A c (Cnxn

Theorem HYP.

Let A be such that “p(A) is eigenvalue of A and there exists k > 1 such that
AF is non negative and irreducible” (HYP) (NOTE: if A is non negative, then
HYP on A is equivalent to IRREDUCIBILITY of A). Then

(i) p(A) is positive, is a simple eigenvalue of A and of AT, and 3! z, w both
positive vectors such that ||z||; = ||w|1 = 1 and Az = p(A)z, ATw = p(A)w.
(ii) There exists a diagonal matrix D with positive diagonal entries such that
DAD™! is p(A)-stochastic by columns (or by rows). Note that (DAD™1);; # 0
iff (4);; # 0, and (DAD™1);; and (A);; have the same argument [A and DAD ™!
have the same pattern].

(iii) If [A¥];; is positive for some i, then the remaining n — 1 eigenvalues of A
have absolute value less than p(A).

(iv) If A* is positive, then the remaining n — 1 eigenvalues of A have absolute
value less than p(A).

(v) If the remaining n — 1 eigenvalues of A have absolute value less than p(A),
then ﬁAJ — %, and therefore there exists s such that A® is positive.
(vi) A is similar to a p(A)-stochastic by rows and by columns matrix.

PROOF. SEE Appendix.

NOTE. Let A be a non negative n x n matrix. Then A is primitive (A > 0, A
irreducible, p(A) dominates the remaining eigenvalues of A) iff there exists m
such that A™ is positive.

EXERCISE (by Fra). Let A be irreducible, with hermitian pattern (in the sense
that a;; # 0 iff aj; # 0, and, in such case, a;;a;; € RT), and such that A? is
non negative and irreducible. Prove that then there exists m such that A™ is
positive.

Corollary HYP. Let A be a stochastic by columns n x n matrix, i.e. >, a;; =1
Vj (a;; € C). Assume that there exists k¥ > 1 such that A* > 0. Then 1 is
eigenvalue of A and 1 = p(A) (SEE Appendix). If, moreover, A* is irreducible,
then all assertions (i)—(vi) hold with p(4) =1 and w? =eT =[11 --- 1].

The result stated in the latter Corollary justifies the researches of Riccardo.

At the end of the Appendix, are reported some considerations on n xn stochastic
by columns matrices A (with complex entries), from which one deduces:
-IEmi(1) = m‘g“(l)7 then there exists z such that Az =z, z7e # 0.

- IfmA(1) > m;“(l) and 3k such that A* > 0, then (1 = p(A) is eigenvalue of
A, see above, and) A must have an eigenvalue A # 1 such that |A| = 1.



2 x 2 THEOREM. Let A be a square n X n matrix that can be partitioned as

follows
M 0
a=[ ¥ 1]

where M (L) is square and the number of its columns (rows) is equal to the
number of columns (rows) of N. M can have complex entries, N > 0, L > 0.
Assume that M satisfies HYP (this implies p(M) positive). Assume also that
p(L) < p(M) (this implies (p(M)I — L)"'N > 0).

Then p(A) (= p(M)) is positive, is a simple eigenvalue of A and of AT, and
exists a unique z > 0 such that ||z||; =1 and Az = p(A)z:

7= { (p(M)I—zL)*lNz } ,2>0, Mz = p(M)z,

and a unique w > 0 such that ||w|j; =1 and ATw = p(A)w:

Moreover, there exists a diagonal matrix D with positive diagonal entries such
that DM D~ is p(M)-stochastic by columns. As a consequence, by the third
Gershgorin theorem, if [M*];; > 0 for some i, then the remaining order(M) — 1
eigenvalues of M (the remaining n — 1 eigenvalues of A) have absolute value
smaller than p(M) (= p(A)), and thus, if j — +o0,

1 j ZWT i M] 0
o = v (Y=L snitve o))

Proof. See the Appendix.



3 x 3 THEOREM. Let A be a square n X n matrix that can be partitioned as

follows
L+ 0 0
A=| Niu M 0
S Ny Lo

with M, Ly, Lo square. M and S can have complex entries, L1 > 0, N; > 0,
Ly >0, N2 > 0.
Assume that M satisfies HYP (note that this implies p(M) positive). Assume
also that p(L1) < p(M), p(L2) < p(M) (note that this implies (p(M)I —
L3)"'Na >0, (p(M)I — LT)~'N{ > 0).

