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Abstract. Ad-hoc networks are an emerging networking technology, in
which the nodes form a network with no fixed infrastructure: each node
forwards messages to the others by using the wireless links induced by
their power levels. Generally, energy-efficient protocols heavily rely on
cooperation. In this paper, we analyze from a game-theoretic point of
view the problem of performing a broadcast operation from a given sta-
tion s. We show both theoretical and experimental results on how the
existence of (good) Nash equilibria is determined by factors such as the
transmission power of the stations or the payment policy that stations
can use to enforce their reciprocal cooperation.

1 Introduction

Ad-hoc networks do not need any fixed infrastructure for communication: nodes
consist of radio stations that are able to communicate by sending messages with
a certain power. This feature is particularly attractive for users since they do
not have to rely on a service provider for building/using the network.

Tipically, stations are located in a two-dimensional Euclidean space and are
connected by wireless links that are induced by their power levels. Each station
v is equipped with an omnidirectional antenna and, depending on the environ-
mental conditions, a signal transmitted with power Pv can be received by every
other station t such that

d(v, t)α ≤
Pv

γ
, (1)
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where d(v, t) is the Euclidean distance between v and t, α ≥ 1 is the distance-
power gradient, and γ ≥ 1 is the transmission quality parameter. In an ideal
environment (i.e., in empty space) it holds that α = 2, but it may vary from
1 to more than 6 depending on the environment conditions at the location of
the network (see [15]). According to the previous equation, when a station v
transmits with power Pv, it covers an area consisting of all points at distance at
most rv ≥ (Pv/γ)1/α from v. The value rv is the transmission range of v, i.e., the
maximum distance at which station v can transmit in one hop with power Pv.
Hence, assigning transmission ranges to the stations is equivalent to decide their
transmission powers. In the remaining of this work, we assume γ = 1, although
all of our results easily apply to any constant γ.

The set of all transmission ranges yields a range assignment that is a function
r : S → IR+, where S denotes the set of stations and r(v) = rv. We consider
broadcast range assignments, that is, range assignments which, given a source
station s ∈ S, allow this station to transmit to all other stations (via a multi-
hop communication). Formally, consider a transmission graph Gr = (S, Er),
such that (v, t) ∈ Er if and only if d(v, t) ≤ r(v). Then r is a broadcast range
assignment if Gr contains a directed spanning tree rooted at s.

The social cost (or, simply, the cost) of a (broadcast) range assignment is
measured as the overall energy that all stations in the network spend to imple-
ment these ranges, that is,

cost(r) =
∑

v∈S

r(v)α.

If ranges are assigned to stations by a central authority, then it is possible to get
broadcast range assignments whose cost do not differ to much from the optimum
cost (see Subsection 1.2). Implicit in this approach is the assumption that each
station will actually transmit with the range specified by the authority. This
assumption cannot be take for granted in a (more realistic) scenario in which
stations are managed by different (potentially selfish) users. This is indeed the
case of ad-hoc networks for which it is fundamental to develop mechanisms that
enforce stations cooperation.

In this work, we consider a game-theoretic setting in which each station
corresponds to a different player (or agent) of a game named broadcast range
assignment game. The strategy of each player v is to decide its transmission
range r(v) and/or to provide some payment to some other players in order to
convince them to transmit with a given range.

The range assignment r derived by the strategies of all players can induce
a benefit bv(r) to every station v. The benefit can represent, for example, the
interest of station v in guaranteeing the given connectivity, the sum of the pay-
ments received/provided from/to the other stations, or a combination of these
two things. Since implementing the range r(v) induces a cost of r(v)α, we can
define a utility function

µv(r) = bv(r) − r(v)α (2)



that station v aims at maximizing. Observe that µv(r) depends on the strategies
of all the stations. In particular, if station v′ changes its transmission range from
r(v′) to r′(v′), then we obtain a range assignment r′ and the utility of all stations
v will change to µv(r

′).
We are interested in sets of “stable” strategies for which no player has an

incentive in unilaterally switching to a different strategy. These configurations
are known as Nash equilibria [14]. A range assignment r is a Nash equilibrium if
µv(r) ≥ µv(r

′), for every station v and for every r′ obtained from r by changing
r(v) into r′(v). We are interested in good Nash equilibria, that is, strategies that
minimize the overall power consumption (the social cost). Sometimes, it can be
convenient to consider ε-approximate Nash equilibria, that is, range assignments
r that guarantee ε · µv(r) ≥ µv(r′), for all v and r′.

