$$U \ n \times n \ \text{unitary}, \ [U^T \mathbf{e}_1]_i \neq 0 \ \forall i,$$

$$\mathcal{L}(\mathbf{z}) = U d(U^T \mathbf{z}) d(U^T \mathbf{e}_1)^{-1} U^H, \ \mathbf{z} \in \mathbb{C}^n \ (\mathbf{e}_1^T \mathcal{L}(\mathbf{z}) = \mathbf{z}^T),$$

$$\mathcal{L}(\mathbf{x}) = \mathcal{L}(\mathbf{z})^2,$$

$$U^T \mathbf{x} = d(U^T \mathbf{e}_1)^{-1} d(U^T \mathbf{z}) U^T \mathbf{z},$$

$$\mathbf{x}^T = \mathbf{z}^T \mathcal{L}(\mathbf{z}) \ (\text{Gianluca}),$$

$$\mathcal{L} = \{\mathcal{L}(\mathbf{z}) : \mathbf{z} \in \mathbb{C}^n\} \ \text{is a commutative matrix algebra},$$

$$\mathcal{L}(\mathbf{x}) \mathcal{L}(\mathbf{y}) = \mathcal{L}(\mathcal{L}(\mathbf{x})^T \mathbf{y}) = \mathcal{L}(\mathbf{y}) \mathcal{L}(\mathbf{x}) = \mathcal{L}(\mathcal{L}(\mathbf{y})^T \mathbf{x}).$$

Given \mathbf{z}^T , the first row of $\mathcal{L}(\mathbf{z})$, compute the first row of $\mathcal{L}(\mathbf{z})^2$, $\mathcal{L}(\mathbf{z})^4$, $\mathcal{L}(\mathbf{z})^8$, ..., $\mathcal{L}(\mathbf{z})^{2^k}$. Cost = one U^T transform +kn a.o.+ one U transform.

Given \mathbf{z} , the first row of $\mathcal{L}(\mathbf{z})$, the eigenvalues λ of $\mathcal{L}(\mathbf{z})$ can be computed by performing a U^T transform, and the eigenvalues of $\mathcal{L}(\mathbf{z})^s$ are simply λ^s .

Circulant, τ , η and μ matrix algebras are of type \mathcal{L} .

Given A $n \times n$ and its first row, say $[z_1 \ z_2 \ \cdots \ z_{n-1} \ z_n]$, one can show that $A \in \mathcal{L}, \ \mathcal{L} = \tau, \eta, \mu$, iff

$$a_{i,j-1} + a_{i,j+1} = a_{i-1,j} + a_{i+1,j}, \ 1 \le i, j \le n,$$

where, for $s = 1, \ldots, n$,

$$\begin{array}{l} a_{s,0}=a_{0,s}=a_{s,n+1}=a_{n+1,s}=0, \text{ if } \mathcal{L}=\tau, \\ a_{s,0}=a_{0,s}=a_{1,n-s+1}, \, a_{s,n+1}=a_{n+1,s}=a_{1,s}, \text{ if } \mathcal{L}=\eta, \\ a_{s,0}=a_{0,s}=-a_{1,n-s+1}, \, a_{s,n+1}=a_{n+1,s}=-a_{1,s}, \text{ if } \mathcal{L}=\mu. \end{array}$$

Examples. Let us write the $4 \times 4 \tau$, η , μ matrices with first row [0 1 0 1]:

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix},$$

Let us write the $5 \times 5 \tau$, η , μ matrices with first row [0 1 0 0 1]:

$$\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right], \ \left[\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right], \ \left[\begin{array}{ccccccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right].$$

Stochastic by columns \cap matrix algebras

 3×3 stochastic by columns (symmetric, symmetric and persymmetric) matrices:

$$\mathcal{M} = \begin{bmatrix} a & c & e \\ b & d & f \\ 1-a-b & 1-c-d & 1-e-f \end{bmatrix}$$

$$(\mathcal{M}^S = \begin{bmatrix} a & b & 1-a-b \\ b & c & 1-b-c \\ 1-a-b & 1-b-c & -1+a+2b+c \end{bmatrix}, \mathcal{M}^{SP} = \begin{bmatrix} a & b & 1-a-b \\ b & 1-2b & b \\ 1-a-b & b & a \end{bmatrix})$$

$$p_{\mathcal{M}^S}(\lambda) = (1-\lambda)[\lambda^2 - 2\lambda(a+b+c-1) + 3ac - a - 3b^2 + 2b - c],$$

$$eig = a+b+c-1 \pm \sqrt{a^2+4b^2+c^2+2ab+2bc-ac-a-4b-c+1}$$

 3×3 stochastic by columns circulant (symmetric) matrices:

$$\mathcal{C} \cap \mathcal{M} = \left[\begin{array}{cccc} a & 1 - a - b & b \\ b & a & 1 - a - b \\ 1 - a - b & b & a \end{array} \right] \ \left(\mathcal{C} \cap \mathcal{M}^S = \left[\begin{array}{cccc} a & \frac{1 - a}{2} & \frac{1 - a}{2} \\ \frac{1 - a}{2} & a & \frac{1 - a}{2} \\ \frac{1 - a}{2} & \frac{1 - a}{2} & a \end{array} \right] \ \right)$$

$$p_{\mathcal{C}\cap\mathcal{M}}(\lambda) = (1-\lambda)[\lambda^2 - \lambda(3a-1) + b^3 + a^3 - 3ab(1-a-b) + (1-a-b)^3]$$

= $(1-\lambda)[\lambda^2 - \lambda(3a-1) + 3(a^2+b^2-a-b+ab) + 1]$

$$b = 1 - a - b \ \Rightarrow \ p_{\mathcal{C} \cap \mathcal{M}^S}(\lambda) = (1 - \lambda)[\lambda^2 - \lambda(3a - 1) + (\frac{3a - 1}{2})^2] = (1 - \lambda)(\lambda - \frac{3a - 1}{2})^2$$

 3×3 stochastic by columns tau matrices:

$$\tau \cap \mathcal{M} = \begin{bmatrix} a & 0 & 1 - a \\ 0 & 1 & 0 \\ 1 - a & 0 & a \end{bmatrix}, \ p_{\tau \cap \mathcal{M}}(\lambda) = (1 - \lambda)[(2a - 1 - \lambda)(1 - \lambda)]$$

 3×3 stochastic by columns eta matrices:

$$\eta \cap \mathcal{M} = \begin{bmatrix} a & b & 1-a-b \\ b & 1-2b & b \\ 1-a-b & b & a \end{bmatrix} = \mathcal{M}^{SP} ! p_{\eta \cap \mathcal{M}}(\lambda) = (1-\lambda)[\lambda^2 \dots]$$

 3×3 stochastic by columns mu matrices:

$$\mu \cap \mathcal{M} = \begin{bmatrix} a & 0 & 1 - a \\ 0 & 1 & 0 \\ 1 - a & 0 & a \end{bmatrix}, \ p_{\mu \cap \mathcal{M}}(\lambda) = (1 - \lambda)[(2a - 1 - \lambda)(1 - \lambda)]$$

 4×4 stochastic by columns symmetric and persymmetric matrices:

$$\mathcal{M}^{SP} = \left[\begin{array}{ccccc} a & b & c & 1-a-b-c \\ b & d & 1-b-c-d & c \\ c & 1-b-c-d & d & b \\ 1-a-b-c & c & b & a \end{array} \right]$$

 4×4 stochastic by columns τ matrices:

$$\mathcal{M} \cap \tau = \begin{bmatrix} a & b & -b & 1-a \\ b & a-b & 1-a+b & -b \\ -b & 1-a+b & a-b & b \\ 1-a & -b & b & a \end{bmatrix}, \ (\mathcal{M} \cap \tau \ge 0) = \begin{bmatrix} a & 0 & 0 & 1-a \\ 0 & a & 1-a & 0 \\ 0 & 1-a & a & 0 \\ 1-a & 0 & 0 & a \end{bmatrix}, \lambda = 1, 1, 2a-1, 2a-1$$

$$\mathcal{M} \cap \eta = \begin{bmatrix} a & b & c & 1-a-b-c \\ b & a & 1-b-c-a & c \\ c & 1-b-c-a & a & b \\ 1-a-b-c & a & a & b \\ 1-a-b-c & a & a & b \end{bmatrix}, \ (\mathcal{M} \cap \eta \ge 0) = \begin{bmatrix} \lambda = 1, 1, 2a-1, 2a-1,$$

 2×2 stochastic by columns matrices:

$$\mathcal{M} = \begin{bmatrix} a & b \\ 1-a & 1-b \end{bmatrix}, \ \lambda = 1, a-b$$

 2×2 stochastic by columns circulant matrices:

$$\mathcal{C} \cap \mathcal{M} = \begin{bmatrix} c & 1-c \\ 1-c & c \end{bmatrix}, \ \lambda = 1, 2c-1$$

Assuming $a, b, c \in \mathbb{R}$, the Frobenius norm of A - X, $A \in \mathcal{M}$, X varying in $\mathcal{M} \cap \mathcal{C}$, is minimum for $c = \frac{a+1-b}{2}$, i.e. when A and X have the eigenvalues different from 1 equal (a - b = 2c - 1).