Then p(A) (= p(M)) is positive, is a simple eigenvalue of A and of AT, and
exists a unique z > 0 such that ||z||; =1 and Az = p(A)z:

, 2>0, Mz =p(M)z,

0
z = 4
(p(M)I — L2)~ " Noz
and a unique w > 0 such that |[w|; = 1 and ATw = p(A)w:

(p(M)I — LT) "' N{'w
w = W ., w>0, MW = p(M)w.
0

Moreover, there exists a diagonal matrix D with positive diagonal entries such

that DM D=1 is p(M)-stochastic by columns. As a consequence, by the third
Gershgorin theorem, if [M*];; > 0 for some i, then the remaining order(M) — 1
eigenvalues of M (the remainining n — 1 eigenvalues of A) have absolute value
smaller than p(M) (= p(A)), and thus, if j — +o0,

Ly 0 0
M0 )
Ly

1 ; zw’ ;
_ A7 - Al =
P07 T Wz (

Proof. Left to the reader.



Consider a n x n matrix A of the form

A:{% 2} (+%)

with M, L square, non negative, N non negative, M and N with the same
number of columns, My; = 0 Vi, Y . My + >, Npj = 1 Vj, and L with the
structure

L | La 0
: : .0
Lrl e Lr,rfl 0

where the diagonal zeros are null square matrices not necessarily of the same
order, and Y7, > [Lalij =1VjVt=1,...,7r —1. Then

1 N =0 (= M stochbycol)
p(A)=p(M)=<¢ <1 N #0, M reducible
<1 N #0, M irreducible

Assume also that no column of M is null.

These assumptions are satisfied by QPT Q" where P is the transition matrix
of the web and @ is the permutation putting together and down all null rows
and null sub-rows of P, in the sense that

T T
arg"=| " |

with M, L square, each row of MT non null, and L with a strictly lower trian-
gular block structure (see below for a precise definition of @). By the 2 x 2 The-
orem, if the square matrix M satisfies HYP (iff M irreducible (M > 0!)), since
p(L) =0 < p(M) = p(P), then it is uniquely defined z, z > 0, ||z||; = 1, such
that QPTQTz = p(P)z, PT(Q"z) = p(P)(Q"z) with p(P) < 1, unless N = 0

(1/p(P)) .
iri—j deg ) Di,

in which case p(P) = 1, i.e., if we set p = Q”'z, we have p; = Y

Note that p; = (QTz); = z,, is null whenever ¢; = order(M) + s where the

sth row of (I — ﬁL)*lN is null. If we want p; > 0 V4, then it is enough to
perturb one zero entry of each null row of (I — mL)_lN. In order to do this,

it is sufficient to perturb one zero entry of each null row of N

[ in fact,

1 1 1
I-—L)"'N=N+—IN+...4+——L""'N
U= an™ o) (D)1

where L' N > 0 ]

(fi. 0 — m), say the one in position r, and maintain non null but reduce

(fi. L L___) the nonzero entries in the r column of N and of M
deg (-) deg ()+1

so that the resulting M" and N’ yet satisfy >, M;; + 3 Ny, =1V j, and all
other assumptions [M’ > 0, N’ > 0, M’ satisfies HYP iff M’ irreducible].



Observe also that 0 < p(P’) = p(M') < p(P) = p(M) <1 (=1iff N =0),
where P’ is defined by the following equality

, M 0
aryer=| N 7|

(since M’ < M, M' # M, M is irreducible, we have p(M’) < p(M)) and it
is uniquely defined z’, z’ > 0, ||z’||; = 1, such that Q(P)TQTz = p(P")7z,
(PHYT(QTZ') = p(P")(QTZ") with p(P’) < 1, i.e., if we set p’ = QTz', we have

1 P’
P = Sy YD I = 1,9 > 0.



Consider a n x n matrix A of the form

Ly 0 O
A= | Ny M 0 (s * %)
S Ny Lo

with M, L1, Ly square, non negative, N1, N3, .S non negative, M and N with
the same number of columns, Li, N1, S with the same number of columns,
S oelLalks + 22 Nulig + 20481k = 1 V34, 30, Mij 4+ 3 [Nalky = 1 V3, My =0
Vi, and Lo with the structure

