U n x n unitary, [UTe;]; # 0 Vi,
L(z) =Ud(UTz)d(UTe;) U, zeC" (efL(z) =2T),
L(x) = L(2)?,
Ulx =d(U%e) td(UTz)U g,
xT = 2T L(z) (Gianluca),
L ={L(z): z € C"} is a commutative matrix algebra,
L)L(y) = LILx)Ty) = L{y)L(x) = L(L(y)Tx).
Given z”, the first row of £(z), compute the first row of £(z)?, L(z)*, L(z)8,
. C(z)2k. Cost = one UT transform +kn a.o.+ one U transform.

Given z, the first row of £(z), the eigenvalues A of £(z) can be computed by
performing a U7 transform, and the eigenvalues of £(z)* are simply \°.

Circulant, 7, n and p matrix algebras are of type L.
Given A n x n and its first row, say [z1 22 -+ Zn—1 2], One can show that
Ae L, L=T1n,pu,iff

Qi -1+ Qi j+1 = Q-1 + Qip1,5, 1 <4,5 < n,

where, for s =1,...,n,

s, 0 = A0,s = Asn+1 = An+1,s = 07 if £ = T,
Gs,0 = a0,s = G1,n—s+1, As,;n+1 = An+1,s = Q1,s, if £ = n,

as,0 = a0,s = —Al,n—s+1, As,n+1 = An+1,s = —0al,s, if £L = M-
Examples. Let us write the 4 x 4 7, n, p matrices with first row [0 1 0 1]:
0 1 0 1 0 1 0 1 0 1 0 1
1 0 2 O 1 0 1 0 1 0 3 0
0 2 0 1]”° 01 0 1|’ 0 3 0 1]’
1 0 1 0 1 0 1 0 1 0 1 0
Let us write the 5 x 5 7, n, u matrices with first row [0 1 0 0 1]:
0O 1 0 0 1 o 1 0 0 1 0o 1 0 0 1
0 1 1 0 1 0 1 0 O 1 0 1 2 0
0o 1 1 1 0 X 0O 1 0 1 O R o 1 2 1 0
0O 1 1 0 1 0O 0 1 0 1 0o 2 1 0 1
1 0 0 1 O 1 0 0 1 O 1 0 0 1 O

Stochastic by columns N matriz algebras

3 x 3 stochastic by columns (symmetric, symmetric and persymmetric) matrices:

a c e
M= b d b
l—-a—b 1—c—d 1—e—f
a b l1—a—-0» a b l—a-09
(M® = b c 1-b—c ,MSFP = b 1-2b b )
l—-a—b 1—-b—c —-14a+2b+c l—a-0» b a

Pams(A) = (1 =N =2\ a+b+c—1)+3ac—a—3b%+2b— ],
eig = a+b+c—1+Va2+4b2+c2+2ab+2bc—ac—a—4b—c+1

b

3 x 3 stochastic by columns circulant (symmetric) matrices:

a l1—a-—0» b a
CNM = b a l—a—->5 <CﬁMS: 1;“
l—a-29> b a 1-a

-
|
2

,_.
| v
)

- =
ol vl
S} Q
Qv

[



perm(A) = (1=NAN=ABa—1)+b>+a®—3ab(l —a—0b)+ (1 —a—0b)3
(1=NA = XBa—1)+3(a®>+b*—a—b+ab) +1]