Fixed $A \in \mathcal{M}$, where \mathcal{M} is the set of all non negative stochastic by columns $n \times n$ matrices, such that $|\lambda_2(A)| < 1$, there exist $X \in \mathcal{C} \cap \mathcal{M}$ such that $|\lambda_2(A)| \leq |\lambda_2(X)| < 1$?

Note that the eigenvalues of X are easily computable.

 6×6 stochastic by columns symmetric and persymmetric matrices:

$$\mathcal{M}^{SP} = \begin{bmatrix} a & b & c & d & e & \frac{1-a-b}{-c-d-e} \\ b & f & g & h & \frac{1-b-f}{-g-h-e} & e \\ c & g & i & \frac{1-c-g}{-i-h-d} & h & d \\ d & h & \frac{1-c-g}{-i-h-d} & i & g & c \\ e & \frac{1-b-f}{-g-h-e} & h & g & f & b \\ \frac{1-a-b}{-c-d-e} & e & d & c & b & a \end{bmatrix}$$
 6×6 stochastic by columns η matrices:

$$\mathcal{M} \cap \eta = \begin{bmatrix} a & b & c & d & e & \frac{1-a-b}{-c-d-e} \\ b & a+c-e & b & e & \frac{-2b-a}{-c-e+1} & e \\ c & b & a & \frac{-a-b-c}{-d-e+1} & e & d \\ d & e & \frac{-a-b-c}{-d-e+1} & a & b & c \\ e & \frac{-2b-a}{-c-e+1} & e & b & a+c-e & b \\ \frac{1-a-b}{-c-d-e} & e & d & c & b & a \end{bmatrix}$$

• 3×3 singular stochastic by columns matrices:

$$\begin{bmatrix} a & a & a & a \\ b & b & b & b \\ 1-a-b & 1-a-b & 1-a-b \end{bmatrix}^n = \begin{bmatrix} a & a & a & a \\ b & b & b & b \\ 1-a-b & 1-a-b & 1-a-b \end{bmatrix}$$
$$\begin{bmatrix} a & a & c \\ b & b & d \\ 1-a-b & 1-a-b & 1-c-d \end{bmatrix}^n = ?$$

 \bullet 3×3 singular stochastic by columns symmetric and persymmetric matrices:

$$A = \begin{bmatrix} a & 1 - 2a & a \\ 1 - 2a & -1 + 4a & 1 - 2a \\ a & 1 - 2a & a \end{bmatrix} \in \eta! \quad \lambda = 0, 1, \in \mathbb{R}$$

A has rank 1 iff $a = \frac{1}{3}$ (in such case $\lambda = 0, 1, 0$). $A \ge 0$ iff $\frac{1}{4} \le a \le \frac{1}{2}$. A is semi positive definite iff $a \ge \frac{1}{3}$. $A \in \tau$ iff $a = \frac{1}{2}$ (in such case $\lambda = 1, 0, 1$).

$$A^{n} = \begin{bmatrix} a_{n} & b_{n} & a_{n} \\ & & & \end{bmatrix}, \begin{bmatrix} a_{n} \\ b_{n} \end{bmatrix} = \begin{bmatrix} 2a & 1-2a \\ 2(1-2a) & 4a-1 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix}$$

EXAMPLE. Let A be the following $n \times n$ stochastic by columns matrix

$$A = \begin{bmatrix} 0 & b_1 \\ 1 & 0 & b_2 \\ & 1 - b_1 & 0 \\ & & 1 - b_2 \\ & & & b_{n-2} \\ & & & 0 & 1 \\ & & & 1 - b_{n-2} & 0 \end{bmatrix}, b_i \in [0, 1].$$

Note that the eigenvalues of A are real (even if A is not hermitian), and in the interval [-1,1]. They are distinct if $b_i \in (0,1)$. Obviously, 1 is eigenvalue. Moreover, also -1 is eigenvalue (prove it!). The remaining eigenvalues are not known (for generic values of the b_i).

Let \mathcal{C} be the space of $n \times n$ circulant matrices. Let us compute \mathcal{C}_A , the minimizer of $||A - X||_F$, $X \in \mathcal{C}$, with the aim to compare its eigenvalues with those of A. Let $\{J_1, J_2, \ldots, J_n\}$ be a basis of \mathcal{C} . Then $\mathcal{C}_A = \sum_{k=1}^n \alpha_k J_k$, where $B\alpha = \mathbf{c}$, $B_{rs} = (J_r, J_s)$, $c_r = (J_r, A)$, $1 \le r, s \le n$. If $J_k = J_2^{k-1}$ where

$$J_2 = \left[\begin{array}{ccc} 0 & 1 & & \\ & & \ddots & \\ & & & 1 \\ 1 & & & 0 \end{array} \right]$$

then $(J_r, J_s) = n\delta_{rs}$, $(J_1, A) = (J_r, A) = 0$, r = 3, ..., n - 1, and $(J_2, A) = 1 + \sum b_j$, $(J_n, A) = n - 1 - \sum b_j$. Thus

$$\mathcal{C}_A = \left[egin{array}{cccc} p & & & q \ q & & p & & \ & q & & \ddots & \ & q & & \ddots & \ & & \ddots & & p \ p & & & q \end{array}
ight], \; p = rac{1+\sum b_j}{n}, \; q = rac{n-1-\sum b_j}{n} = 1-p.$$

The eigenvalues of \mathcal{C}_A can be easily computed. In fact, recalling that

$$C_A = Fd(FC_A^T \mathbf{e}_1)d(F\mathbf{e}_1)^{-1}F^H, \quad [F]_{ij} = \frac{1}{\sqrt{n}}\omega_n^{(i-1)(j-1)}, \quad 1 \le i, j \le n, \quad \omega_n = e^{i\frac{2\pi}{n}},$$

first write the vector $\sqrt{n}FC_A^T\mathbf{e}_1$:

$$\sqrt{n}F \begin{bmatrix} 0 \\ p \\ 0 \\ \vdots \\ 0 \\ q \end{bmatrix} = \sqrt{n}(pF\mathbf{e}_2 + qF\mathbf{e}_n) = \sqrt{n}(pF + qF^H)\mathbf{e}_2, F = F^HQ, Q = \begin{bmatrix} 1 \\ & & 1 \\ & & 1 \end{bmatrix},$$

and then observe that the eigenvalues of \mathcal{C}_A are its entries:

$$p\omega_n^{i-1} + (1-p)\overline{\omega}_n^{i-1} = p\omega_n^{i-1} + (1-p)\omega_n^{n-i+1}, \quad i = 1, \dots, n.$$

Note that $\frac{1}{n} \leq p \leq \frac{n-1}{n}$, and that it is sufficient to study the eigenvalues of C_A for $\frac{1}{2} \leq p \leq \frac{n-1}{n}$.