0 0 . 0

Ly = (L2)21 O
: . 0
(L2)r1 -+ (L2)rp—1 O

where the diagonal zeros are null square matrices not necessarily of the same
order, and >0, . > .((L2)st)ij = 1 Vj ¥Vt = 1,...,r — 1, and L; with the
structure

0 0 0

L= (Li)2r O
: . 0
(L1)s1 -+ (L1)ss—1 O

where the diagonal zeros are null square matrices not necessarily of the same
order.
Then

1 Ny =0 (= M stochbycol)
p(A) =p(M)=< <1 Ny=#0, M reducible
<1 N3 #0, M irreducible

Assume M with no null row and no null column.

These assumptions are satisfied by QPT QT where P is the transition matrix
of the web and @ is the permutation putting together and down (together and
on left) all null rows and null sub-rows (null columns and null sub-columns) of
P, in the sense that

¥ NI sT
QPRT=| 0 MT N%f
0o o0 L}

with M, Ly, Ly square, each row and column of M7 non null, and L1, Ly with a
strictly lower triangular block structure (see below for a precise definition of Q).
By the 3 x 3 Theorem, if the square matrix M satisfies HYP (iff M irreducible
(M > 0)), since p(L2) = p(L1) =0 < p(M) = p(P), then it is uniquely defined
z,7 > 0, ||z||; = 1, such that QPTQTz = p(P)z, PT(QTz) = p(P)(QTz) with
p(P) < 1, unless No = 0 in which case p(P) = 1, i.e., if we set p = QT'z, we
have p; = Ei:z‘—»j %Pm ”p”l =1,p; >0.

Note that p; = (Q7z); = 2, is null whenever ¢; < order(L;) or q; =

order(Ly) + order(M) + s where the sth row of (I — ng)_lNQ is null. If



we want p; > 0Vi: ¢; > order(Ly), then it is enough to perturb one zero entry

of each null row of (I — ﬁLg)_lNg. In order to do this, it is sufficient to
perturb one zero entry of each null row of Ny
[ in fact

(I 1L)_1N Ny + 1LN+ + L roy,

- 2 2= No+ ——=LolNo+ ...+ ——v 2
p(M) p(M) p(M)r=172

where LQNQ >0 ]
(fi. 0 — m), say the one in position r, and maintain non null but reduce
(f.i. de;g(») — degl(-)+1) the nonzero entries in the r column of Ny and of M

so that the resulting M’ and N; yet satisfy >, M;; + 3, (N2);; = 1 Vj, and
all other assumptions [M' > 0, N5 > 0, M’ satisfies HYP iff M’ irreducible].

Observe also that 0 < p(P’) = p(M') < p(P) = p(M) <1 (=1iff Ny =0),
where P’ is defined by the following equality

L; 0 0
Q(P/)TQT _ Nl M’ 0
S N Ly

(since M < M, M' # M, M is irreducible, we have p(M’) < p(M)) and it
is uniquely defined z’, z’ > 0 (2] = 0 iff i < order(L1)), ||z’||1 = 1, such that
QUP'YTQTa = p(P')a!, (P)'(Q%) = p(P') (@) with p(P") < 1, L., if we
set p’ = QT2/, we have pjj = Y A/p) ))pg, lp’'llh =1, p" >0 (p, = 0 iff

1 i—] deg (7)
qi < order(Ly))].



Example: A = QPTQT, P web transition matrix
Let P be the n x n transition matrix of an oriented graph with n vertices (f.i.
the web graph), i.e. P = m if there is a link from i to j (deg (i) = #
links from 7), and P;; = 0 otherwise. Note that P is a non negative matrix such
that > . P; = 1if deg(i) > 0, and >, P;; = 0 if deg(i) =0, i.e. P isa non
negative quasi-stochastic by rows matrix.

