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Abstract

The paper studies the problem of computing a mini-
mal energy-cost range assignment in an ad-hoc wire-
less network which allows a set S of stations lo-
cated in the 2-dimensional Euclidean space to per-
form accumulation (all-to-one) operations towards
some root station b in at most h hops (2-Dim Min

h-Accumulation Range Assignment problem).

We experimentally investigate the behavior of fast
and easy-to-implement heuristics for the 2-Dim Min

h-Accumulation Range Assignment problem on
instances obtained by choosing at random n points
in a square of side length L. We compare the perfor-
mance of an easy-to-implement, very fast heuristic
with those of three simple heuristics based on classi-
cal greedy algorithms (Prim’s and Kruskal’s ones) de-
fined for the Minimum Spanning Tree problem. The
comparison is carried out over thousands of random
instances in several different situations depending on:
the distribution of the stations in the plane, their
density, the energy cost function.

1 Introduction

An ad-hoc wireless network consists of a set of radio
stations connected by wireless links. In an ad hoc
network, to every station is assigned a transmission
range. The overall range assignment determines a
transmission (directed) graph since one station s can
transmit to another station t if and only if t is within
the transmission range of s. The transmission range
of a station depends, in turn, on the energy power
supplied to the station. In particular, the power Ps

required by a station s to correctly transmit data to
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another station t must satisfy the inequality

Ps

dist(s, t)α
> γ (1)

where dist(s, t) is the Euclidean distance between s
and t, α ≥ 1 is the distance-power gradient, and γ ≥
1 is the transmission quality parameter. In an ideal
environment (i.e., in empty space) it holds that α = 2
but it may vary from 1 to more than 6 depending
on the environment conditions at the location of the
network (see [17]).
The fundamental problem underlying any phase of
a dynamic resource allocation algorithm in ad-hoc
wireless networks is the following. Find a transmis-
sion range assignment such that (1) the correspond-
ing transmission graph satisfies a given connectiv-
ity property Π, and (2) the overall energy power re-
quired to deploy the assignment (according to In-
equality (1)) is minimized (see for example [21, 13]).
In [7], the reader may find an exhaustive survey on
the previous results related to the above problem.

For certain wireless networks, such as ad hoc and
sensor networks, a fundamental question is whether
it is advantageous to route over many short hops
(short-hop routing or, in the extreme case, nearest-
neighbor routing) or over a smaller number of longer
hops (long-hop routing). Short-hop routing gained a
lot of support, mainly due to energy consumption
considerations: in fact, if the distance-power gra-
dient is grater than one, a long hop of length d is
much more expensive than, say, h hops of length d/h.
However, this argument stems from an oversimpli-
fied analysis of the energy consumption and neglects
important issues such as delay, end-to-end reliability,
and bias power consumption. Recently, this issue has
been more deeply considered and several arguments
in favor of routing over a smaller number of hops have
been brought (see [12] for a detailed analysis of this
issue). Among these arguments, we list end-to-end
delay, end-to-end reliability (each hop may increase
fault probability).

Clearly, the most compelling reason against many-
hops routing is the end-to-end delay. Of course, en-
ergy and delay can be traded off against each other.
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So, for a fair comparison, we will impose a delay con-
straint and determine which range assignment con-
sumes the least amount of energy. In particular, this
paper addresses the case in which Π is defined as fol-
lows: Given a set of stations and a specific root sta-
tion b, the transmission graph must contain a span-
ning tree directed towards b of depth at most h. The
relevance of this case is due to the fact that any trans-
mission graph satisfying the above property allows
the source station to accumulate data from all sta-
tions in at most h hops. This task constitutes one
of the typical activities of real life multi-hop radio
networks such as sensor networks [22, 21].