The case $p = \frac{n-1}{n}$ $(b_j = 1 \,\forall j)$. In this case the eigenvalues of A are obviously known, they are -1, 0 with algebraic multiplicity n-2, and 1. The eigenvalues of \mathcal{C}_A are

$$\frac{n-1}{n}\omega_n^{i-1} + \frac{1}{n}\overline{\omega}_n^{i-1}, \quad i = 1, \dots, n.$$

(draw them!). They are all inside the set $\{z: |z| \leq 1\}$, except 1 (i = 1) and, for even n, -1 $(i - 1 = \frac{n}{2})$.

The case $p = \frac{1}{2} \left(\sum b_j + 1 = \frac{n}{2} \right)$. In this case the eigenvalues of A are not known (?, perhaps are known if $b_j = \frac{n}{2} \left(\sum_{j=1}^{n} b_j - \sum_{j=1}^{n} b_j \right)$ $\frac{1}{2} \, \forall j$, and in other particular cases). The eigenvalues of \mathcal{C}_A are $\Re(\omega_n^{i-1}) =$ $\cos \frac{2\pi(i-1)}{n}$, $i=1,\ldots,n$. They are all inside the set [-1,1], except 1 (i=1)and, for even n, -1 $(i-1=\frac{n}{2})$

RESULT. Let $A \in \mathbb{C}^{n \times n}$ be a stochastic by columns (or by rows) $n \times n$ matrix. So, 1 is eigenvalue of A. Let U be a unitary matrix such that $U\mathbf{e}_i = \frac{1}{\sqrt{n}}\mathbf{e}e^{\mathbf{i}\theta}$, for some i and θ $(i = 1, \theta = 0 \text{ if } U = F)$, and set $\mathcal{L} = \{Ud(\mathbf{z})U^H: \mathbf{z} \in \mathbb{C}^n\}$. Note that \mathcal{L} is a n-dimensional subspace of $\mathbb{C}^{n\times n}$, i.e. there exist $J_k \in \mathcal{L}$, $k=1,\ldots,n$, linearly independent such that $\mathcal{L}=\mathrm{Span}\{J_k\}$. Let \mathcal{L}_A be the minimizer of $||A - X||_F$ in \mathcal{L} ,

$$\mathcal{L}_{A} = U \operatorname{diag} ((U^{H}AU)_{jj})U^{H} = Ud(U^{T}\mathbf{z}_{A}^{r})d(U^{T}\mathbf{v})^{-1}U^{H},
\mathcal{L}_{A} = \sum_{k=1}^{n} \alpha_{k}J_{k}, \ \alpha = B^{-1}\mathbf{c}, \ B_{rs} = (J_{r}, J_{s}), \ c_{r} = (J_{r}, A)$$

where **v** is chosen such that $(U^T \mathbf{v})_i \neq 0 \ \forall j \ (\mathbf{v} = \mathbf{e}_1 \text{ if } U = F).$

Then \mathcal{L}_A is stochastic by columns and by rows (SEE the second Theorem in the next pages). In particular, 1 is eigenvalues of \mathcal{L}_A . All eigenvalues of \mathcal{L}_A are particular points of the convex set $\{\frac{\mathbf{z}^H A \mathbf{z}}{\mathbf{z}^H \mathbf{z}} : \mathbf{z} \in \mathbb{C}^n\}$. So, when A is normal (hermitian) they are in the minimum polygon (real interval) containing the eigenvalues of A. When alternatively $A \ge 0$ (? $A^k \ge 0$ for some k?) they are in the set $\{z: |z| \leq 1\}$ whenever $\mathcal{L}_A \geq 0$, but even in the latter case they can be either inside or outside the minimum polygon containing the eigenvalues of A, SEE the above example (however, if A is also normal, they are inside).

[Question: there are matrices A simultaneously normal, non negative and stochastic by columns (or by rows) which are not real symmetric and not in \mathcal{C} ?

Proposition.

If A is a non negative $n \times n$ matrix, then its best approximation in C is also non negative. (Proof: We know that $C_A = \sum_k \alpha_k J_k$ with $J_k = J_2^{k-1} \ge 0$ and $\alpha_k = \frac{1}{n}(J_k, A)$. If A is non negative then also $\alpha_k \ge 0$, so $C_A \ge 0$).

Question: Given A non negative, is \mathcal{L}_A non negative for other spaces \mathcal{L} ? Is τ_A non negative? Recall that

$$\tau = \{Ud(\mathbf{z})U^H : \mathbf{z} \in \mathbb{C}^n\}, \quad U = \sqrt{\frac{2}{n+1}} \sin \frac{ij\pi}{n+1}, \ 1 \le i, j \le n.$$

Elements of a basis of τ are obtained by choosing $J_k \in \tau$ such that $\mathbf{e}_1^T J_k = \mathbf{e}_k^T$, $k=1,\ldots,n$. They are matrices made up of zeros and ones only. Moreover, for such J_k , we have

$$\tau_A = \sum_k \alpha_k J_k, \ \alpha = B^{-1} \mathbf{c}, \ B^{-1} = \frac{1}{2n+2} (3J_1 - J_3), \ c_r = (J_r, A).$$

[·]. If A is non negative, then $\mathbf{c} \geq \mathbf{0}$, but $B^{-1}\mathbf{c}$ may have negative entries, but perhaps τ_A is yet non negative (investigate!).

THREE THEOREMS on s-stochastic matrix algebras \mathcal{L} and on the best approximation in \mathcal{L} of A (each more general than the previous one):

First theorem

Set $\mathcal{L} = \{Ud(\mathbf{x})U^H : \mathbf{x} \in \mathbb{C}^n\}$ where U is a unitary matrix. Choose \mathbf{v} such that $[U^T\mathbf{v}]_j \neq 0 \ \forall j$. Note that the choice $\mathbf{v} = \mathbf{e}_1$ works for $\mathcal{L} = \mathcal{C}, \tau, \eta, \mu, \ldots$ but not for all low complexity matrix spaces \mathcal{L} [...].

Then $\mathcal{L} = \{ \mathcal{L}(\mathbf{z}) : \mathbf{z} \in \mathbb{C}^n \}$ where we have set $\mathcal{L}(\mathbf{z}) = Ud(U^T\mathbf{z})d(U^T\mathbf{v})^{-1}U^H$. Note that $\mathbf{v}^T \mathcal{L}(\mathbf{z}) = \mathbf{z}^T$, and that $\mathbf{x}^T \mathcal{L}(\mathbf{z}) = \mathbf{z}^T \mathcal{L}(\mathbf{x}), \ \forall \, \mathbf{x}, \mathbf{z} \in \mathbb{C}^n$. Moreover, $\mathcal{L}(\mathbf{v}) = I$.

Observe that if $\mathcal{L}(\mathbf{e}) = \mathbf{w}\mathbf{e}^T$ for some $\mathbf{w} \in \mathbb{C}^n$, then $\mathcal{L}(\mathbf{z})$ is $\mathbf{z}^T\mathbf{w}$ -stochastic by columns, i.e.

$$\mathbf{e}^T \mathcal{L}(\mathbf{z}) = \mathbf{z}^T \mathcal{L}(\mathbf{e}) = (\mathbf{z}^T \mathbf{w}) \mathbf{e}^T$$

[we have observed this first for $\mathcal{L} = \eta$ where $\mathbf{w} = \mathbf{e}$, $\mathbf{v} = \mathbf{e}_1$ (see previous pages)]. When, in general, $\mathcal{L}(\mathbf{e}) = \mathbf{w}\mathbf{e}^T$? Iff $\mathbf{v}^T\mathbf{w} = 1$ and $\mathbf{w}\mathbf{e}^T \in \mathcal{L}$. Assume \mathbf{w} such that $\mathbf{v}^T\mathbf{w} = 1$, so \mathbf{w} is in particular non null. Then $\mathbf{w}\mathbf{e}^T \in \mathcal{L}$ iff

$$\mathbf{w}\mathbf{e}^T = U \begin{bmatrix} \mathbf{e}^T\mathbf{w} \end{bmatrix} U^H = (\mathbf{e}^T\mathbf{w})(U\mathbf{e}_i)(U\mathbf{e}_i)^H, \ \mathbf{e}^T\mathbf{w} \neq 0.$$
 (*)