3a—1

3a—1
b=1-a—=b = peams(A) = (1=N)A*=A(Ba—1)+( 5 )?] = (1=N) (A= 5 )?
3 x 3 stochastic by columns tau matrices:
a 0 1—a
TAM= 0 1 0 , Prom(A) = (1 =XN)[(2a— 1= X)(1 = N)]
1—a O a
3 x 3 stochastic by columns eta matrices:
a b l—a-—0»
nNM= b 1—2b b =M1 pam(N) = (1= N[N L]
l1—a-0 b a
3 x 3 stochastic by columns mu matrices:
a 0 1—a
pOM=1{ 0 1 0 |, puad) = (1= N[2a—1-N)(1-N)
l1—a O a
4 x 4 stochastic by columns symmetric and persymmetric matrices:
a b c l—a—-b—c
SP _ b d 1-b—c—d c
MET = c 1—-b—c—d d b
l—a—-b—c c b a
4 x 4 stochastic by columns 7 matrices:
a b —b 1—a a 0 0 1—a
- b a—b l—a+b =) . 0 a l1—a 0 _
MnT = b 1—adtb a—b b , (MnNT >0) = 0 1—a a 0 A=1,1,2a—1,2a—1
1—a —b b a 1—a 0 0 a
a b c l—a—-b—c
b a l1-b—c—a c
— >0) = —
M c l1-b—c—a a b » (M 20) A
l—a—-b—c c b a
o mt e o1og
Mop=| 2 4 1 m | Mapz0)= A=
d—a 1— d d a—d ) =

1—a

2 x 2 stochastic by columns matrices:

a b
M—{l_a 1—b]’>\ = 1,a—b

2 x 2 stochastic by columns circulant matrices:

c 1—c¢

e },)\: 1,2c—1

COM:{



Assuming a,b,¢ € R, the Frobenius norm of A — X, A € M, X varying in
M NC, is minimum for ¢ = %H’, i.e. when A and X have the eigenvalues

different from 1 equal (a — b = 2¢ — 1).

Fixed A € M, where M is the set of all non negative stochastic by columns
n X n matrices, such that |[A2(A4)] < 1, there exist X € C N M such that
[A2(A)] < [A2(X)| <17

Note that the eigenvalues of X are easily computable.

6 x 6 stochastic by columns symmetric and persymmetric matrices:

[ a b c d e l—a—b
1—b—f
b f g h —g—h—e
. l—c—g
5P c g 7 i h—d h d
1—c—
d h —i—chgd i g c
1—b—f
N —g—h—e h g f b
l1—a-0»
| —c—d—e e d c b a
6 x 6 stochastic by columns 77 matrices:
[ a b c d e l—a—b
—2b—a
b a+c—e b e el e
—a—b—c
c b a e d
M = —d—e+1
d e —a—b-c a b c
—d—e+1
—2b—a
e e—et1 e b at+c—e b
l1—a—-0»
| c—d—e e d c b a
e 3 x 3 singular stochastic by columns matrices:
n
a a a a a a
b b b = b b b
l-a-b 1—a—-b 1—a-10 l—-a—-b 1—a—-b 1—a-0
n
a a c
b b d =7
l—-a-b 1—a—-b 1—c—d
e 3 x 3 singular stochastic by columns symmetric and persymmetric matrices:
a 1—2a a
A=|1-2a —-1+4+4a 1—2a | €en! X =0,1,eR
a 1—2a a
Ahasrankliﬁa:%(insuchcase/\:O,l,O).Ainff%gagé.Alsseml
positive definite iff a > 1. A € 7iff a = 3 (in such case A = 1,0,1).

A — % bn an an | _ 2a 1-2a an—1
o ’ bn | | 21 —2a) 4a-—1 b1

—c—d—e

—c—d—e




EXAMPLE. Let A be the following n X n stochastic by columns matrix

0
1

b1
0
1-—0b1

ba
0
1—0bo

bn72
0
1-— bn72

1

0 -

, bi € [0, 1].

Note that the eigenvalues of A are real (even if A is not hermitian), and in
the interval [—1,1]. They are distinct if b; € (0,1). Obviously, 1 is eigenvalue.
Moreover, also —1 is eigenvalue (prove it!). The remaining eigenvalues are not
known (for generic values of the b;).