As already noticed, some station v may be interested in guaranteeing the
given connectivity requirement (i.e. broadcast) and may be willing to pay some
other station in order to maintaining the needed connectivity property. We model
the connectivity requirement of a station v by saying that v is penalized if its
connectivity requirement is not satisfied by the range assignment r. In this case,
we define bv(r) = −∞ and thus uv(r) = −∞ as well (see Eq. 2). Otherwise, we
define bv(r) as the “balance” derived from all money exchanged with the other
stations that is,

bv(r) =
∑

u∈S

(pv
u(r) − pu

v (r)) ,

where pv
u(r) is the payment from station u to station v when range assignment

r is implemented.
The simplest games we consider are the Payments-free games. Here, no pay-

ments are allowed (as in [8]). Clearly, a broadcast range assignment will be a
Nash equilibrium if at least one station is penalized.

We next consider payment games in which a pricing policy is defined that
will depend on which transmission ranges are “used” by a station v, given a
range assignment r. In particular, payments provided by a station v are used to
allow this station to increase the transmission range of other stations in order
to create a path from s to v. In this case, the strategy of node v consists in
specifying a path from s to v. Our payment policies differ with respect to which
stations in the chosen path will receive a payment from v. For every station u,
we define Usedr(u) as the set of stations having to pay u.

– Edge-payment. Here we consider a simple local policy in which payments
associated to the range assignment r are only provided to neighbor stations.
In particular, assume u is the last station in the path from s to v. Then,
station u is the only station that receives a payment from v. For every such
pair of stations u and v, v ∈ Usedr(u).

– Path-payment. In this case, station v can be required to pay for (some part
of) all the ranges r(s), r(u1), . . . r(uk), where 〈s = u0, u1, . . . , uk, v〉 is the
strategy of v. In this case, v ∈ Usedr(ui) for all i = 0, . . . , k.

We then consider two possible payment policies:



– No-profit. The cost r(u)α is divided among all stations v ∈ Usedr(u) (simi-
larly to [2, 3]).

– Profit. Every station v using station u pays exactly pu
v (r) = r(u)α. Clearly,

station u may have a profit if |Usedr(u)| > 1.

The connectivity requirements we consider are of two types: (i) Reachability,
that is, station v has bv(r) = −∞ whenever r does not allow s to transmit to
v, and (ii) B-Broadcasting, that is, for all v ∈ B ⊆ S, bv(r) = −∞ whenever r
is not a broadcast range assignment. In particular, we consider s-Broadcasting
and S-Broadcasting, i.e., only the source s or all stations in S are interested in
the information dissemination, respectively.

1.1 Paper Contribution

We investigate the existence of Nash equilibria, the computational complexity
of finding (a good) one, and convergence properties to Nash equilibria under the
natural best response5 assumption. For the latter, we take into account both the
convergence time and the quality of the final Nash equilibrium. A significant
measure of the quality of a Nash equilibrium is the price of stability, that is, the
ratio between the cost of the equilibrium and the cost of the optimal solution
(that, in general, is not a Nash equilibrium).

We also consider a weaker notion of ε-approximate Nash equilibria since we
observe that, for some of the games we consider, ε-approximate Nash equilibria
are difficult to obtain, even when agents changing their strategies can only attain
a very small gain. We thus introduce the concept of Payment ε-approximate Nash
equilibrium, which takes into account these aspects.

Regarding the Payment-free games, we prove that the s-Broadcasting, the
s-Broadcasting with Reachability and the S-Broadcasting have Nash equilib-
ria. In particular, the unique equilibrium for the s-Broadcasting and for the
s-Broadcasting with Reachability can be arbitrary more expensive than the op-
timal solution, whereas all the Nash equilibria for the S-Broadcasting game are
optimal range assignments (NP-hard to be computed).

Table 1 summarizes our main results for the Reachability problem in the
profit models for the Edge- and Path-payment policies.