Since $U\mathbf{e}_i \neq \mathbf{0}$, the equation (*) times \mathbf{e}_j , with $\mathbf{e}_j \mid (U\mathbf{e}_i)^H\mathbf{e}_j \neq 0$, implies $\mathbf{w} = \alpha U\mathbf{e}_i \ \alpha \neq 0$, and, since $(U^T\mathbf{v})_i \neq 0$, \mathbf{v}^T times the equation (*) implies $U\mathbf{e}_i = \beta \mathbf{e} \ \beta \neq 0$. Thus $\mathbf{w} = \gamma \mathbf{e} \ \gamma \neq 0$, and, since $\mathbf{v}^T\mathbf{w} = 1$, we have $\gamma = \frac{1}{\mathbf{v}^T\mathbf{e}}$. So, if $\mathcal{L}(\mathbf{e}) = \mathbf{w}\mathbf{e}^T$, then $\mathbf{v}^T\mathbf{e}$ must be non zero and \mathbf{w} must be equal to $\frac{\mathbf{e}}{\mathbf{v}^T\mathbf{e}}$. Now, provided that $\mathbf{v}^T\mathbf{e} \neq 0$, the matrix $\frac{\mathbf{e}\mathbf{e}^T}{\mathbf{v}^T\mathbf{e}}$ is in \mathcal{L} iff

$$\frac{\mathbf{e}\mathbf{e}^T}{\mathbf{v}^T\mathbf{e}} = U \begin{bmatrix} & \frac{\mathbf{e}^T\mathbf{e}}{\mathbf{v}^T\mathbf{e}} & \end{bmatrix} U^H = \frac{n}{\mathbf{v}^T\mathbf{e}} (U\mathbf{e}_i)(U\mathbf{e}_i)^H. \tag{**}$$

If $U\mathbf{e}_i = \frac{1}{\sqrt{n}}\mathbf{e}e^{\mathbf{i}\theta}$, then $\mathbf{v}^T\mathbf{e} \neq 0$ and (**) holds. So, we have proved the following theorem:

Theorem.

If $U\mathbf{e}_i = \frac{1}{\sqrt{n}} \mathbf{e}^{i\theta}$, then $\mathcal{L}(\mathbf{e}) = \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{v}^T\mathbf{e}}$. It follows that, for any $\mathbf{z} \in \mathbb{C}^n$, the matrix $\mathcal{L}(\mathbf{z})$ is $\frac{\mathbf{z}^T\mathbf{e}}{\mathbf{v}^T\mathbf{e}}$ -stochastic by columns, in particular the best approximation of A in \mathcal{L} , $\mathcal{L}_A = \mathcal{L}(\mathbf{z}_A) = U \operatorname{diag}((U^HAU)_{ij})U^H$, is $\frac{\mathbf{z}_A^T\mathbf{e}}{\mathbf{v}^T\mathbf{e}}$ -stochastic by columns, i.e. $\mathbf{e}^T\mathcal{L}_A = \frac{\mathbf{z}_A^T\mathbf{e}}{\mathbf{v}^T\mathbf{e}}\mathbf{e}^T$. Finally note that one of the eigenvalues of \mathcal{L}_A , $(U^HAU)_{ii}$, is equal to $\frac{1}{n}\mathbf{e}^TA\mathbf{e}$, and that $\frac{\mathbf{z}_A^T\mathbf{e}}{\mathbf{v}^T\mathbf{e}} = \frac{1}{n}\mathbf{e}^TA\mathbf{e}$.

[For example, if $\mathcal{L} = \mathcal{C}, \eta, \dots$ (where \mathbf{v} can be chosen equal to \mathbf{e}_1), then $\mathbf{e}^T \mathcal{L}(\mathbf{z}) = \mathbf{z}^T \mathcal{L}(\mathbf{e}) = (\mathbf{z}^T \mathbf{e}) \mathbf{e}^T = (\sum z_i) \mathbf{e}^T$, and $\mathbf{e}^T \mathcal{L}_A = (\frac{1}{n} \mathbf{e}^T A \mathbf{e}) \mathbf{e}^T$].

In particular, if A is stochastic by columns $(\mathbf{e}^T A = \mathbf{e}^T)$ or by rows $(A\mathbf{e} = \mathbf{e})$, then \mathcal{L}_A is stochastic by columns.

Second theorem

Let U be a $n \times n$ unitary matrix, and set $\mathcal{L} = \{Ud(\mathbf{z})U^H : \mathbf{z} \in \mathbb{C}^n\}$. Choose $\mathbf{v} \in \mathbb{C}^n$ such that $(U^T\mathbf{v})_j \neq 0 \ \forall j \ (\mathbf{v} = \mathbf{e}_1 \text{ if } \mathcal{L} = \mathcal{C}, \tau, \eta, \mu, \ldots; \mathbf{v} \in \mathbb{R}^n \text{ whenever possible, f.i. if } U \in \mathbb{R}^{n \times n}$. Then, if we set

$$\mathcal{L}_r(\mathbf{z}) = U d(U^T \mathbf{z}) d(U^T \mathbf{v})^{-1} U^H \quad (\mathbf{v}^T \mathcal{L}_r(\mathbf{z}) = \mathbf{z}^T),$$

$$\mathcal{L}_c(\mathbf{z}) = U d(U^H \overline{\mathbf{v}})^{-1} d(U^H \mathbf{z}) U^H \quad (\mathcal{L}_c(\mathbf{z}) \overline{\mathbf{v}} = \mathbf{z}),$$

 \mathcal{L} can be also represented as $\mathcal{L} = \{\mathcal{L}_r(\mathbf{z}) : \mathbf{z} \in \mathbb{C}^n\} = \{\mathcal{L}_c(\mathbf{z}) : \mathbf{z} \in \mathbb{C}^n\}$. Note that $\mathbf{x}^T \mathcal{L}_r(\mathbf{y}) = \mathbf{y}^T \mathcal{L}_r(\mathbf{x}), \mathcal{L}_c(\mathbf{y})\mathbf{x} = \mathcal{L}_c(\mathbf{x})\mathbf{y}, \mathcal{L}_r(\mathbf{v}) = I, \mathcal{L}_c(\overline{\mathbf{v}}) = I$.

Theorem.

If one of the columns of U has all entries equal each other, i.e. $\exists i$ and θ such that $U\mathbf{e}_i = \frac{1}{\sqrt{n}} \mathbf{e} \mathbf{e}^{i\theta}$, then

- (1) $\mathcal{L}_r(\mathbf{e}) = \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{e}^T\mathbf{v}}$, $\mathcal{L}_c(\mathbf{e}) = \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{e}^T\mathbf{v}}$ ($\Rightarrow \mathbf{e}\mathbf{e}^T \in \mathcal{L}$) and therefore $\mathcal{L}_r(\mathbf{z})$ is $\frac{\mathbf{z}^T\mathbf{e}}{\mathbf{e}^T\mathbf{v}}$ -stochastic by columns, and $\mathcal{L}_c(\mathbf{z})$ is $\frac{\mathbf{z}^T\mathbf{e}}{\mathbf{e}^T\mathbf{v}}$ -stochastic by rows; in other words, $X \in \mathcal{L} \Rightarrow X$ is s_X -stochastic by rows and by columns for some s_X . [Note that $\mathbf{v}^T\mathbf{e} \neq 0$ because $(\mathbf{v}^TU)_i \neq 0$ $((\mathbf{v}^TU)_i \neq 0 \ \forall j)$].
- (2) Given $A \in \mathbb{C}^{n \times n}$, the matrix $\mathcal{L}_A = \mathcal{L}_r(\mathbf{z}_A^r) = \mathcal{L}_c(\mathbf{z}_A^c) = U \operatorname{diag}((U^H A U)_{jj})U^H$, defined as the minimizer on \mathcal{L} of $||A X||_F$, has $(U^H A U)_{ii} = \frac{1}{n}\mathbf{e}^T A \mathbf{e}$ as eigenvalue, and is $(\frac{1}{n}\mathbf{e}^T A \mathbf{e})$ -stochastic by rows and by columns, i.e. $\mathcal{L}_A \mathbf{e} = \frac{1}{n}(\mathbf{e}^T A \mathbf{e})\mathbf{e}$, $\mathbf{e}^T \mathcal{L}_A = \frac{1}{n}(\mathbf{e}^T A \mathbf{e})\mathbf{e}^T$.
- (3) If A is stochastic by columns or by rows, then \mathcal{L}_A is stochastic by rows and by columns.