Previous results The accumulation range as-
signment problem (denoted as 2-Dim Min h-

Accumulation Range Assignment(α)), de-
scribed above, is a special case of the well known
Minimum Spanning Tree problem on general graphs
in which a constraint on the height of the spanning
tree, from a given root, has to be satisfied (in short,
it will be denoted as h-HMST). Indeed, it is the
case in which nodes are points of the plane and the
weight of edge (u, v) equals d(u, v)α, for any pair u, v
of nodes.

As for the h-HMST problem, Gouveia [9] and, suc-
cessively, Gouveia and Requejo [11] provided and ex-
perimentally tested exact super-polynomial-time al-
gorithms, based on the branch and bound technique.
In [3] a polynomial-time O(log n)-approximation al-
gorithm is given, but its time complexity is nO(h).

The 2-HMST problem can be easily reduced to
the classic Uncapacitated Facility Location Prob-
lem (UFLP). It thus follows that all the approxi-
mation algorithms for the latter problem apply to
the 2-HMST as well. As for the metric FLP, sev-
eral polynomial-time approximation algorithms have
been presented in the literature. The first constant
factor approximation algorithm was given by Shmoys
et al in [20], they presented a 3.16 approximation al-
gorithm. After this, a series of constant factor ap-
proximation algorithms was published, see [5, 14, 10].
Currently, the best factor for metric FLP is 1.52 due
to Mahdian et al [16]. All such algorithms make
use of Linear Programming relaxations that do not
yield practically efficient implementations. Notice
that, in [2] Alfandari and Paschos proved that met-
ric 2-HMST is Max SNP-hard and, hence, PTAS
cannot be found for this problem unless P = NP.
As for the Euclidean case (notice that this cor-
responds to “our” 2-Dim Min 2-Accumulation

Range Assignment(1)) problem, the best result is
the PTAS given by Arora et al in [4]. The algorithm
works also in higher dimensions; however, it is based
on a very complex dynamic programming technique

that makes any implementation very far to be prac-
tically efficient.

In [19], an evolutionary-based heuristic, for the
2-Dimensional Euclidean h-HMST problem, has
been presented and experimentally compared to two
greedy heuristics based on the classic Prim’s algo-
rithm for the MST problem. A more detailed de-
scription of these results is given in the next Subsec-
tion.

An asymptotical, probabilistic analysis of
practically-efficient heuristics for the 2-Dimensional
Euclidean h-HMST (corresponding to our 2-Dim

Min h-Accumulation Range Assignment(1)
problem) is provided in [6], for any constant h. The
analysis adopts the random uniform model, i.e., a
set of n points selected uniformly and independently
at random from a square of size L. The major
motivation for studying this input model is twofold:
on one hand, uniform distribution is the best
choice when nothing is known about the real input
distribution; on the other hand, uniform random
instances well model well spread instances which are
typical in sensor networks. More precisely, they first
prove that a divide-et-impera based heuristic (called
Party) yields, with high probability1 , constant
approximation factor. It is important to observe
that this approximation factor depends on h. Then,
they analyze three greedy heuristics: one heuristic
(Kruskal) based on the well-known Kruskal’s
algorithm and two heuristics - a deterministic one
(Prim) and a randomized one (Randomized Prim)
based on the well-known Prim’s algorithm. They
prove that, with high probability, all such greedy
heuristics do not asymptotically behave better than
the trivial algorithm that directly connects each
node to the root: Their cost is Θ(n · L) while the

optimal cost is Θ(L · n
1
2
+ 1

2h+1
−2 ).

Informally speaking, such asymptotical analysis
would lead us to always prefer the divide et impera
heuristic to solve the 2-Dim Min h-Accumulation

Range Assignment(1) problem.