Here below is the procedure generating QPQT

Move the r1 null rows of the upper-left n X n submatrix of P down:

R, PRT =

0 - - - - 00

Move the r2 null rows of the upper-left (n — 1) X (n — r1) submatrix of Ry PR{ down:

RoR1PRTRY =

0 - - - - 0
o - - - - - 0

Move the r3 null rows of the upper-left (n —r1 —r2) X (n—rq —r2) submatrix of RoR1 PRTR?
down:

R3RaRy PRTRTRT =
0 - - -0
0o - - - -0
0 - - - - -0

In the upper-left (n —r1 —r2 —r3) X (n — r1 — r2 — r3) submatrix of R3R2R1PRTR§R§
there is no null row. Call it M7T and try to apply the 2 x 2 THEOREM.

Move the ¢1 null columns of the upper-left (n —rq —r2 —r3) X (n —r1 —r2 —r3) submatrix
of R3RyR1 PRT RT RY on the left:

C1R3R2R1 PRTRTRTCT =

o oo -
o

0 - - - - - 0

Move the c2 null columns of the almost upper-left (n—r1 —r2—r3—c1) X (n—r1—r2—r3—ci)



submatrix of C1 R3R2R1 PR{R%R?;CT on the left:

CoC1R3ReR1PRTRIRYCTcT = | 0

0o - - - 0
o - - . .
0 0

Move the c¢3 null columns of the almost almost upper-left (n —r1 —ro —r3 —c1 —c2) X (n —
r1 — T2 — T3 — 1 — c2) submatrix of CQClR3R2R1PRTRgR§CTCg on the left:

C3C2C1 RsRe Ry PRTRYRTCTCT CF

0
0
-0 L NI g7
=0 0 0o MT =| o MT NT
(U -0 o o LY
0 0
0 -0

In the almost almost almost upper-left (n —r1 —rog —r3 —c1 —ca —c3) X (n —r1 —rog —
r3 —c1 — ¢z — ¢3) submatrix of C3C2C1 R3R2R1PRTR§R§CTCgCg there is no null column
(besides no null row). Call it MT and try to apply the 3 x 3 THEOREM.



APPENDIX

Perron-Frobenius theorem. Let M be a non negative (M;; > 0), irreducible
n x n matrix. Then p(M) is positive, p(M) is a simple eigenvalue of M, and
there exists a unique positive vector z (z; positive for all ¢) such that ||z|; =1
and Mz = p(M)z. If M is also stochastic by columns, then 1 = p(M).

PROOF of THEOREM HYP

(i) Since A is a non negative, irreducible n x n matrix, by the Perron-Frobenius
theorem p(A*) is a positive simple eigenvalue of A* (this implies that p(A) is
positive!) and there exists a unique positive vector z such that ||z|; = e’z =1,
AFz = p(AF)z = p(A)*z. Let y # 0 be an eigenvector of A corresponding
to its eigenvalue p(A), thus Ay = p(A)y. Note that then y also satisfies the
identities A’y = p(A)7y, Vj, and in particular the identity A*y = p(A4)Fy.
Since mg‘k (p(A)k) = 1, this implies y = az, for some a € C. So we have

Az = p(A)z and m?(p(A)) > m;“(p(A)) = 1 (Stefano). Finally note that

mA(p(A)) < mfk(p(A)k) =1, thus m?(p(A)) = 1. The assertion on w follows

a a

by observing that A satisfies HYP iff AT satisfies HYP.

(ii) By (i) we know that there exists a unique positive vector w such that
lwlli = 1, ATw = p(A)w. It follows that > ,[AT];;w; = p(A)w;, and thus
> wilAlij w;l = p(A) (V7). Now observe that the latter identity can be rewrit-
ten as follows Y_,[DAD™'];; = p(A), Vj, where D = d(w) is a diagonal matrix
with positive diagonal entries.

(iii) Let D be the matrix introduced in (ii). Then

(A*);; positive implies (DA*D~1);; = [((DAD™1)*];; positive.

A¥ non negative implies DA* D=1 = (DAD~!)* non negative.

A¥ irreducible implies DA*D~! = (DAD~1)* irreducible.

Note also that, since DAD ™! is p(A)-stochastic by columns, i.e. (DAD™)Te =
p(A)e, we have that (DAD~1)* is p(A)*-stochastic by columns, i.e. (DAD™1)¥)Te =
p(A)*e.