proof. (1): Note that
$$M_j := U \begin{bmatrix} \mathbf{e}^T \mathbf{e} \end{bmatrix} U^H \in \mathcal{L}, \ \forall j, \ M_j = (\mathbf{e}^T \mathbf{e})(U \mathbf{e}_j)(\overline{U} \mathbf{e}_j)^T.$$

Moreover, by the assumption $U_{\mathbf{e}_i} = \frac{1}{\sqrt{n}} \mathbf{e}^{i\theta}$, we have $M_i = \mathbf{e}^T$. So, $\mathbf{e}^T \in \mathcal{L}$ and, obviously, $\mathcal{L}_r(\mathbf{e}) = \frac{\mathbf{e}^T}{\mathbf{v}^T \mathbf{e}}$ ($\mathbf{v}^T \mathcal{L}_r(\mathbf{e}) = \mathbf{e}^T$!), $\mathcal{L}_c(\mathbf{e}) = \frac{\mathbf{e}^T}{\mathbf{v}^T \mathbf{e}}$ ($\mathcal{L}_c(\mathbf{e}) \mathbf{\overline{v}} = \mathbf{e}$!). Thus, $\forall \mathbf{z} \in \mathbb{C}^n$ we have $\mathbf{e}^T \mathcal{L}_r(\mathbf{z}) = \mathbf{z}^T \mathcal{L}_r(\mathbf{e}) = \frac{\mathbf{z}^T \mathbf{e}}{\mathbf{v}^T \mathbf{e}} \mathbf{e}^T$, $\mathcal{L}_c(\mathbf{z}) \mathbf{e} = \mathcal{L}_c(\mathbf{e}) \mathbf{z} = \frac{\mathbf{e}^T \mathbf{z}}{\mathbf{e}^T \mathbf{v}} \mathbf{e}$.

(2): It is enough to observe that $(U^H A U)_{ii} = \frac{1}{n} \mathbf{e}^T A \mathbf{e}$ and use the formula $\mathcal{L}_A = U \operatorname{diag}((U^H A U)_{jj}) U^H$. However, let us obtain the thesis from (1). As a consequence of (1), the matrix

$$\mathcal{L}_A = Ud(U^T \mathbf{z}_A^r) d(U^T \mathbf{v})^{-1} U^H = Ud(U^H \overline{\mathbf{v}})^{-1} d(U^H \mathbf{z}_A^c) U^H$$

is both $\frac{\mathbf{e}^T \mathbf{z}_A^r}{\mathbf{v}^T \mathbf{e}}$ -stochastic by columns and $\frac{\mathbf{e}^T \mathbf{z}_A^c}{\overline{\mathbf{v}}^T \mathbf{e}}$ -stochastic by rows. Let us prove that $\frac{\mathbf{e}^T \mathbf{z}_A^r}{\mathbf{v}^T \mathbf{e}} = \frac{\mathbf{e}^T \mathbf{z}_A^c}{\overline{\mathbf{v}}^T \mathbf{e}} = \frac{1}{n} \mathbf{e}^T A \mathbf{e}$. Since $U^H \mathbf{e} = \sqrt{n} e^{-\mathbf{i} \theta} \mathbf{e}_i$, we have

$$(\mathbf{z}_A^r)^T \mathbf{e} = \mathbf{v}^T U \operatorname{diag} ((U^H A U)_{jj}) U^H \mathbf{e} = \sqrt{n} e^{-\mathbf{i}\theta} \mathbf{v}^T U \mathbf{e}_i (U^H A U)_{ii}$$

$$= \mathbf{v}^T \mathbf{e} (U^H A U)_{ii} = \mathbf{v}^T \mathbf{e} (U \mathbf{e}_i)^H A (U \mathbf{e}_i) = \mathbf{v}^T \mathbf{e} \frac{1}{n} \mathbf{e}^T A \mathbf{e}$$

and, since $\mathbf{e}^T U = \sqrt{n} e^{\mathbf{i}\theta} \mathbf{e}_i^T$, we have

$$\begin{array}{lcl} \mathbf{e}^T \mathbf{z}_A^c & = & \mathbf{e}^T U \operatorname{diag} ((U^H A U)_{jj}) U^H \overline{\mathbf{v}} = \sqrt{n} e^{\mathbf{i} \theta} (U^H A U)_{ii} \mathbf{e}_i^T U^H \overline{\mathbf{v}} \\ & = & \mathbf{e}^T \overline{\mathbf{v}} (U^H A U)_{ii} = \mathbf{e}^T \overline{\mathbf{v}} \frac{1}{n} \mathbf{e}^T A \mathbf{e}. \end{array}$$

Question: when $\mathcal{L}_c(\mathbf{z}) = \mathcal{L}_r(\mathbf{x})$? Iff $U^T \mathbf{x} = d(\mathbf{u})U^H \mathbf{z}$, $\mathbf{u} = d(U^H \overline{\mathbf{v}})^{-1} U^T \mathbf{v}$ [$\mathbf{u} = \mathbf{e}$ if $U \in \mathbb{R}^{n \times n}$ ($\mathbf{v} \in \mathbb{R}^n$) or U = F ($\mathbf{v} = \mathbf{e}_1$); $|u_i| = 1 \ \forall i$].

Third Theorem

Let U, V be two $n \times n$ unitary matrices. Choose $\mathbf{v}, \mathbf{u} \in \mathbb{C}^n$ such that $(U^T \mathbf{v})_i \neq 0$, $(V^T \mathbf{u})_i \neq 0$, $\forall i$. Given $\mathbf{z} \in \mathbb{C}^n$, set

$$\mathcal{L}_r(\mathbf{z}) = Ud(V^T\mathbf{z})d(U^T\mathbf{v})^{-1}V^H, \quad \mathcal{L}_c(\mathbf{z}) = Ud(V^H\overline{\mathbf{u}})^{-1}d(U^H\mathbf{z})V^H.$$

Note that $\mathbf{v}^T \mathcal{L}_r(\mathbf{z}) = \mathbf{z}^T$, $\mathcal{L}_c(\mathbf{z}) \overline{\mathbf{u}} = \mathbf{z}$.

Theorem.

If there exists i such that $V\mathbf{e}_i = \frac{1}{\sqrt{n}}\mathbf{e}e^{\mathbf{i}\theta}$, $U\mathbf{e}_i = \frac{1}{\sqrt{n}}\mathbf{e}e^{\mathbf{i}\varphi}$, then $Vd(U^T\mathbf{e})d(U^T\mathbf{v})^{-1}V^H = \frac{\mathbf{e}e^T}{\mathbf{e}^T\mathbf{v}}$, $Ud(V^H\overline{\mathbf{u}})^{-1}d(V^H\mathbf{e})U^H = \frac{\mathbf{e}e^T}{\mathbf{e}^T\overline{\mathbf{u}}}$, and therefore

$$\mathbf{e}^{T} \mathcal{L}_{r}(\mathbf{z}) = \mathbf{z}^{T} V d(U^{T} \mathbf{e}) d(U^{T} \mathbf{v})^{-1} V^{H} = (\frac{\mathbf{z}^{T} \mathbf{e}}{\mathbf{e}^{T} \mathbf{v}}) \mathbf{e}^{T},$$

$$\mathcal{L}_{c}(\mathbf{z}) \mathbf{e} = U d(V^{H} \overline{\mathbf{u}})^{-1} d(V^{H} \mathbf{e}) U^{H} \mathbf{z} = \mathbf{e}(\frac{\mathbf{e}^{T} \overline{\mathbf{u}}}{\mathbf{e}^{T} \mathbf{u}}).$$