Let C be the space of n x n circulant matrices. Let us compute C4, the
minimizer of |4 — X||p, X € C, with the aim to compare its eigenvalues with
those of A. Let {J1, Ja, ..., J,,} be a basis of C. Then C4 = >_;_, axJi, where
Ba=c, Bys = (Jp, Js), ¢r = (Jp, A), 1 <rs <n. If J, = Jgfl where

0 1
1
1 0

then (Jr,Js) = nors, (J1,A4) = (Jr,A) =0, r =3,...,n—1, and (J2,A) =
14+ >0, (Jn,A) =n—1—>"b;. Thus

p q

: 1 : —1-Y b,
CA: q B y P= +Zb]aq:n Zb]zl_

n n

p q
The eigenvalues of C4 can be easily computed. In fact, recalling that

27

L6 Y <<, we = e F

Ca = Fd(FChe)d(Fe)) 'F", [F];; =

vn '

first write the vector \/nFC%e;:

0

P 1

0
ViF | | =Vn(pFestqFe,) = Vn(pF+qF)es, F=F7Q, Q =

0 1

q

and then observe that the eigenvalues of C4 are its entries:
pop (L =p)w =yt (L= poy T i=1,

Note that

<p< "T’l, and that it is sufficient to study the eigenvalues of C4
for 2 <p< -l
2 —

1
n
<’n

n



The case p = =L (b; =1 V).
In this case the eigenvalues of A are obviously known, they are —1, 0 with
algebraic multiplicity n — 2, and 1. The eigenvalues of C4 are

n—1 1_, 4

i—1 P —
wy, +—w, , i=1,...,n.

n n
(draw them!). They are all inside the set {z : |z] < 1}, except 1 (i = 1) and,
for even n, —1 (i —1 = 3).

The casep =1 (3 b; +1=2).
In this case the eigenvalues of A are not known (7, perhaps are known if b; =
1 Vj, and in other particular cases). The eigenvalues of C4 are R(w) 1) =
coS w, i =1,...,n. They are all inside the set [—1, 1], except 1 (i = 1)
and, for even n, —1 (i — 1= 3).

RESULT. Let A € C™*™ be a stochastic by columns (or by rows) n x n matrix.

So, 1 is eigenvalue of A. Let U be a unitary matrix such that Ue; = ﬁeew,

for some i and 0 (i = 1,0 = 0if U = F), and set £ = {Ud(z)U : z € C"}.
Note that £ is a n-dimensional subspace of C™**™, i.e. there exist J, € L,
k = 1,...,n, linearly independent such that £ = Span{J;}. Let L4 be the
minimizer of |A — X||r in L,

L4 =Udiag (UTAU);; ) U? =Ud(UTz",)d(UTv)"1UH,

LA - E’Z;l Oéka, @ = B_1C7 BT‘S = (J'r‘7 JS)7 CT’ - (JT‘)A)

where v is chosen such that (UTv); #0Vj (v=e; if U =F).
Then L4 is stochastic by columns and by rows (SEE the second Theorem
in the next pages). In particular, 1 is eigenvalues of £4. All eigenvalues of

L 4 are particular points of the convex set {Z:H‘iz : z € C"}. So, when A is
normal (hermitian) they are in the minimum polygon (real interval) containing
the eigenvalues of A. When alternatively A > 0 (?A4* > 0 for some k?) they are
in the set {z: |z| < 1} whenever L4 > 0, but even in the latter case they can
be either inside or outside the minimum polygon containing the eigenvalues of
A, SEE the above example (however, if A is also normal, they are inside).

[Question: there are matrices A simultaneously normal, non negative and stochas-
tic by columns (or by rows) which are not real symmetric and not in C 7 |

Proposition.

If A is a non negative n X n matrix, then its best approximation in C is also
non negative. (Proof: We know that C4 = )", axJ) with Jp, = JQ]“*1 > 0 and
ap = %(Jk,A). If A is non negative then also a > 0, so C4 > 0).

Question: Given A non negative, is £4 non negative for other spaces £ 7 Is 74
non negative 7 Recall that

— H . n _ 2 . ijﬂ <ii<
T={Ud(z)U" : z€ C"}, U= \/nJrlsanrl’ 1<4,j<n.

Elements of a basis of 7 are obtained by choosing Jj, € 7 such that el J, = eg,
k=1,...,n. They are matrices made up of zeros and ones only. Moreover, for
such Ji, we have

1
_ _ p-1 -1 _ _
TA = ;akjk, a=B"'¢c, B! = 2n+2(3.11 —J3), ¢r = (Jr, A).

