=1
xi

k


p

; (1)

k∑
i=1

xq
i ≤ k


k∑

i=1
xi

k


q

. (2)

3. The lower bound

Next lemma provides the first known deterministic lower bound on the cost of h-trees for general Euclidean
instances.
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Lemma 3. Let h, d ≥ 1 be constants. Let S be a set of points in a d-dimensional Euclidean space. Consider a
partition of the space into d-cubes, with the side length of each d-cube being l, and let nl be the number of the
d-cubes containing some point of S. For any h-tree T spanning S it holds that

cost(T ) =


Ω
(

l · n
1+ 1

h
l

)
if d = 1

Ω
(

l · n
1+ d−1

dh+1−d
l

)
otherwise.

Proof. Let

g(h) =

{
d if h = 1
d · g(h − 1)+ d otherwise

then,

1
g(h)

=

{
d−1

dh+1−d if d > 1
1
h if d = 1.

Hence, we aim to show that cost(T ) = Ω
(

l · n
1+ 1

g(h)

l

)
.

Let s be the root point of the spanning tree T and consider a d-sphere centred at s and of radius r = Θ(l · (nl)
1
d )

such that the number n′l of nonempty d-cubes outside the sphere is at least nl/2. Finally let B be the set of points in
these n′l d-cubes.

The proof is by induction on the height h of the spanning tree T . If h = 1, for each of the n′l d-cubes, there is an
edge in T of length at least r . This implies that

cost(T ) ≥ r · n′l = Ω
(

l · n
1+ 1

d
l

)
= Ω

(
l · n

1+ 1
g(1)

l

)
.

Let h ≥ 2. Let A = {a1, a2, . . . , a|A|} be the set of points whose father in T is at distance at least r
h and let

β = 1−
1
d
+

1
g(h)

.

Two cases may arise.
– Case |A| ≥ nβ

l . Since there are at least |A| edges of length r
h , it holds that

cost(T ) ≥
r
h
· |A| = Ω(l · n

β+ 1
d

l ) = Ω
(

l · n
1+ 1

g(h)

l

)
.

– Case |A| < nβ
l . For every point x in B there is a path from x to the root s with at most h hops. Since the distance

from x to s is at least r , then in the path there is at least one edge of length at least r/h. Hence, we can partition the
points in A ∪ B into |A| subsets A1, A2, . . . A|A| where a point y is in Ai if ai is the first point in A in the path from
y to s. Notice that the points in the subsets Ai , 1 ≤ i ≤ |A|, belong to (edge-)disjoint subtrees T1, T2, . . . , T|A| of T
where Ti is an (h − 1)-tree rooted at ai . Let nl,i be the number of d-cubes containing the points of Ti , 1 ≤ i ≤ |A|. It
holds that

cost(T ) ≥

|A|∑
i=1

cost(Ti )

= Ω

(
|A|∑
i=1

l · nl,i
1+ 1

g(h−1)

)
by inductive hypothesis
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= Ω

l · |A| ·


|A|∑
i=1

nl,i

|A|


1+ 1

g(h−1)
 by the Hölder inequality

= Ω
(

l · |A|−
1

g(h−1) · nl
1+ 1

g(h−1)

)
since

|A|∑
i=1

nl,i ≥ n′l ≥
nl

2

= Ω
(

l · n
−

β
g(h−1)

+1+ 1
g(h−1)

l

)
since |A| < nβ

l

= Ω
(

l · n
1+ g(h)−d

d·g(h−1)·g(h)

l

)
= Ω

(
l · n

1+ d·g(h−1)
d·g(h−1)·g(h)

l

)
since g(h) = d · g(h − 1)+ d

= Ω
(

l · n
1+ 1

g(h)

l

)
.

The thesis follows. �

By applying the probabilistic method of bounded differences [19], we can prove Theorem 1.

Proof of Theorem 1. Let us partition the d-cube into n d-cubes, each of them of side length l = Ln−
1
d . Let nl be the

number of nonempty d-cubes. Lemma 3 implies that

cost(T ) =


Ω
(

L · n−1
· n

1+ 1
h

l

)
if d = 1

Ω
(

L · n−
1
d · n

1+ d−1
dh+1−d

l

)
otherwise.