In other words, $X \in \mathcal{L} \Rightarrow X$ is s_X -stochastic by rows and by columns for some $s_X \in \mathbb{C}$. Since, moreover, $(U^H A V)_{ii} = \frac{1}{I^2} e^{\mathbf{i}(\theta - \varphi)} \mathbf{e}^T A \mathbf{e}$, if $\mathcal{L}_A = U d(V^T \mathbf{z}_A^r) d(U^T \mathbf{v})^{-1} V^H = U d(V^H \mathbf{u})^{-1} d(U^H \mathbf{z}_A^c) V^H = U \operatorname{diag}((U^H A V)_{jj}) V^H$ is the best approximation of A in $\mathcal{L} = \{U d(\mathbf{z}) V^H : \mathbf{z} \in \mathbb{C}^n\}$, then we have that

$$(\mathbf{z}_A^r)^T \mathbf{e} = \mathbf{v}^T U \operatorname{diag}((U^H A V)_{jj}) V^H \mathbf{e} = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{v}^T \mathbf{e},$$

 $\mathbf{e}^T (\mathbf{z}_A^c) = \mathbf{e}^T U \operatorname{diag}((U^H A V)_{jj}) V^H \overline{\mathbf{u}} = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{e}^T \overline{\mathbf{u}},$

and therefore

$$\mathbf{e}^T \mathcal{L}_A = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{e}^T, \quad \mathcal{L}_A \mathbf{e} = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{e}.$$

It follows that whenever $A \in \mathbb{C}^{n \times n}$ is stochastic by rows $(A\mathbf{e} = \mathbf{e})$ or stochastic by columns $(\mathbf{e}^T A = \mathbf{e}^T)$, its better approximation \mathcal{L}_A in \mathcal{L} is stochastic simultaneously by rows and by columns.

proof.
$$V\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\theta}\mathbf{e} \left[U\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\varphi}\mathbf{e} \right] \Rightarrow$$

$$V \left[\begin{array}{c} \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \mathbf{v}} \end{array} \right] V^H = \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \mathbf{v}} V \mathbf{e}_i (V \mathbf{e}_i)^H = \frac{\mathbf{e} \mathbf{e}^T}{\mathbf{e}^T \mathbf{v}} \left[U \left[\begin{array}{c} \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \overline{\mathbf{u}}} \end{array} \right] U^H = \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \overline{\mathbf{u}}} U \mathbf{e}_i (U \mathbf{e}_i)^H = \frac{\mathbf{e} \mathbf{e}^T}{\mathbf{e}^T \overline{\mathbf{u}}} \right].$$

$$U\mathbf{e}_{i} = \frac{1}{\sqrt{n}} e^{\mathbf{i}\varphi} \mathbf{e} \left[V\mathbf{e}_{i} = \frac{1}{\sqrt{n}} e^{\mathbf{i}\theta} \mathbf{e} \right] \Rightarrow$$

$$\mathbf{e}_{i}^{T} U^{H} = \frac{1}{\sqrt{n}} e^{-\mathbf{i}\varphi} \mathbf{e}^{T} \left[\mathbf{e}_{i}^{T} V^{H} = \frac{1}{\sqrt{n}} e^{-\mathbf{i}\theta} \mathbf{e}^{T} \right] \Rightarrow$$

$$\begin{array}{l} \mathbf{e}_i^T(U^H\mathbf{e}) = \frac{1}{\sqrt{n}}e^{-\mathbf{i}\varphi}\mathbf{e}^T\mathbf{e} = \frac{(U^H\overline{\mathbf{v}})_i}{\mathbf{e}^T\overline{\mathbf{v}}}\mathbf{e}^T\mathbf{e}, \\ \mathbf{e}_i^T(U^H\mathbf{e}) = \mathbf{e}_i^TU^He^{-\mathbf{i}\varphi}\sqrt{n}U\mathbf{e}_i = 0, \ j \neq i \end{array} \quad \left[\begin{array}{l} \mathbf{e}_i^T(V^H\mathbf{e}) = \frac{1}{\sqrt{n}}e^{-\mathbf{i}\theta}\mathbf{e}^T\mathbf{e} = \frac{(V^H\overline{\mathbf{u}})_i}{\mathbf{e}^T\overline{\mathbf{u}}}\mathbf{e}^T\mathbf{e}, \\ \mathbf{e}_i^T(V^H\mathbf{e}) = \mathbf{e}_i^TV^He^{-\mathbf{i}\theta}\sqrt{n}V\mathbf{e}_i = 0, \ j \neq i \end{array} \right].$$

Thus we have

$$d(U^H \mathbf{e}) d(U^H \overline{\mathbf{v}})^{-1} = \begin{bmatrix} \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \overline{\mathbf{v}}} \end{bmatrix} \begin{bmatrix} d(V^H \mathbf{e}) d(V^H \overline{\mathbf{u}})^{-1} = \begin{bmatrix} \frac{\mathbf{e}^T \mathbf{e}}{\mathbf{e}^T \overline{\mathbf{u}}} \end{bmatrix},$$

and therefore $Vd(U^T\mathbf{e})d(U^T\mathbf{v})^{-1}V^H = \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{e}^T\mathbf{v}} \ \left[Ud(V^H\overline{\mathbf{u}})^{-1}d(V^H\mathbf{e})U^H = \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{e}^T\overline{\mathbf{u}}} \right].$

The equalities $V^H \mathbf{e} = e^{-\mathbf{i}\theta} \sqrt{n} \mathbf{e}_i$, $\mathbf{e}^T U = e^{\mathbf{i}\varphi} \sqrt{n} \mathbf{e}_i^T$, let us easily obtain the assertions on \mathcal{L}_A .

REMARK. $\mathcal{L} = \{Ud(\mathbf{z})V^H : \mathbf{z} \in \mathbb{C}^n\}, U, V \text{ unitary, } \mathcal{L}_A = U \text{ diag } ((U^H A V)_{jj})V^H :$

$$V\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\theta}\mathbf{e} \Rightarrow \mathcal{L}_A\mathbf{e} = ((U\mathbf{e}_i)^H A\mathbf{e})U\mathbf{e}_i, \ (U\mathbf{e}_i)^H \mathcal{L}_A = \frac{(U\mathbf{e}_i)^H A\mathbf{e}}{n}\mathbf{e}^T;$$

$$V\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\theta}\mathbf{e}, \ U\mathbf{e}_i = \frac{e^{\mathbf{i}\varphi}}{\|\mathbf{e}_{\leq}\|}\mathbf{e}_{\leq}, \ A\mathbf{e} = \mathbf{e}_{\leq} \ \Rightarrow \ \mathcal{L}_A\mathbf{e} = \mathbf{e}_{\leq}, \ \mathbf{e}_{\leq}^H\mathcal{L}_A = \frac{\|\mathbf{e}_{\leq}\|^2}{n}\mathbf{e}^T;$$

$$U\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\varphi}\mathbf{e} \Rightarrow \mathbf{e}^T\mathcal{L}_A = (\mathbf{e}^TAV\mathbf{e}_i)(V\mathbf{e}_i)^H, \ \mathcal{L}_A(V\mathbf{e}_i) = \frac{\mathbf{e}^TAV\mathbf{e}_i}{n}\mathbf{e};$$

$$U\mathbf{e}_i = \frac{1}{\sqrt{n}}e^{\mathbf{i}\varphi}\mathbf{e}, \ V\mathbf{e}_i = \frac{e^{\mathbf{i}\theta}}{\|\mathbf{e}_{\leq}\|}\mathbf{e}_{\leq}, \ \mathbf{e}^TA = \mathbf{e}_{\leq}^H \ \Rightarrow \ \mathbf{e}^T\mathcal{L}_A = \mathbf{e}_{\leq}^H, \ \mathcal{L}_A\mathbf{e}_{\leq} = \frac{\|\mathbf{e}_{\leq}\|^2}{n}\mathbf{e}.$$

Exercise.