[]. If A is non negative, then ¢ > 0, but B~'c may have negative entries, but
perhaps 74 is yet non negative (investigate!).



THREE THEOREMS on s-stochastic matrix algebras £ and on the best ap-
proximation in £ of A (each more general than the previous one):

First theorem

Set £ = {Ud(x)U : x € C"} where U is a unitary matrix. Choose v such that
[UTv]; # 0 Vj. Note that the choice v = e; works for £ =C, 7,7, 1, ... but not
for all low complexity matrix spaces L [...].

Then £ = {£(z) : z € C"} where we have set L(z) = Ud(UTz)d(UTv) " 1U".
Note that vI' £(z) = z”, and that xT L(z) = z' L(x), Vx,z € C". Moreover,
L(v)=1.

Observe that if £(e) = we” for some w € C", then L£(z) is z7 w-stochastic

by columns, i.e.
el'L(z) =2"L(e) = (zTw)el

[we have observed this first for £ = n where w = e, v = e; (see previous pages)].
When, in general, L(e) = wel ? Iff viw = 1 and wel € £. Assume w such
that vI'w = 1, so w is in particular non null. Then we” € L iff

wel =U el'w UH = (eTw)(Ue;)(Ue;), eTw # 0. (%)

Since Ue; # 0, the equation (*) times e;, with e; | (Ue;)”e; # 0, implies
w = ale; a # 0, and, since (UTv); # 0, v times the equation (*) implies
Ue; = Be 3 # 0. Thus w = ye v # 0, and, since vI'w = 1, we have v = ﬁ
So, if L(e) = we”, then v’'e must be non zero and w must be equal to —%.
Now, provided that v’e # 0, the matrix f;LTTe is in L iff

T
ee U Te UH

n
vle vTe vle

(Ue))(Ue)) ™. (%)

IfUe; = %eeie, then v'e # 0 and (**) holds. So, we have proved the following

theorem:

Theorem.

If Ue; = \/Lﬁeeie, then L(e) = 3%2 It follows that, for any z € C™, the matrix
L(z) is ‘ZEZ—stochastic by columns, in particular the best approximation of A

in £, L4 = L(za) = Udiag (U AU);;)UH, is :gz—stochastic by columns, i.e.
eTLy = ‘Z,g‘:ZeT. Finally note that one of the eigenvalues of L4, (U7 AU);;, is
equal to %eTAe, and that % = %eTAe.

[For example, if £L = C, 7, ... (where v can be chosen equal to ey ), then e L(z) =
z'L(e) = (z"e)e’ = (3 z)el, and €T L4 = (LeT Ae)e”].

In particular, if A is stochastic by columns (e?A = eT') or by rows (4de = e),
then L4 is stochastic by columns.




Second theorem

Let U be a n x n unitary matrix, and set £ = {Ud(z)U : z € C"}. Choose
v € C" such that (UTv); #0Vj (v=e if L=C,7,n,u,...; v € R" whenever
possible, f.i. if U € R®*"™). Then, if we set

L.(z) =Ud(UT2)d(UTv)~ 1UH (vTL,.(z) =2zT),

Le(z) = UdUHT)1d(UT2)UT (Lo(2)V = 2),
L can be also represented as £ = {L,(z) : z € C"} = {L.(2) : 2 E (C”} Note
that x"L,(y) = y" Ly (x), Le(y)x = Lo(x ) Ly(v) =1, L(v) =

Theorem.

If one of the columns of U has all entries equal each other, i.e. 34 and 6 such
that Ue; = —=eel?, then

Vo
(1) L.(e) = %, L.(e) = % (= ee” ¢ L) and therefore L£,.(z) is :z—s—

stochastic by columns, and L.(z) is z;g—stochastic by rows; in other words,

X € L = X is sx-stochastic by rows and by columns for some sx. [Note that
vTe # 0 because (vI'U); # 0 ((vIU); #0Vj))].