Finally, we experimentally evaluate the behavior of an algorithm that looks
for a Nash equilibrium for the Reachability game in the No-profit model for
both the payment policies we have introduced (Edge- and Path-payment). We
test this algorithm on thousands of random instances and instances derived by
the mobility model described in [10]. We obtain the following results: (i) the
algorithm converges to a Nash equilibrium for all the generated instances; (ii)
the convergence of the algorithm is guaranteed in a bounded number of steps
that weakly depends on the size of the instances; (iii) the Nash equilibrium
created by the algorithm is a constant approximation of the optimal solution

5 Best response strategies assume each player to select the strategy that currently
maximize its utility [14].



Payment Profit No-Profit

Edge- A polynomial time computable Nash
equilibrium that is a 6 approximation
of the optimal solution

Experimental evaluation + A poly-
nomial time computable Payments 6-
approximated Nash equilibrium that
is a 6 approximation of the optimal
solution

Path- A polynomial time computable Pay-
ments ε-approximated Nash equilib-
rium that is a 6(1+ 2

1−ε
) approxima-

tion of the optimal solution

Experimental evaluation

Table 1. Results for the Reachability problem in the profit models for the Edge- and
Path-payments policies.

and (iv) the intermediate configurations are feasible solutions whose cost is an
approximation of the optimal cost.

1.2 Related Works

(Broadcast) Range Assignment. The broadcast range assignment problem has
been deeply investigated from the point of view of centralized/distributed al-
gorithms. In both cases, the underlying assumption is that stations will always
implement the solution computed by such algorithms, even if this solution will
not be advantageous for themselves. Several heuristics for this problem version
have been proposed [9, 11, 16]. Among those, the MST-based6 algorithm has been
proved to achieve, for α ≥ 2, a constant approximation ratio [5, 7]. A tight bound
of 6 has been achieved in [1] (the lower bound of 6 is due to [5]). Interestingly,
the (analysis of the) MST-based algorithm turns out to be useful for studying
other heuristical approaches: indeed, several of these can be proved to produce a
cost which is bounded from above by the cost of MST-based solutions [5], or to
be only a constant factor away from the latter [16]. No approximation algorithm
is known for 1 < α < 2. The problem is known to be NP-hard for all α > 1 [6],
while the case α = 1 is trivially in P.

Nash Equilibria and Network Design Games. In [2] the authors introduce net-
work design games : each agent offers to pay for an arbitrary fraction of the cost
of building/maintaining a link of a network, and the corresponding link “exists”
if and only if enough money is collected from all agents. Also the agents have a
connectivity requirement and Nash equilibria correspond to those strategies for
which no agent can reduce its payments still having its connectivity fulfilled. In
this game, (pure) Nash equilibria may not exist for point-to-point connectivity
requirements [2]. (Notice that mixed – i.e., randomized – strategies are meaning-
less for these games due to the fact that uv = −∞ if the graph does not support
v’s connectivity requirement.)

6 This algorithm is denoted as BLiMST algorithm in [9].



Fixing a “fair” pricing policy in which the cost of an edge is evenly divided
among all agents using it ensures the existence of pure Nash equilibria [3]. The
result is an application of potential functions [12], which the authors use to bound
the price of stability – i.e., the loss of performance due to this “strict” pricing
policy ensuring Nash equilibria. Indeed, given k agents, the best Nash equilibria
attains a cost of at most O(log k) the optimum [3]. For directed graphs, this
bound is tight [3].

Network design games in ad-hoc wireless networks have been first considered
in [8] for point-to-point and strong connectivity requirements. In this game every
station has to choose its own transmission range. For point-to-point connectivity,
the problem admits pure Nash equilibria and there exists an algorithm to find
one of them of cost at most twice the optimum [8]. Conversely, strong connec-
tivity games do not always have Nash equilibria, and not even ε-approximate
Nash equilibria, for any ε > 1. In [4], the authors deal with the multicast games
in general ad-hoc networks introducing a pricing policy similar to the one intro-
duced in [3] and they prove that the games induced by these payments have a
Nash equilibrium but, finding such equilibrium is NP-hard.

2 Analytic Results6

2.1 Payments-free Games

In the payments-free games messages are forwarded for free. This means that
only stations that are penalized when broadcast cannot occur have positive
ranges. Hence, broadcast is not supported in the model in which only the stations
that do not receive the broadcasted message are penalized.