Our results. The asymptotical analysis in [6] is
unable to capture the role played by the constants.
In fact, it states that, with high probability, up to
constant factors depending on the constant h, there
exists a constant n0 such that, whenever the num-
ber of nodes is greater than n0, the divide-et-impera
heuristic (Party) behaves much better than any of
the greedy heuristics. However, it does not provide
any bound on both the constant factors and the con-
stant n0. It should be clear that such bounds are

1With the term with high probability, we mean that the
event holds with probability at least 1 − e−cn where n is the
node number and c is a fixed positive constant.
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crucial in any practical application: the cost of the
solutions achieved by the greedy approach might be
better than that achieved by the divide-et-impera
one, for a large and important range of the input pa-
rameters (i.e. n and h). The specific aim of this work
is to determine and compare the quality of the solu-
tions returned by the above heuristics for practically-
important ranges of the input parameters. This is ac-
complished by performing a wide experimental anal-
ysis of the above heuristics on random instances.

As already cited, experimental evaluation of some
heuristics for 2-Dim Min h-Accumulation Range

Assignment(1) has been performed in [19]. In
particular, the authors have experimentally com-
pared a heuristic based on the Evolutionary tech-
nique to the same two greedy heuristics based on
the Prim’s algorithm for the MST problem analyzed
in [6] and in this paper. The experiments show that
Randomized Prim significantly outperforms Prim

and that the Evolutionary heuristic behaves slightly
better than the Randomized Prim. However, the
running time of the Evolutionary heuristics is much
worse than the running time of both of the Prim-
based heuristics. In fact, it heavily limits the range
of the experiments sizes which have been carried out
only on “small” instances, i.e., with a small number
of nodes (from 50 to 1000).

While the results in [6, 19] only hold for the 2-Dim

Min h-Accumulation Range Assignment(1)
problem, we want to consider here the 2-Dim Min

h-Accumulation Range Assignment(2) prob-
lem too, due to its more relevance for wireless
networks. To this aim, we apply the same four
heuristics considered in [6] for the 2-Dim Min

h-Accumulation Range Assignment(1) prob-
lem to the 2-Dim Min h-Accumulation Range

Assignment(2) one. Concerning the latter, the
lower bound on the cost of any h-hops accumulation
range assignment has been proved in [8], as well as
the asymptotical optimality of the divide-et-impera
heuristic. Moreover, The asymptotical bad behavior
of the greedy heuristics easily follows from the proof
techniques presented in [6].

We widely test the four heuristics presented in [6]
for the 2-Dim Min h-Accumulation Range

Assignment(α) problem on random instances, for
some fixed h > 0 and α = 1, 2. In particular, we
consider two different distributions: the above men-
tioned uniform distribution and the distribution de-
riving from a Poisson point process in the plane. Our
tests have been carried out on random instances with
size that varies from 100 up to 80, 000 points. The
parameter h is set to 3, 5 and 8. In what follows, we
summarize the results coming from our tests and we
remind to the next Sections for a further discussion

of the obtained results.
- For h = 3, the experiments show that the Party

heuristic is always better than the other ones (see
Figures 2.a and 3.a).
- For h = 5, the Party heuristic behaves better than
the other heuristics for instance of at least 1500 −
2000 points (see Figure 2.b and 3.b).
- Finally, for h = 8 the Randomized Prim heuris-
tic is the hardest to overwhelm in fact it is the
best heuristic for networks of size up to some dozen
of thousand of points. Moreover, we notice a
greater dependence on the parameter α: indeed,
when α = 1 the Party heuristic is better than
Randomized Prim starting at 16, 000 points but
when α = 2 the behavior of Randomized Prim is
“always” (for a number of points less than 30, 000−
35, 000!) much better than α-Party for both the
distributions (see Figures 2.c and 3.c).

By summarizing, we can state that the ”constants”
hidden by the asymptotical analysis provided in [6]
strongly depend on h: the asymptotical optimality of
the Party heuristic comes out only when h is very
small w.r.t. n, while Randomized Prim yield solu-
tions of better cost for larger values of h. The latter
fact leads us to conjecture that, for non constant
values of h, the upper bound for the solution cost
produced by Randomized Prim has the following
form:

O

(

1

f(h)
Lnα

)

where f(h) is some “rapidly” increasing function of
h.
On the other hand, it is important to emphasize
that the Party heuristic is extremely fast (it works
in O(n) time) while the greedy heuristics works in
O(n2).