(2) Given A € C™*" the matrix L4 = L,(2z7) = L.(2,) = U diag (U AU);;JUH

defined as the minimizer on £ of [|[A — X||p, has (UFAU); = LeT Ae as

eigenvalue and is (1 TAe) stochastic by rows and by columns, i.e. Lye =
LeTAe)e, eTLy = ’i( T Ae)e”

(3) If A is stochastic by columns or by rows, then £4 is stochastic by rows and

by columns.

T

proof. (1): Note that M; :=U e'e

Moreover, by the assumption Ue; = % eel? . we have M; = ee”. So, ee’ € L

and, obviously, £L,.(e) = e’ - (vIL,(e) = eT), Lec(e) = gLTTe (Lc(e)v = el).

Thus, Vz € C" we have eTL',T( y=2zTL,.(e) = z ool L.(z)e = L. (e)z = SZe.

vTe eTv

(2): It is enough to observe that (U7 AU);; = LeT Ae and use the formula
L4 = Udiag (UFAU);;)UH. However, let us obtain the thesis from (1). As a
consequence of (1), the matrix

La=UdUTzy)dUv) U = Ud(UHv)—ld(UHzi,)UH

is both 2 ZA -stochastic by columns and 2 ,T 4 _stochastic by rows. Let us prove

e e
that vfé“ = VTZ: = L1eT Ae. Since Ue = \/ne~%e;, we have

(z)Te = vIUdiag(U7AU);;)U"e = \/ne v Ue;(U¥ AU);;
= vle(UMTAU);; = vTe(Ue;)"A(Ue;) = vTeleT Ae

and, since eTU = \/ne'’el’, we have
eTzf4 = eTU diag ((UHAU)JJ)UHV = \/ﬁele(UHAU)”e;TUHV
= V(UM AU); = e’viel Ae.

Question: when L.(z) = L,.(x) ? Iff UTx = d(u)UHz, u— d(UHV)—lUTV
[u=eifUeR"™ (veR")orU=F (v=ey); |uj| =1Vi.

UM er, Vi, M;=(e"e)(Ue;)(Ue;)".

3



Third Theorem

Let U,V be two n x n unitary matrices. Choose v, u € C" such that (UTv); # 0,
(VTu); #0, Vi. Given z € C", set

L(z) =UdVTz)dUTv)"'VH, L.(z)=UdVHa)dUz)VH

Note that vI'L,.(z) = z7, L.(z)u = z.

Theorem.

If there exists ¢ such that Ve; = \}—eeie Ue;, = \}—eei@, then Vd(UTe)d(UTv)~tVH =
Uvd(Via)~td(VHe)UH = ce’ and therefore

eTv’

el L,(z) =2"Vd{UTe)d(UTv)"1VH = ( )e”

L.(z)e =Ud(VHu)"1d(VHe) Uz = ¢( Tﬁ)

NH

In other words, X € L = X is s X—stochastic by rows and by columns for some
sx € C. Since, moreover (UHAV); = Lel0—9el de, if L4 = Ud(VTz)d(UTv) ' VH =
Ud(VHﬁ)*ld(UHz ) = U diag (UM AV);;)VH is the best approximation of
Ain £ ={Ud(z)VH : z € C"}, then we have that

z7) e =vIUdiag (UM AV);;)VHe =
A

(eTAe)vTe
el (z4) = eTUdlag((UHAV) )VH_ =-(e'A

T
)
T Ae)eT,

33 =

and therefore ] 1
—(eTAe)e”, Lae= —(e” Ae)e.
n n

eTL',A =
It follows that whenever A € C™"*™ is stochastic by rows (Ae = e) or stochas-
tic by columns (ef'A = eT), its better approximation £4 in £ is stochastic
simultaneously by rows and by columns.

proof. Ve; = ﬁewe [Ue; = Te“"e ] =

T T
oTo H N [ oTo g _ee y  ee
\% re Vi = —Ve;(Ve;)™ = o e U = —eTuUel(Uel) = 7o
Ue; = —e¢l¥e [ Ve, = Lne“)e] =
TrrH _ 1 —ip T [WT1/H _ 1 _—i0.T
e] UM = e vel [elV =7t e’ =
. Hygy, .