Note that then all the Gershgorin circles G; of (DAD™1)*)T are in the
set B={z€ C:|z| < p(A)*} and their borders pass through the point p(A)*.
Moreover, the G; coincide with B if [(DAD~1)*];; = 0, otherwise they touch the
circle |z| = p(A)* only in p(A)*. So, we can apply the third Gershgorin theorem
to the matrix (DAD™)* and say that a complex number z, |z| = p(A)*, not
being inside any circle, can be an eigenvalue of (DAD™')* only if z = p(A)¥,
since p(A)* is the only point in N;OK;. This and the fact that p(A)* is a
simple eigenvalue of (DAD™!)* imply that the remaining n — 1 eigenvalues of
(DAD~1)% must have absolute value smaller than p(A)*, and thus, that exactly
n — 1 eigenvalues of DAD ™! must have absolute value smaller than p(A).

(iv) It follows from (iii)

(v) Assume that A satisfies HYP. Let J be the Jordan form of A. Then there
is a non singular matrix S such that

p(4)
S-1AS = J— Al = p(A), )\#p(A)]

[ < )]
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Moreover, we can assume that the first column of S is exactly the vector z
introduced in (i). Note that eI S71A = p(A)e?'S~! and in the same time, of
course, wl' A = p(A)w”, where w is the other vector introduced in (i). Thus
ef'S~! must be equal to aw” for some o € C (m‘;T (p(4)) = m‘;(p(A)) =1).
Then, since el S~1z = 1, we must have aw?z = 1, that implies a = 1/w”z.
In other words, if we assume that the first column of S is exactly the vector z,
then the first row of S~ is exactly the vector ﬁwT.

Now consider a partition of S and S~! according to the form of .J:

1 T
WTZW
S = z X X R S_1 = Y
Y

(note that X, X, Y, Y must satisfy the identities w7 X = 07, wZX = 07,
Yz=0,Yz=0). Then
1 A= _1 gjig-1

p(A)I p(A)J )
1 J 1T
=z X X p(A)I {‘M =p(A), A # P(A)} A w 1Z/
1 ’ Y
ooy |1l < p(A)
Loz ! sz+X;{\)\|— (A), X # (A)]ijrX;{‘,\K (A)rg,
p(A) " wTlz p(Ay | TP ATR o(A)7 p :

If there is no eigenvalue A of A such that |A| = p(A), A # p(A), then the last
formula implies that, as j — +o0o0, the matrix ﬁAJ’ tends to the rank one

matrix ﬁsz, which is positive. Thus there must exists an s such that A® is

positive.

(vi) Let S be a non singular matrix. First notice that SAS~! is p(A)-stochastic
by columns and by rows iff (SAS~1)Te = p(A)e, (SAS™1)e = p(A)eiff AT(STe) =
p(A)(STe), A(S~'e) = p(A)(S~'e). Since A satisfies HYP, there exist pos-
itive vectors z and w’ such that ATw’ = p(A)w', Az = p(A)z, ||z = 1,
>, wiz; = n. Now the problem is reduced to find S such that STe = w’ (1),
Sz = e (2). The matrix S = M + (e — Mz)e” satisfies (2) for all M, so it is
enough to choose M such that (1) holds:

STe=MTe+ ((e — Mz)Te)e =w'.

The latter equality is satisfied in particular by M = d(w’), and such choice of
M makes S non singular (check it!).

PROOF of COROLLARY HYP

Since A is stochastic by columns, we have ATe =e,e=[11 --- 1]7,s0 1 is
eigenvalue of AT and therefore of A (a matrix and its transpose have the same
eigenvalues). If ) is an eigenvalue of A then A\* is an eigenvalue of A*. Then

X < 4% = max 3 [47)] = max 3 [4Y];; = max1 =1

(recall that u eig of M implies |u| < ||[M||1, and that A stochbycol implies A7
stochbycol for all j). Thus, [A\|* = |A\¥| < 1, which implies |A\| < 1. So the
absolute value of any eigenvalue of A is bounded by 1, and at least one of them
(i.e. 1) has absolute value one.