Paper organization In Section 2, we describe the
four heuristics and we briefly describe the asymptot-
ical results for the 2-Dim Min h-Accumulation

Range Assignment(α) problem for α = 1 and
show how to extend them to α = 2. In section 3
we describe the experiments we have carried out and
discuss their output. Finally, in Section 4 we draw
some conclusions and state some open problems.

2 Practically Efficient Heuris-
tics and their analysis

We first state the lower bounds from [6, 8] on
the cost of any solution for the 2-Dim Min h-

Accumulation Range Assignment(α) problem,
for α = 1 and α = 2.
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Theorem 2.1 Let h ≥ 1 be a constant value. Let
S be a random set of n points in a square of side
length L and let T be any h-tree spanning S. Then,
the following results hold with high probability2:

• for α = 1, cost(T ) = Ω
(

L · n
1
2
+ 1

2h+1
−2

)

[6]

• for α = 2, cost(T ) = Ω
(

L2 · n
1
h

)

[8]

We now introduce a simple Divide et Impera
heuristic, α-Party. It takes in input the value h,
a set of points V and a root p ∈ V and makes a par-
tition of the smallest square containing V into cells
of suitable size; in each non-empty cell, it selects an
arbitrary sub-root a and connects a to the root b;
finally, it solves the non-empty cell sub-instances of
the problem with h − 1 hops, recursively. In both
cases of α = 1 and α = 2, the cell size is a func-
tion of h, that is, it is equal to b|V |ηα(h)c, where
η1(h) = 1

2 + 1
2h+1

−2
and η2(h) = 1

h
.

procedure α-Party(h, V, p)
if h = 1 then T ← {{x, p}|x ∈ V − {p}};
else begin

k ←
⌊

|V |ηα(h)
⌋

; T ← ∅;
Let l be the side length of the smallest square

containing all points in V ;
Partition the square into a grid of square cells

of side length l

b
√

kc ;

Let k′ be the number of cells and let Vi be the
points of V in the i-th cell, 1 ≤ i ≤ k′;

for i← 1 to k′ do

if |Vi| ≥ 1 then begin

a← a random point in Vi;
T ← T ∪ {{a, p}};
if |Vi| > 1 then

T ← T∪ α-Party(h− 1, Vi, a);
end;

end;
output T

Of course, a solution for the original instance
of 2-Dim Min h-Accumulation Range

Assignment(α) is given by α-Party(h, S, b).
The bound on the solution cost yielded by α-Party

is stated in Theorem 2.2, from [6] and [8]. Moreover,
it is immediate to verify that, for any h > 0, the
worst-case time complexity of α-Party is O(n).

Theorem 2.2 Let h ≥ 1 be a constant value. Let
S be a random set of n points in a square of side
length L and let b ∈ S. For any h-tree T returned
by α-Party on input (h, S, b), with high probability
it holds that

2Here and in the sequel the term with high probability (in
short, w.h.p.) means that the event holds with probability at
least 1 − e−c·n, for some constant c > 0.

• for α = 1, cost(T ) = O
(

L · n
1
2
+ 1

2h+1
−2

)

[6]

• for α = 2, cost(T ) = O
(

L2 · n
1
h

)

[8]

Theorems 2.1 and 2.2 imply that, for any fixed h,
α-Party returns a solution which is, with high prob-
ability, a constant factor approximation of the opti-
mum.
The problem of finding an MST can be efficiently
solved by classical greedy algorithms like Prim’s [18]
and Kruskal’s [15] ones. By adapting them for the
hop constraint, it is possible to derive fast heuris-
tics for the 2-Dim Min h-Accumulation Range

Assignment(α) problem. We analyze three heuris-
tics. The first two were originally formulated for the
slightly different version of the problem in which the
hop constraint is on the tree diameter. The first
Prim-based heuristic was introduced by Abdalla et
al. [1]: it starts from the root point and at each step
it chooses the minimum weight edge connecting a
new point and satisfying the hop constraint. We call
this heuristics Prim. Another Prim-based heuristic,
denoted here as Randomized Prim, was presented
in [19]: at each step it picks at random a point, not
yet connected, and it connects the point to the tree
by the minimum weight edge satisfying the hop con-
straint.