el'(Ufe) = ine_weTe = 7(UET;)" ele, [ el'(VEHe) = ine_‘e Te = 7(‘/ u)‘e e, }
e]T(UHe) = e]TUHe_i‘P\/ﬁUei =0, j#1 e]T(VHe) = e]TVHe_‘Q\fVeZ =0, j#4

Thus we have

o}
o}
o}
o

dU"e)d(Uw)~! = : [d(VHe)d(VHa)~ = - 1,

o
<l
o
el

T

and therefore Vd(UTe)d(UTv)"'VH = eo_ [Ud(VHﬁ)_ld(VH YWH = i}

u

The equalities Ve = e~i% /ne;, eTU = e'¥\/nel, let us easily obtain the
assertions on L 4.



REMARK. £ = {Ud(z)V¥ : z € C"}, U,V unitary, L4 = U diag (U2 AV) ;) VI

Ve, = Leéle = Lae= ((Ue)"Ae)Ue;, (Ue))La = %eT;

un
1io i H le<I® .
Ve, = ﬁe‘ e, Ue;, = ”;”eg, Ae=e< = Lae=ec, elLy="———¢e;

Ue;, = Lelve = eTLy = (eTAVe)(Ve)H, La(Ve;) = —eT“:Lve’?e;

7

Ue;, = —=¢'%e, Ve, = esTes eTA = eg = eTLy = eg, Lae< =

2
e
le<l? o

n

B

Exercise.

Given w € C*, w # 0, set M = {X € C"*" : Xwel = wel X}. Prove that
(i) M is a matrix algebra ;

(i) M ={X e C": Xw =cw & eI X = ce” for some c € C}, i.e. X € M
implies X is sx-stochastic by columns ;

(iii) if w = e, then M = {X € C"": Xe = ce & e/ X = ce” for some ¢ € C},
i.e. X € M implies X is sx-stochastic by rows and by columns.

— Investigate low complexity spaces £ of matrices commuting with we”, in
particular commutative spaces £ including we”. We have seen examples in the
case w = e.



Let U be a n x n unitary matrix. Set £ = {U(uo Z)UH : Z € C"*"} where p
is a fixed matrix whose entries are 0 or 1 and o is the entry by entry product.
For example

1 211 212 213 213
m= 111 , 4= 221 %22 223 , o Z = 221 222 223
1 231 232 233 233

Note that if 4= I, then £ = {Ud(z)U" : z € C"}.

The space of matrices L is a vector subspace of C"*", and is a matrix algebra
(i.e. product of matrices from £ are in £) if the matrix u satisfies the condition

Wij =0 = [y =0

[or [u?]ij # 0 = [ulij # 0; or pu? < au for some a > 0 (the pattern of u? is
enclosed in the pattern of u)]. Examples of u satisfying u? < apu:

1 1 1 1 1 1
u=1I,e” | 1 , 1 1,1 1 11 I I T T A I |
1 1 1 1

—

SR A A A R A LR A R |

Given A € C™*", and defined £, as the minimizer of ||A — U(uo Z)UH ||,
Z € C™*™ we have
La=U(uo(UTAU)UH.
Observe that if p has a triangular structure, then the eigenvalues of L4 are
wii (UHAU);;, j =1,...,n, i.e. null or the same of U diag (UH AU);;)UH.
In the particular case where Ue; = ﬁewe and p3; = 1, the matrix po

(UH AU) can be written as follows

[+e” Ae] - pjlgme el A(Uey))]
po (U7 AD) = pa[d=e(Ue) Ae] - pisl(Uei)" A(Uey)]

Theorem (stoch by rows).
Assume Ue; = \/Lﬁelee and py1; = 1. If Ae = e, then £ e = e and

1 - y[d=e e A(Ue;)]

. v
wo (UTAD) = iy (U™ A(Ue,)]
0 .
If moreover 11; =0, j =2,...,n, then
10 : 0
powhany = | T eytawey - |0 o Ea=e"
0 .