Given $\mathbf{w} \in \mathbb{C}^n$, $\mathbf{w} \neq \mathbf{0}$, set $\mathcal{M} = \{X \in \mathbb{C}^{n \times n} : X\mathbf{w}\mathbf{e}^T = \mathbf{w}\mathbf{e}^T X\}$. Prove that

- (i) \mathcal{M} is a matrix algebra;
- (ii) $\mathcal{M} = \{X \in \mathbb{C}^{n \times n} : X\mathbf{w} = c\mathbf{w} \& \mathbf{e}^T X = c\mathbf{e}^T \text{ for some } c \in \mathbb{C}\}, \text{ i.e. } X \in \mathcal{M} \text{ implies } X \text{ is } s_X\text{-stochastic by columns };$
- (iii) if $\mathbf{w} = \mathbf{e}$, then $\mathcal{M} = \{X \in \mathbb{C}^{n \times n} : X\mathbf{e} = c\mathbf{e} \& \mathbf{e}^T X = c\mathbf{e}^T \text{ for some } c \in \mathbb{C}\},$ i.e. $X \in \mathcal{M}$ implies X is s_X -stochastic by rows and by columns.
- \rightarrow Investigate low complexity spaces \mathcal{L} of matrices commuting with \mathbf{we}^T , in particular commutative spaces \mathcal{L} including \mathbf{we}^T . We have seen examples in the case $\mathbf{w} = \mathbf{e}$.

Let U be a $n \times n$ unitary matrix. Set $\mathcal{L} = \{U(\mu \circ Z)U^H : Z \in \mathbb{C}^{n \times n}\}$ where μ is a fixed matrix whose entries are 0 or 1 and \circ is the entry by entry product. For example

$$\mu = \left[\begin{array}{ccc} & & 1 \\ 1 & 1 & 1 \\ & & 1 \end{array} \right], \ Z = \left[\begin{array}{ccc} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{array} \right], \ \mu \circ Z = \left[\begin{array}{ccc} & & z_{13} \\ z_{21} & z_{22} & z_{23} \\ & & z_{33} \end{array} \right].$$

Note that if $\mu = I$, then $\mathcal{L} = \{Ud(\mathbf{z})U^H : \mathbf{z} \in \mathbb{C}^n\}$.

The space of matrices \mathcal{L} is a vector subspace of $\mathbb{C}^{n\times n}$, and is a matrix algebra (i.e. product of matrices from \mathcal{L} are in \mathcal{L}) if the matrix μ satisfies the condition

$$[\mu]_{ij} = 0 \quad \Rightarrow \quad [\mu^2]_{ij} = 0$$

[or $[\mu^2]_{ij} \neq 0 \Rightarrow [\mu]_{ij} \neq 0$; or $\mu^2 \leq \alpha \mu$ for some $\alpha > 0$ (the pattern of μ^2 is enclosed in the pattern of μ). Examples of μ satisfying $\mu^2 \leq \alpha \mu$:

Given $A \in \mathbb{C}^{n \times n}$, and defined \mathcal{L}_A as the minimizer of $||A - U(\mu \circ Z)U^H||_F$, $Z \in \mathbb{C}^{n \times n}$, we have

$$\mathcal{L}_A = U(\mu \circ (U^H A U)) U^H.$$

Observe that if μ has a triangular structure, then the eigenvalues of \mathcal{L}_A are $\mu_{jj}(U^HAU)_{jj}, j=1,\ldots,n$, i.e. null or the same of U diag $((U^HAU)_{jj})U^H$.

In the particular case where $U\mathbf{e}_1 = \frac{1}{\sqrt{n}}e^{\mathbf{i}\theta}\mathbf{e}$ and $\mu_{11} = 1$, the matrix $\mu \circ$ $(U^H A U)$ can be written as follows

$$\mu \circ (U^H A U) = \begin{bmatrix} \frac{1}{n} \mathbf{e}^T A \mathbf{e} & & \mu_{1j} \left[\frac{1}{\sqrt{n}} e^{-\mathbf{i}\theta} \mathbf{e}^T A (U \mathbf{e}_j) \right] & \cdot \\ & \cdot & & \cdot \\ \mu_{i1} \left[\frac{1}{\sqrt{n}} e^{\mathbf{i}\theta} (U \mathbf{e}_i)^H A \mathbf{e} \right] & \cdot & \mu_{ij} \left[(U \mathbf{e}_i)^H A (U \mathbf{e}_j) \right] & \cdot \end{bmatrix}.$$

Theorem (stoch by rows). Assume $U\mathbf{e}_1 = \frac{1}{\sqrt{n}}e^{\mathbf{i}\theta}\mathbf{e}$ and $\mu_{11} = 1$. If $A\mathbf{e} = \mathbf{e}$, then $\mathcal{L}_A\mathbf{e} = \mathbf{e}$ and

$$\mu \circ (U^H A U) = \begin{bmatrix} 1 & \cdot & \mu_{1j} \left[\frac{1}{\sqrt{n}} e^{-i\theta} \mathbf{e}^T A(U \mathbf{e}_j) \right] & \cdot \\ 0 & & \cdot \\ \cdot & \cdot & \mu_{ij} \left[(U \mathbf{e}_i)^H A(U \mathbf{e}_j) \right] & \cdot \\ 0 & & \cdot \end{bmatrix}.$$

If moreover $\mu_{1j} = 0, j = 2, \ldots, n$, then

$$\mu \circ (U^H A U) = \begin{bmatrix} 1 & 0 & & & & 0 \\ 0 & & & & \\ & \cdot & & & \\ & \cdot & & \cdot & \mu_{ij}[(U\mathbf{e}_i)^H A (U\mathbf{e}_j)] & \cdot \\ 0 & & & \cdot & \end{bmatrix}, \quad \mathbf{e}^T \mathcal{L}_A = \mathbf{e}^T.$$

(thus choose $\mu \geq \mathbf{e}_1 \mathbf{e}_1^T + \mathbf{e}_1 \mathbf{e}_j^T$ for some j in order to have $\mathbf{e}^T \mathcal{L}_A \neq \mathbf{e}^T$). If alternatively A is quasi-stochastic by rows, $A\mathbf{e} = \mathbf{e}_{\leq}$, with $\mathbf{0} \leq \mathbf{e}_{\leq} \leq \mathbf{e}$, then $\mathcal{L}_A \mathbf{e} = \frac{\mathbf{e}^T \mathbf{e}_{\leq}}{n} \mathbf{e}$ whenever $\mu_{i1} = 0 \ \forall i \geq 2$.

proof: investigate the first column in the equality $\mathcal{L}_A U = U(\mu \circ (U^H A U))$:

$$\mathcal{L}_A \mathbf{e} = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{e} + \sum_{i=1, i \neq 1}^n \mu_{i1} ((U \mathbf{e}_i)^H A \mathbf{e}) U \mathbf{e}_i. \quad \Box$$

Theorem (stoch by columns). Assume $U\mathbf{e}_1 = \frac{1}{\sqrt{n}} e^{\mathbf{i}\theta} \mathbf{e}$ and $\mu_{11} = 1$. If $\mathbf{e}^T A = \mathbf{e}^T$, then $\mathbf{e}^T \mathcal{L}_A = \mathbf{e}^T$ and

$$\mu \circ (U^H A U) = \begin{bmatrix} 1 & 0 & \cdot & 0 \\ \cdot & \cdot & \cdot \\ \mu_{i1} \left[\frac{1}{\sqrt{n}} e^{i\theta} (U \mathbf{e}_i)^H A \mathbf{e} \right] & \cdot & \mu_{ij} \left[(U \mathbf{e}_i)^H A (U \mathbf{e}_j) \right] & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}.$$

If moreover $\mu_{i1} = 0$, $i = 2, \ldots, n$, then

$$\mu \circ (U^H A U) = \begin{bmatrix} 1 & 0 & & & & 0 \\ 0 & & & & \\ & \cdot & & \mu_{ij} [(U \mathbf{e}_i)^H A (U \mathbf{e}_j)] & \cdot \\ 0 & & & \cdot \end{bmatrix}, \quad \mathcal{L}_A \mathbf{e} = \mathbf{e}.$$