The theorem follows by noticing that, by applying the method of bounded differences [19], we have nl ≥ n/4, with
high probability. �

4. The divide et Impera heuristic

The h-PARTY heuristic is described in Algorithm 1. Observe that the value of k determines the number of stations
(with their costs) that are directly connected to the root station. As we have already mentioned in the introduction, the
choice of a “good” k is the main technical problem: our solution forces the cost due to the stations directly connected
to the root in order to match the lower bound given in Lemma 3. The details of this argument are explained in the
proof of the Theorem 2.

Proof of Theorem 2. We equivalently show that

cost(T ) = O
(

L · n1− 1
d+

1
g(h)

)
where g(h) is the function introduced in Lemma 3, that is

g(h) =

{
d if h = 1
d · g(h − 1)+ d otherwise.

The proof is by induction on h. If h = 1 it is clear that cost(T ) = O(L · n).
For h ≥ 2, let t be the number of nonempty d-cubes in the d-cube of size length L and {q1, q2, . . . qt } be the set of

points selected by the procedure in the t non-empty d-cubes; let Ti be the (h − 1)-tree rooted in qi and Si be the set

of points spanned by Ti , 1 ≤ i ≤ t . By inductive hypothesis, we get cost(Ti ) = O
(

L

k
1
d
· |Si |

1− 1
d+

1
g(h−1)

)
. We thus
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Algorithm 1 h-PARTY(S, s)

if h = 1 then
T ← {{x, s}|x ∈ S − {s}};

else
T ← ∅;
if d = 1 then

k ←
⌊
|S|

1
h

⌋
;

else
k ←

⌊
|S|

1− 1
d+

d−1
dh+1−d

⌋
; {this choice is explained in the text}

end if
Let L be the side length of the smallest d-cube containing all points in S;
Partition the d-cube into d-cubes of side length L⌊

k
1
d

⌋ ;

Let k′ be the number of d-cubes and let Si be the points of S in the i-th d-cube, 1 ≤ i ≤ k′;
for i ← 1 to k′ do

if |Si | ≥ 1 then
choose a point s′ in Si ;
T ← T ∪ {{s′, s}};
if |Si | > 1 then

T ← T∪(h − 1)-PARTY(Si , s′);
end if

end if
end for

end if
return T

have that

cost(T ) =

t∑
i=1

d(qi , s)+
t∑

i=1

cost(Ti )

≤ L · t +
t∑

i=1

cost(Ti ) since d(qi , s) ≤ L

= O

(
L · t +

t∑
i=1

L

k
1
d

· |Si |
1− 1

d+
1

g(h−1)

)
by inductive hyp.

= O

L · t +
L

k
1
d

· t ·


t∑

i=1
|Si |

t


1− 1

d+
1

g(h−1)

 by Hölder ineq.

= O
(

L · t +
L

k
1
d

· t
1
d−

1
g(h−1) · n1− 1

d+
1

g(h−1)

)
since

t∑
i=1
|Si | = n

= O
(

L · k + L · k−
1

g(h−1) · n1− 1
d+

1
g(h−1)

)
since t ≤ k

= O
(

L · n1− 1
d+

1
g(h) + L · n−

1
g(h−1)

(1− 1
d+

1
g(h)

)+1− 1
d+

1
g(h−1)

)
= O

(
L · n1− 1

d+
1

g(h) + L · n1− 1
d+

g(h)−d
d·g(h−1)·g(h)

)
= O

(
L · n1− 1

d+
1

g(h)

)
.
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where the last step follows since

g(h)− d
d · g(h − 1) · g(h)

=
d · g(h − 1)

d · g(h − 1) · g(h)
=

1
g(h)

. �

Finally, it is not hard to verify that, for any h > 0, the worst-case time complexity is O(n).

5. Conclusions and open problems

In this paper, we have provided the first nontrivial lower bound on the solution cost for almost all Euclidean
instances (i.e. the lower bound holds with high probability). Then, we have introduced an easy-to-implement, fast
divide and impera heuristic whose solution-cost matches the lower bound. We finally remark that the proof of Lemma 3
strongly relies on the fact that h and d do not depend on n. It thus follows that an interesting future work consists in
extending our asymptotical analysis to nonconstant h (e.g. h = Ω(log n)).
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