Proposition 1. For the s-Broadcasting and the s-Broadcasting with Reachabil-
ity games (i.e. s and the non-receiving stations are penalized) the only Nash
equilibrium is the range assignment in which r(s) = max{d(s, v) : v ∈ S − {s}}
and r(v) = 0 for any v ∈ S − {s}.

This result implies that the cost-quality ratio is unbounded.

Proposition 2. For the S-Broadcasting game the only Nash equilibria are the
minimum cost broadcast range assignments.

Proposition 3. Consider an s-Broadcasting game in which s could pay other
stations v an amount pv

s = r(v)α for implementing a certain range r(v). Then,
only minimum cost broadcast range assignments are Nash equilibria for this
game.

By comparing Proposition 1 and 3 we observe that the introduction of pay-
ments may reduce the cost-quality ratio while, on the other hand, it makes the
computation of Nash equilibria to become NP-hard [7].

6 The proof of the results given in this section will be given in the full version of this
paper http://www.mat.uniroma2.it/∼rossig/adhocnow2005extended.pdf.



2.2 Payments-Games for Reachability games.

Profit Models: Both Edge- and Path-payment models do admit Nash equilibria
which can be found in polynomial time.

Proposition 4. There exists an Edge-payment policy based on the profit models
such that any range assignment yielded by a minimum cost spanning tree of the
complete Euclidean graph G derived from the instance is a Nash equilibrium.

From [1] we can obtain the following result:

Theorem 1. The cost-quality ratio of the Reachability games under the Edge-
payment policy is 6.

Similarly to Proposition 4 we can prove the following:

Proposition 5. There exists a Path-payment policy based on the profit models
such that any range assignment yielded by a shortest path tree rooted at s of the
complete Euclidean graph G derived from the instance is a Nash equilibrium.

Unfortunately, the shortest path tree does not guarantee any approximation of
the optimal solution. Moreover, even ε-approximate Nash equilibria are difficult
to obtain since in the utility function

µv(r) =
∑

u∈S

(

pv
u(r) − pu

v (r)
)

− r(v)α

station v can only affect the payments it provides to the others, while the money
received depends only on the other stations’ strategies. This means that a con-
siderable change in the station strategy may result in a negligible change in the
station utility. However, if we limit our requirements to some weaker notion of
approximate equilibria, then, for the Path-payment games the social optimum
can be approximated by such equilibria. In the following we define the notion of
payments ε-approximate Nash equilibrium.

Definition 1 (Payments ε-approximate Nash equilibria). A range assign-
ment r is a Payments ε-approximate Nash equilibrium if, for any station v, and
any range assignment r′ derived from r by changing only v’s strategy, it holds
that

∑

u∈S pu
v (r) ≤ ε

∑

u∈S pu
v (r′).

Remark 1. Let r be a Payments ε-approximate Nash equilibrium. Then, r is
an ε-approximate Nash equilibrium for the game in which (i) station v cannot
refuse to implement a transmission range r(v) if receiving an amount of money
not smaller than r(v)α, (ii) a station strategy is to choose a path (thus providing
the corresponding money) for being reached, and (iii) the utility of station v is
the inverse of the sum of all payments provided to the other agents (or −∞ if
not reached).



Theorem 2. For the Reachability Path-payment game it is possible to com-
pute in polynomial time a Payments ε-approximate Nash equilibrium r such that
cost(r) ≤ 6 (1 + 2/(1 − ε))) · OPT , where OPT is the optimum social cost, for
any ε > 1.

As a final remark, notice that the profit models introduced in this section
require some form of encryption. Actually, a station transmitting with some
range r reaches all stations at distance r while only those stations having paid
their fee must be reached.

No-Profit Models: We consider both the Edge-payment model and the Path-
payment model.

We now define our specific Edge-payment policy. Suppose stations u1, . . . , uk

receive from station v and suppose that d(v, u1) ≤ . . . ≤ d(v, uk), that is, station
v transmits at range d(v, uk). Let r1 < . . . < rh be the set of distinct distances
between v and any station u1, . . . , uk (h ≤ k). Let Nv(rj) be the set of stations
in {u1, . . . , uk} at distance exactly rj from v.