(thus choose $\mu \geq \mathbf{e}_1 \mathbf{e}_1^T + \mathbf{e}_i \mathbf{e}_1^T$ for some i in order to have $\mathcal{L}_A \mathbf{e} \neq \mathbf{e}$). If alternatively A is quasi-stochastic by columns, $\mathbf{e}^T A = \mathbf{e}_{\leq}^T$, with $\mathbf{0} \leq \mathbf{e}_{\leq} \leq \mathbf{e}$, then $\mathbf{e}^T \mathcal{L}_A = \frac{\mathbf{e}^T \mathbf{e}_{\leq}}{n} \mathbf{e}^T$ whenever $\mu_{1j} = 0 \ \forall j \geq 2$.

proof: investigate the first row in the equality $U^H \mathcal{L}_A = (\mu \circ (U^H A U)) U^H$:

$$\mathbf{e}^T \mathcal{L}_A = \frac{1}{n} (\mathbf{e}^T A \mathbf{e}) \mathbf{e}^T + \sum_{j=1, j \neq 1}^n \mu_{1j} (\mathbf{e}^T A (U \mathbf{e}_j)) (U \mathbf{e}_j)^H. \quad \Box$$

Note. If \mathcal{L}_A and its eigenvalues do not fit our requirements, then we could introduce a perturbation of \mathcal{L}_A , yet in \mathcal{L} , in place of it, for example the matrix

$$M = \mathcal{L}_A + U(\mu \circ ((U^H A U) \circ \varepsilon))U^H, \ \varepsilon \in \mathbb{R}^{n \times n}, \ |\varepsilon_{ij}| \text{ small.}$$

Note that

$$||A - M||_F \le ||A - \mathcal{L}_A||_F + \sqrt{\sum_{i,j,\,\mu_{ij}=1} |\varepsilon_{ij}|^2 |(U^H A U)_{ij}|^2}.$$

But the Frobenius norm is the right norm?

Results on \mathcal{L}_A more general than the ones in REMARK, where $\mathcal{L} = \{Ud(\mathbf{z})V^H : \mathbf{z} \in \mathbb{C}^n\}$, and the ones in Theorem stoch by columns, and Theorem stoch by rows, where $\mathcal{L} = \{U(\mu \circ Z)U^H : Z \in \mathbb{C}^{n \times n}\}$:

Let U, V be $n \times n$ unitary matrices. Set $\mathcal{L} = \{U(\mu \circ Z)V^H : Z \in \mathbb{C}^{n \times n}\}$ where μ is a fixed matrix whose entries are 0 or 1 and \circ is the entry by entry product. Note that if $\mu = I$, then $\mathcal{L} = \{Ud(\mathbf{z})V^H : \mathbf{z} \in \mathbb{C}^n\}$.

The space of matrices \mathcal{L} is a vector subspace of $\mathbb{C}^{n\times n}$. In general it is not a matrix algebra.

Given $A \in \mathbb{C}^{n \times n}$, and defined \mathcal{L}_A as the minimizer of $||A - U(\mu \circ Z)V^H||_F$, $Z \in \mathbb{C}^{n \times n}$, we have

$$\mathcal{L}_A = U(\mu \circ (U^H A V)) V^H.$$

Observe that if μ has a diagonal structure, then the eigenvalues of $\mathcal{L}_A \mathcal{L}_A^H$ are $\mu_{jj}|(U^H A V)_{jj}|^2$, $j=1,\ldots,n$.

Note that the equalities $\mathcal{L}_A V = U(\mu \circ (U^H A V))$ and $U^H \mathcal{L}_A = (\mu \circ (U^H A V)) V^H$ imply, respectively,

$$\begin{split} \mathcal{L}_A(V\mathbf{e}_1) &= \mu_{11}(U^HAV)_{11}U\mathbf{e}_1 + \sum_{i=1,\,i\neq1}^n \mu_{i1}(U^HAV)_{i1}U\mathbf{e}_i, \\ (U\mathbf{e}_1)^H \mathcal{L}_A &= \mu_{11}(U^HAV)_{11}(V\mathbf{e}_1)^H + \sum_{j=1,\,j\neq1}^n \mu_{1j}(U^HAV)_{1j}(V\mathbf{e}_j)^H. \end{split}$$

In the following two theorems \mathbf{e}_{\leq} can be an arbitrary vector with complex entries. However, we think to use the stated results for $\mathbf{e}_{\leq} = \mathbf{e}$ (stochastic case) or for \mathbf{e}_{\leq} , $0 \leq [\mathbf{e}_{\leq}]_j \leq 1$ (quasi-stochastic case).

Theorem (stochastic by rows) $V\mathbf{e}_1 = \frac{1}{\sqrt{n}} \mathbf{e}^{\mathbf{i}\theta} \mathbf{e} \quad \& \quad \mu_{11} = 1 \implies$

$$\mathcal{L}_A \mathbf{e} = ((U\mathbf{e}_1)^H A\mathbf{e}) U\mathbf{e}_1 + \sum_{i=1, i \neq 1}^n \mu_{i1} ((U\mathbf{e}_i)^H A\mathbf{e}) U\mathbf{e}_i.$$

Thus

(i) if $A\mathbf{e} = \mathbf{e}_{\leq}$ & $U\mathbf{e}_{1} = \frac{e^{\mathbf{i}\varphi}}{\|\mathbf{e}_{\leq}\|}\mathbf{e}_{\leq}$, then $\mathcal{L}_{A}\mathbf{e} = \mathbf{e}_{\leq}$. If, moreover, $\mu_{1j} = 0$ $\forall j \neq 1$, then $\mathbf{e}_{\leq}^{H}\mathcal{L}_{A} = \frac{\|\mathbf{e}_{\leq}\|^{2}}{n}\mathbf{e}^{T}$.

(ii) if
$$A\mathbf{e} = \mathbf{e}_{\leq}^{-}$$
 & $U\mathbf{e}_{1} = \frac{e^{i\varphi}}{\sqrt{n}}\mathbf{e}$, then $\mathcal{L}_{A}\mathbf{e} = \frac{\mathbf{e}^{T}\mathbf{e}_{\leq}}{n}\mathbf{e}$ whenever $\mu_{i1} = 0 \ \forall i \neq 1$.

Theorem (stochastic by columns) $U\mathbf{e}_1 = \frac{1}{\sqrt{n}}e^{\mathbf{i}\varphi}\mathbf{e} \quad \& \quad \mu_{11} = 1 \quad \Rightarrow$

$$\mathbf{e}^T \mathcal{L}_A = (\mathbf{e}^T A(V \mathbf{e}_1))(V \mathbf{e}_1)^H + \sum_{j=1, j \neq 1}^n \mu_{1j} (\mathbf{e}^T AV \mathbf{e}_j)(V \mathbf{e}_j)^H.$$

Thus

(i) if $\mathbf{e}^T A = \mathbf{e}_{\leq}^H$ & $V \mathbf{e}_1 = \frac{e^{\mathbf{i}\theta}}{\|\mathbf{e}_{\leq}\|} \mathbf{e}_{\leq}$, then $\mathbf{e}^T \mathcal{L}_A = \mathbf{e}_{\leq}^H$. If, moreover, $\mu_{i1} = 0$ $\forall i \neq 1$, then $\mathcal{L}_A \mathbf{e}_{\leq} = \frac{\|\mathbf{e}_{\leq}\|^2}{n} \mathbf{e}$.

(ii) if $\mathbf{e}^T A = \mathbf{e}_{\leq}^H$ & $V \mathbf{e}_1 = \frac{e^{i\theta}}{\sqrt{n}} \mathbf{e}$, then $\mathbf{e}^T \mathcal{L}_A = \frac{\mathbf{e}_{\leq}^H \mathbf{e}}{n} \mathbf{e}^T$ whenever $\mu_{1j} = 0$ $\forall j \neq 1$.