procedure Prim(h, S, b)
U ← S − {b}; T ← ∅;
while U 6= ∅ do begin

Let {a, c} be the pair of points of minimum
distance with a ∈ S − U and c ∈ U and
such that T ∪ {{a, c}} is an h-tree;

T ← T ∪ {{a, c}}; U ← U − {c};
end;
output T

procedure Randomized Prim(h, S, b)
T ← ∅;
U ← S − {b};
while U 6= ∅ do begin

c← a random point from U ;
a← the point in S − U nearest to c such that

T ∪ {{a, c}} is an h-tree;
T ← T ∪ {{a, c}};
U ← U − {c};

end;
output T

We introduce a third heuristic Kruskal, inspired
by Kruskal algorithm: initially each point forms a
component; then, at each step, it chooses a minimum
weight edge such that it merges two components and
the resulting set of components can still be connected
in a tree satisfying the hop constraint.
We recall that Kruskal’s algorithm starts from the
forest of n disjoint trees (i.e. components) and, at
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every stage, it considers the edge e of minimal weight
connecting two disjoint trees T1 and T2. Then, it
replaces these two trees with the tree T = T1 ∪{e}∪
T2. Our heuristic needs the following notions. A
component is feasible if either it contains the root
and its height is at most h or it does not contain
the root and its diameter is at most 2h − 2. An
edge is feasible if it connects two feasible components
yielding a feasible component.

procedure Kruskal(h, S, b)
T ← {C1, C2, . . . , Cn} where Ci is the component

consisting of the ith point of S;
while |T | > 1 do begin

Let {p, q} be the minimum weight feasible
edge w.r.t. T ;

Let C and C′ be the feasible components
connected by {p, q};

Let C′′ be the feasible component yielded
by connecting C and C ′ by {p, q};

T ← T ∪ {C′′} − {C, C′};
end;
output T

The time complexity of Prim and of
Randomized Prim is O(n2). The time com-
plexity of Kruskal is O(n2 log n).
Next theorem shows that the asymptotic behavior
of the above three heuristics is the same on random
instances. The case α = 1 follows by [6], while the
case α = 2 follows by a simple adaptation of the
proofs in [6].

Theorem 2.3 Let h ≥ 1 be a constant value. Let
S be a random set of n points on a square of side
length L and let T be any h-tree spanning S returned
by either Prim or Randomized Prim or Kruskal.
Then, with high probability it holds that

• for α = 1, cost(T ) = Ω(L · n) [6]

• for α = 2, cost(T ) = Ω(L2 · n)

The lower bound is clearly asymptotically tight, since
the heuristics cannot do worse than that. Rather
surprisingly, they thus do not do better, up to some
constant factor, than the trivial algorithm that con-
nects each point directly to the root.
The proof of Theorem 2.3 implicitly gives reasons
for the bad behavior of each of the three heuristics.
Given an h-tree T , a point is said to be a bridge if
it is not a leaf and its father is at distance not less
than a suitable constant fraction of L. Informally
speaking, the bad behavior of the greedy heuristics
can be explained in terms of the number and the
distribution of bridges. As for Prim, it is shown
that there are no bridges, w.h.p.. Thus, the points,

“far” from the root, must directly connect to some
points “close” to the root: in a random instance,
the number of such points is a large fraction of n
(see Figures 1.b and 1.f). In the solutions yielded
by Randomized Prim, it is firstly proved that there
are only a constant number of bridges, w.h.p.. Then,
it is shown that the cost yielded by the points to
reach such bridges is high (see Figures 1.c and 1.g).
To sum up, the bad behavior of the Prim-based
heuristics is due to a “too small” number of bridges.
On the other hand, it is proved that Kruskal yields
“too many” bridges, w.h.p. (see Figures 1.d and 1.h).