The payments in the Edge-payment model are defined as follows:

pv
u(r) =

j:rj=d(v,u)
∑

i=1

rα
i − rα

i−1

|Nv(ri)|

Intuitively speaking, each increment (rα
i − rα

i−1) in the transmission power of
v is equally shared among all the stations using the new range (ri). Hence,
the total amounts of payments received by v equals the energy spent by v for
implementing the range r(v).

The Edge-payment model guarantees the existence of an easy to compute
Payment ε-approximate Nash equilibrium, as stated in the next theorem.

Theorem 3. Let T be a minimum spanning tree of the complete geometric graph
induced by S and let ∆ be the maximum out-degree of T . Then it is possible to
compute in polynomial time a Payments (∆ + 1)-approximate Nash equilibrium
in the Edge-payment model game.

Since every geometric spanning tree T can be transformed in polynomial time
into a spanning tree T ′ such that T ′ has the same cost of T and every node in
T ′ has at most 5 neighbors [13], we can conclude with the following result.

Corollary 1. For the Edge-payment model game it is possible to compute in
polynomial time a Payments 6-approximate Nash equilibrium.

We now define our specific Path-payment model. Suppose stations u1, . . . , uk

receive from v and suppose that d(v, u1) ≤ . . . ≤ d(v, uk), that is, station v
transmits at range d(v, uk). Let r1 < . . . < rh be the set of distances between
v and any station u1, . . . , uk (h ≤ k). Let T be the directed tree rooted at
s induced by the range assignment r and Tv be the subtree of T rooted at v.



Define Tv(rj) as the tree obtained by Tv by removing all the subtrees Tui
such

that d(v, ui) 6= rj .

Let Pv = {v0 ≡ s, v1, . . . , v` ≡ u} be the path in T from s to u, then for
i = 1, . . . , `

pvi

u (r) =

j:rj=d(vh,vh−1)
∑

h=1

rα
h − rα

h−1

|Tvi
(rh) − {vi}|

Intuitively speaking, each increment (rα
h − rα

h−1) in the transmission power of vi

is equally shared among all the stations using the new range (rj) in their paths.
Hence, the total amounts of payments received by vi equals the energy spent by
vi for implementing the range r(vi).

These payments are introduced in [4]. The authors of this paper prove that
this kind of payments always induce a Nash equilibrium, however computing
such equilibrium is NP-hard. Moreover, from the analysis in [3], it is possible to
derive a upper bound of the cost-quality ratio that is logarithmic on the number
of stations. This upper bound is not necessarily tight.

In the next section we experimentally test an algorithm that provides empirical
evidence on the existence of a an algorithm that converges in polynomial time
to a Nash equilibrium with constant cost-quality ratio.

3 Experimental Evaluation of the No-Profit Models

We conjecture that the Reachability game under the No-profit model (both Edge-
and Path- payment policies) admits a Nash equilibrium and that there exists an
equilibrium having a social cost within a constant factor of the cost of an optimal
solution.

Some evidence in favor of the conjecture has been obtained by our experi-
mental evaluations. We have tested the behavior of the algorithm described in
Fig. 1. Procedure findNE takes as inputs the set of stations S and the broadcast
source s ∈ S. As a first step, it computes a directed minimum spanning tree
of S rooted at s and having arcs oriented towards the leaves (the MST-based
algorithm mentioned in the introduction). Then, every station, in turn, tries to
decrease the amount of its payments. This last step continues till a Nash equilib-
rium is found. Notice that, the findNE algorithm can be seen as a “simulation”
of a distributed protocol for the construction of a broadcast range assignment by
selfish stations that adjust a solution computed by the well known MST-based
algorithm.

We have applied the algorithm findNE to two different kinds of instances:
random instances and mobility instances. For the first ones, experiments have
been carried out for several sizes n of the instances (between 10 and 2, 000) and
for each n, one thousand instances have been randomly generated according to
the uniform distribution. For the second ones, the instances have been gener-
ated by using a recently proposed mobility model whose main objective is to
take into account the existence of obstacles and of pathways [10]. This mobility



procedure findNE(S, s)
T0 ← mst(S);
compute T by rooting T0 at s and by orienting all its edges towards the leaves;
for v ∈ S − {s} do

pT (v)← the sum of all payments due by v according to T
and to the payment model;
while T does not represent a Nash equilibrium do

choose v ∈ S − {s}; m← pT (v); T2 ← T ;
for x ∈ S − {s} and x is not in the subtree of T rooted at v

let u be the father of v in T ;
T1 ← E(T )− {(u, v)} ∪ {(x, v)}
if pT1

(v) < m then m← pT1
(v); T2 ← T1;

if pT (v) < m then T ← T2;
return T;