10



(thus choose p > ele{ + elef for some j in order to have elr, #* eT).
If alternatively A is quasi-stochastic by rows, Ae = e<, with 0 < e< < e, then

Lae = Scs 1 =0Vi>2.
proof: investigate the first column in the equality LAU = U(u o (U2 AU)):

1 n
Laie=—(e Ae Je + E wir (Ue;) Ae)Uei. O
n
i=1,i#£1

Theorem (stoch by columns).

Assume Ue; = \/Lﬁelee and 111 = 1. If e’ A = e, then e L, = e and

1 0 . 0
U"AU) = w0, '
PWUTAD = | e (Ue) el - pyl(Ue) " A(Ue)]
If moreover p;; = 0,4 =2,...,n, then
1 0 . 0
0 .
o (UR AU) = , Lae=ce.
po(0mAD) pifl(Ue) Awey)] - | £
0 .

(thus choose u > ejel + e;el for some i in order to have £4e # e).
If alternatively A is quasi-stochastic by columns, e’ A = e, with 0 < e< <ee,

then eT L4 = e’ e<e whenever p1; =0Vj > 2.

proof: investigate the first row in the equality U7 L4 = (uo (UH AU))UH

1 n
Tl = E(eTAe el + > (e"A(Ue;))(Ue)). O
Jj=1,j#1

Note. If £4 and its eigenvalues do not fit our requirements, then we could
introduce a perturbation of L4, yet in L, in place of it, for example the matrix

M=LaA+U(uo(UTAU)0e)) U, e € R™™ |g;;| small.

Note that

J[A=M|p<|A=Lalr+ [ D leiPIUFAU);%

., pij=1

But the Frobenius norm is the right norm?
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Results on L4 more general than the ones in REMARK, where £ = {Ud(z)VH
z € C"}, and the ones in Theorem stoch by columns, and Theorem stoch by rows,
where L = {U(uo Z)YUH : Z € C*"}:

Let U,V be n x n unitary matrices. Set £ = {U(uo Z)VH : Z € C"*"} where
1 is a fixed matrix whose entries are 0 or 1 and o is the entry by entry product.
Note that if 4 = I, then £ = {Ud(z)VH : z € C"}.

The space of matrices £ is a vector subspace of C"*™. In general it is not a
matrix algebra.

Given A € C" ", and defined £4 as the minimizer of |A — U(uo Z)VH| p,
Z € C™*™ we have

La=U(uoUTAV)VH,

Observe that if u has a diagonal structure, then the eigenvalues of £L4L% are
pi|(UTAV) 52 5 =1,...0n
Note that the equalities L4V = U(uo (U2 AV)) and U L4 = (uo (UL AV))VH
imply, respectively,

ﬁA(Vel) = Mll(UHAV)HUel + Z?:l,i;él ,Uil(UHAV)ieri;
Ue)"La = pu(UTAV) 1 (Ve)" + 377, 1 mj(UTAV)1;(Vey)H

In the following two theorems e< can be an arbitrary vector with complex
entries. However, we think to use the stated results for e< = e (stochastic case)
or for e<, 0 < [e<]; <1 (quasi-stochastic case).

Theorem (thChabth by rows)
Ve, = \/—ee&ml—1=>

Lae=({Ue)"Ae)Uer + Y pa((Uei)” Ae)Ue;.

i=1,i#£1

Thus
(1) if Ae = e< & Uel =

Vj # 1, then egﬁA = @
(i) if Ae =e< & Ue; = ei\/—f—Le, then Le = eT%e whenever p;; =0 Vi # 1.

He He<, then L4e = e<. If, moreover, p1; = 0

Theorem (stochastic by columns)
Ue, = \/_we & p1=1 =

e'La=(e"A(Ver))(Ve)" + Z pij(eT AVe;)(Ves)™.

Jj=1,j#1
Thus y
(i) if eTA = eg & Ve, = HZ—<||ES’ then eT' L, = eg. If, moreover, ;1 = 0
Vi# 1, then Lae< = Me
. H
(ii) if eTA = eg & Ver = %e, then 7L, = %eT whenever p; = 0
Vi #1.
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