11



PROOF of the 2 x 2 THEOREM

By the Perron-Frobenius theorem, p(M¥) is a positive simple eigenvalue of M*
and there exists z > 0 such that M*z = p(M*)z. p(M) is positive since
p(M)* = p(M*) > 0. Observe that My = p(M)y, y # 0, implies M*y =
p(M)*y = p(M*)y, thus y = az, Mz = p(M)z, and m}!(p(M)) = 1. Moreover,

mM(p(M)) < mf‘L/[k(p(M)k) = maMk(p(Mk)) = 1. So, p(M) is positive, is a
simple eigenvalue of M, and thus p(A) (= p(M)) is positive, and is a simple
eigenvalue of A. In fact,

|V L= [ oo [ ]

implies x = (p(M)I — L)™' Nz. Finally, of course, Z can be chosen so that
||z]|1 = 1 where

2= { (p(M)I—ZL)_lNZ } :

Analogously, p(M) is a simple eigenvalue of M7 and there exists w > 0 such
that MTw = p(M)Ww, and thus p(A) (= p(M)) is a simple eigenvalue of AT. In
fact,

IS I el N R I

implies x = 0. Finally, of course, W can be chosen so that ||w|; = 1 where
o w

The proof of the remaining assertions is left to the reader (proceed as in the
proof of (ii),(iii),(v) of Theorem HYP).

PROOF of the 3 x 3 THEOREM
Left to the reader.
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In the following A is stochastic by columns and in C™*"

Assume mq(1) =my(l) = ¢ (= qg= mA" (1) = m?T(l)). Let z; # 0 be linearly

independent and such that Az; = z;, i = 1,...,¢q, and consider the Jordan
canonical form of A:

< b

ST'AS = [IAI > 1, A#l]
[|>\| < 1]

Observe that the equalities (eZ S~ A = (ef'S~1), r=1,...,q, and e A = T
imply e” = Y7 | B,el'S~1. Moreover, E must be such that I, = EAZ = EZ.
Thus e7Z = Y, B8:i(efS™1)Z = 3, Biel’, and therefore 3; = e’z;. In other
words, the following formula must hold:

e = > (e z)(el's) [ifg=1:e" = (eT2)(e 5 7))

T

Note: the latter formula proves that at least one e 'z; must be nonzero [if ¢ = 1:

e’z must be nonzero] !
Then we have the following representation of A":

T T

AT:ZE+X{|)\| > 1, )\;Al} Y+X{|A| < 1} Y
Such formula let us conclude that if the eigenvalues A of A different from 1
are such that |A\| < 1, then A" — ZEF, and, in particular, A"v converges to
a linear combination of the eigenvectors of 1 [if ¢ = 1: A”™ — % and A"v
converges to a multiple of z; as a consequence, if z > 0 (as in the example

_1
A:{ 32 b }0<b<%)thenﬂrsuchthatAT>O(A2>O)].

= 1-b
1
0o 1|,
10

2
we have mq(1) = mgy(1) = 2. For the first matrix 1 is dominant, whereas for
the second one 1 is not dominant.

Example. For both the following matrices

1 0

A= 1 , A=

D= O

Assume now mg(1) = 2 > my(1) = 1. In this case we shall do the following
remark: if A* is non negative for some k, then A must have an eigenvalue \ # 1
such that |A\| = 1. We conjecture that the latter remark holds in the more
general case mq(1) > mgy(1) (it is not true if mq(1) = my(1), see the above
Example).
Let z1,22 # 0 and linearly independent be such that Az, = z1, Azs = 21 + zo.
Consider the Jordan canonical form of A:

E

Y )

1



[ 1 1

o 1]

STIAS = (4> 1, 0 21]

[|A|<1]

Then we have the following representation of A":

AT = ZH ’1" E+X{|/\|21,)\;é1}Y+)~({|/\|<1}f/
_ Tg—1 _ZQEET zleT " v "5
= mer ST + -+ o+ XML AFL Y+ XA <1 Y

(prove it!).

Now let us prove the remark. So, assume A* > 0 [= 1 = p(A) is eigenvalue of
A (by Corollary HYP)]. If all A # 1 are such that || < 1, then, chosen p such
that (z1), # 0, we would have |[(A*™), ;| — +o00 as m — +oo, and this is not
possible since A*™ is non negative and stochastic by columns for all m.

Note: If A € C™*™ is stochastic by columns and S is the matrix transforming
A in Jordan form, i.e.

[1] U‘Zl

S5T1AS = [IAl>1, A1) } 1=
[Al=1]

then e (Se;) =0, if j # q1,q1 + g2, ..., q1 + g2 + -+ + q4 (prove it!).
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