Fig. 1. The findNE algorithm.

model tries to simulate this behavior as follows. Given a set of polygonal ob-
stacles, it first computes the Voronoi diagram determined by the vertices of the
polygons: the edges of the diagram are the pathways that a mobile user has to
follow. Subsequently, for each user, the source node and the destination node
are randomly chosen among all the vertices of the Voronoi diagram. Finally, the
user is moved along the minimal path (with respect to the diagram) between the
source and the destination node with a randomly chosen speed. Once the user
arrives at destination, a waiting time is randomly chosen: after this time, the
movement process is repeated. By using this mobility model, experiments have
been carried out for two obstacle scenarios and for different numbers n of users
(between 10 and 2, 000): for each n, 100 instances have been generated according
to the obstacle mobility model.

Remarkably, in all the experiments the algorithm findNE has been able to
end in a Nash equilibrium in a very small number of rounds (a round is an
iteration of the while loop).

Let 〈S, s〉 be an input of algorithm findNE. In what follows, the algorithm
performance will be discussed by using the following parameters: the cost SC(S)
of the kick-off configuration (that is, the cost of the minimum spanning tree); the
maximum cost WC(S) between all configurations reached by the algorithm; the
cost FC(S) of the final configuration (that is the cost of the solution representing
the Nash equilibrium); the executed number of rounds rnds(S) before reaching
the final state (rnds(S) = 1 if the kick-off configuration is a Nash equilibrium).

Convergence Speed: The necessary number of rounds for random instances is
summarized in Table 2. This table shows that for the majority of the instances
the convergence is within 6 rounds (1 round means that the starting solution
is a Nash equilibrium). Moreover, only for a negligible number of instances the
required rounds are in the interval 7 − 12. No instance require more than 13
rounds.



1 2 3 4 5 6 7 . . .
n e p e p e p e p e p e p e p . . .

10 40.9 12.0 50.9 69.5 7.5 16.8 0.6 1.5 0.0 0.1 0 0 0 0 . . .
100 0 0 46.4 5.2 48.9 65.9 4.6 25.4 0.1 3.3 0 0.2 0 0 . . .
200 0 0 24.1 0.1 67.9 50.5 7.8 40.8 0.2 7.2 0 1.3 0 0.1 . . .
300 0 0 10 0 77.2 33.9 12.3 54 0.4 9.6 0.1 1.7 0 0.4 . . .
400 0 0 4.4 0 79.6 23.8 15.5 55.4 0.5 16.5 0 3.7 0 0.5 . . .
500 0 0 3.1 0 76.9 15.5 19.1 61.6 0.9 17.8 0 3.5 0 1.3 . . .
1000 0 0 0.1 0 62.4 2.6 34.7 58.1 2.7 30.3 0.1 6.9 0 1.7 . . .
1500 0 0 0 0 50.9 1.3 46.3 41.8 2.7 45.3 0.1 10.4 0 0.9 . . .
2000 0 0 0 0 41.3 0.2 54 33.4 4.3 45.7 0.4 14.9 0 3.4 . . .

Table 2. Percentage of instances that converge to the Nash equilibrium in a given
step. The rows indicate the cardinality of the instances and the columns the number of
steps. Each column is divided in two sub-columns: the ones labelled with e refer to the
Edge-payment model and the ones labelled with p refer to the Path-payment model.

The necessary number of rounds for mobility instances is summarized in Ta-
ble 3. This table shows that for the majority of the instances the convergence is
within 5 rounds. Notice that there are some differences between the two consid-
ered scenarios.

Quality of the Solutions: From the experiments we observe that, in the Edge-
payment model SC(S) = WC(S) for all the tested instances S.

The next question is, how far could be the social cost of the Nash equilibrium
from the social cost of the optimum? Since the minimum spanning tree is a
constant approximation of the optimum, we can compute the ratio between the
cost of the minimum spanning tree (that is the starting solution) with the cost of
the equilibrium. Notice that, due to the approximation property of the minimum
spanning tree solution, this ratio is related with the cost-quality ratio.