3 Experimental analysis

In this section, we show the experimental results of
the studied heuristic and a modification of α-Party

called α-PartyEx. This heuristic differs from
α-Party in that, after choosing the point a in Vi,
instead of connecting a to p, it choose a connection
point c in T whose level is at most the level of p
and the distance from a is minimal. In particular
in Section 3.1 we show the results of the experimen-
tation of the proposed heuristics for α = 1. The
experiments described in Section 3.2 are executed in
the “wireless” case α = 2. For this case we perform
experiments with the classical uniform distribution
and also with the normal distribution. The latter
distribution is useful to model the behavior of the
heuristics in the case of networks implemented in ur-
ban conglomerates whose density is high in the cen-
ter and decreases towards the periphery. The normal
distribution is considered only for the case α = 2 due
to the major relevance of this case for wireless net-
works.

All the experiments are carried out for several di-
mensions n of the random instances (between 100
and 80, 000) and for h = 3, 5, 8. For each n and h,
the number of runs decreases from 1000 to 50 as n
grows. Notice that, in each round associated to any
fixed n and h, we run the heuristics on the same
instance generated at random.

First of all, we observe that for h = 3 and h = 5
α-Party (and α-PartyEx) is always better than
the other heuristics independently from the chosen
distribution and from the value of α. Hence, for
small values of h the experimental behavior reflects
the theoretical asymptotical results, even for small
values of n. The influence of the value of α for the
case h = 8 is stronger. A more detailed analysis of
these fact will be given in the appropriate sections.
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t

h-Party: n = 400, h = 8

t

h-Prim: n = 400, h = 8

t

Randomized h-Prim: n = 400, h = 8

t

h-Kruskal: n = 400, h = 8

Figure 1: The trees yielded by the heuristics on the same random instance with 400 points and h = 8.
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Figure 2: Performance of the heuristics for α = 1, in the uniform distribution case.

3.1 The Euclidean Case (α = 1)

In Figures 2.a-c we show the average costs of the
heuristics for α = 1. In particular, Figure 2.a and
Figure 2.b show the results for h = 3 and h = 5,
respectively. Here the dimensions n of the random
instances varies between 100 and 8000. For these
two values of h the performance of both 1-Party

and 1-PartyEx are considerably better than those
of the greedy heuristics, even for small values of n.

Figure 2.c shows the results for h = 8. Differently
from the previous cases, here the dimension of the
network varies till to n = 30, 000. This is neces-
sary to discover the value of n since when 1-Party

behaves better than Randomized Prim. It follows
that only when n is at least 18, 000 1-PartyEx be-
haves better than Randomized Prim.

Basically, Randomized Prim has the best perfor-
mance as h grows. This fact can be explained in the
following way: The next point v to be connected to
the tree by the Randomized Prim heuristic is cho-
sen at random from all the points that are still not
connected. So, this point can be also very far from
its father in the tree even if its distance (in terms of
number of hops) from the target can be very small.
This implies that all the points close to v can be
connected to v by small edges. On the contrary, if
h is very small (3 or 5) it is still true that v can be
very far from its father in the tree but the distance

in terms of hops from v to the target can be h with
a non negligible probability. Then, the points close
to v cannot be connected to v by small edges.

On the contrary, in the Prim heuristic the next
point to be connected to the graph is the closest one
to the connected part. This implies that all the h
available hops are consumed by small edges connect-
ing points close to the target. Hence, the points dis-
tant from the target must be connected to the tree
by longe edges, since they have to reach in one hop
points belonging to a small region around the target.

The Kruskal heuristic gives good performance
for relatively small values of n, but its behavior
rapidly worsens as n grows. The reason of this be-
havior is due to the fact that this heuristic creates
a number of connected components by using short
edges. Such connected components are linked to the
root by long edges. If n is sufficiently large with
respect to h, the number of connected components
(and of long edges) is very large.