In Fig. 2 it is shown the trend of the cost-quality ratio of the configurations
generated by the findNE algorithm for the Path-payment model. In particular,
Fig. 2.(a) shows the number of instance S with the same ratio SC(S)/FC(S) and
Fig. 2.(b) shows the number of instance S with the same ratio WC(S)/FC(S) for
the Path-payment model.

For the Edge-payment model, the ratio SC(S)/FC(S) has a similar trend to
that in Fig. 2.(a). Notice that SC(S) = WC(S) in the Edge-payment model.

We then conjecture that the Nash equilibrium created by the findNE algo-
rithm is a constant approximation of the optimal solution and the intermediate
configurations are feasible solutions whose cost is an approximation of the opti-
mal cost.

In Fig. 3 it is shown the number of instances S that have the same value
SC(S)/FC(S) and WC(S)/FC(S) for mobility instances in the Path-payment model.
Also these results seem to support our conjecture that the Nash equilibria found
by the findNE algorithm are constant approximations of optimal solutions. We
obtain similar results for the other scenario and for the Edge-payment model.



1 2 3 4 5 6 7 8
n e p e p e p e p e p e p e p e p

10 Scen. 1 45 15 50 66 5 19 0 0 0 0 0 0 0 0 0 0
Scen. 2 44 12 50 72 5 15 1 1 0 0 0 0 0 0 0 0

100 Scen. 1 1 0 75 42 20 50 4 8 0 0 0 0 0 0 0 0
Scen. 2 1 0 72 8 26 67 1 20 0 4 0 1 0 0 0 0

200 Scen. 1 0 0 65 39 28 55 6 5 1 1 0 0 0 0 0 0
Scen. 2 1 0 61 4 33 65 5 27 0 3 0 1 0 0 0 0

300 Scen. 1 0 0 70 37 25 58 3 5 2 0 0 0 0 0 0 0
Scen. 2 0 0 65 4 28 64 6 25 1 7 0 0 0 0 0 0

400 Scen. 1 0 0 67 29 27 56 6 14 0 1 0 0 0 0 0 0
Scen. 2 0 0 60 1 35 55 4 39 1 4 0 1 0 0 0 0

500 Scen. 1 0 0 93 22 7 64 0 13 0 1 0 0 0 0 0 0
Scen. 2 0 0 53 1 46 57 1 35 0 7 0 0 0 0 0 0

1000 Scen. 1 0 0 69 28 23 66 8 5 0 0 0 1 0 0 0 0
Scen. 2 0 0 88 0 12 51 0 39 0 9 0 0 0 0 0 1

1500 Scen. 1 0 0 91 20 7 76 1 4 1 0 0 0 0 0 0 0
Scen. 2 0 0 66 1 33 45 1 41 0 13 0 0 0 0 0 0

2000 Scen. 1 0 0 68 69 22 26 8 5 2 0 0 0 0 0 0 0
Scen. 2 0 0 3 0 56 1 41 70 0 25 0 3 0 1 0 0

Table 3. Number of mobility instances that converge to the Nash equilibrium in a
given round. The rows indicate the cardinality of the instances for the two scenarios
and the columns the number of steps. Each column is divided in two sub-columns: the
ones labelled with e refer to the Edge-payment model and the ones labelled with p
refer to the Path-payment model. The rows are divided in two subrows, the first one
refers to the first scenario, the second one to the second scenario.

4 Conclusions

In this paper we have studied the broadcast problem in the case of selfishly con-
structed ad-hoc networks. We used different non-cooperative game models de-
pending on whether stations do not use payments, payments determine uniquely
the existence of wireless links and agents can have profit. We have then consid-
ered two different payment policies, that is, Edge-payment and Path-payment,
and we have proved the existence of a good (approximated) Nash equilibrium
in the case of Path-payment and in the case of profit Edge-payment. Finally, we
have given strong experimental evidence for the following conjecture (which is
also the main problem left open by this paper): in the case of no-profit Edge-
payment, there exists a polynomial time computable approximated Nash equi-
librium that is an approximation of the optimal solution.
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