The behavior of 1-Party strongly depends on the
number of square cells produced. Each square cell
induces an (eventually long) edge from some point
inside the square to the target. The more square we
have the more long edges are added in the solution.
Since the number of square cells depends on h, this
explains the “bad” behavior of 1-Party for large
h. Notice that, with respect to the same number
of points n, the number of square cells for h = 8 is
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almost twice the number of square cells for h = 3.

3.2 Case α = 2

In this subsection we show the results of our exper-
imental analysis that compares the performance of
the previously described heuristics in the case α = 2.
The random points in these experiments are chosen
according to both the uniform and the normal dis-
tribution.

As previously stated, the normal distribution sim-
ulates networks implemented in urban conglomer-
ates. Since we are interested in describing situations
in which several conglomerates simultaneously ex-
ist, we divide the region in equal-size squares each
corresponding to a conglomerate. Then, inside each
square we choose a set of points according to a nor-
mal distribution.

3.2.1 Uniform Distribution

In Figures 3.a-c we show the average performance of
the heuristics for α = 2. The points are chosen inside
a region of size 1000×1000 according to the uniform
distribution. In order to overcome the chance of se-
lecting pairs of points at distance smaller than 1 from
each other, we perform a normalization on the dis-
tances.

The results are summarized in Figure 3. They
show that the asymptotic behavior of the heuristics
emerges for larger values of n than those appeared in
the case α = 1. In particular, Figure 3.c shows that
for h = 8 the Randomized Prim behaves seriously
better than all the other heuristics for n < 30, 000,
since when 2-Party becomes the best one.

This behavior is due to the same reasons that moti-
vate the trend of the three heuristic for the Euclidean
case with the difference that, when α = 2, the pres-
ence of several long edges is even more crucial than
in the case α = 1.

3.2.2 Multi-Normal Distribution

In this subsection we describe the results of our tests
obtained by choosing the position of the points in
the plane according to a normal distribution. As
already explained, in order to model the presence of
several conglomerates we divide the plane into square
cells. Inside each cell, we choose the points according
to the normal distribution centered in the middle of
the square. The variance of the distribution is `/5,
where ` is the length of the squares. This choice
guarantees that the points are not too concentrated
in the center of the squares. The number of squares is
chosen at random in every run. In order to guarantee

a sufficient number of points inside each square, this
number varies between 1 and n/225.

The obtained results show that the trend for the
cases h = 3, 5 and 8 very similar to the case of uni-
form distribution shown in Figure 3.

3.3 Considerations about the running
times

In Figure 4 we compare the running times3 of the
greedy heuristics for n = 100, . . . , 8000. For all the
greedy heuristic (and for all values of n) the best
running time over all the instances with n points is
displayed. Conversely, for α-Party and α-PartyEx

the worst running time is displayed. Notice that,
since α-Party is orders of magnitude faster than the
greedy heuristics, it cannot be displayed in Figure 4.
In order to figure out the performance of α-Party

we want to emphasize that the worst running time
that we obtain for n = 30, 000 was 0.13 seconds.
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Figure 4: Heuristics running times.

4 Conclusions and open prob-
lems

The main open question is to refine the asymptotical
analysis in order to obtain good bounds on the con-
stant factors. In particular, it will be interesting to
understand how the constant factors depend on h:
as suggested by the experimental results, they can
even exponentially depend on h.

From the experimental analysis, it seems that the
performance ratio of the α-Party heuristic gets
worse as h grows (see Figures 2 and 3). Is it pos-
sible to give a formal proof of that?

Finally, it will be interesting to extend our asymp-
totical analysis to non constant h (e.g. h = Ω(log n)).

3The heuristic has been implemented in C. The experi-
ments has been executed on a Pentium R© IV, 1.7 GHz with
256 MB of RAM, the operating system was Linux and the
compiler was gcc.
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Figure 3: Performance of the heuristics for α = 2, in the uniform distribution case.
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