
A ∈ Cn×n

Theorem HYP.
Let A be such that “ρ(A) is eigenvalue of A and there exists k ≥ 1 such that
Ak is non negative and irreducible” (HYP) (NOTE: if A is non negative, then

HYP on A is equivalent to IRREDUCIBILITY of A). Then

(i) ρ(A) is positive, is a simple eigenvalue of A and of AT , and ∃ ! z, w both
positive vectors such that ‖z‖1 = ‖w‖1 = 1 and Az = ρ(A)z, AT w = ρ(A)w.
(ii) There exists a diagonal matrix D with positive diagonal entries such that
DAD−1 is ρ(A)-stochastic by columns (or by rows). Note that (DAD−1)ij 6= 0
iff (A)ij 6= 0, and (DAD−1)ij and (A)ij have the same argument [A and DAD−1

have the same pattern].
(iii) If [Ak]ii is positive for some i, then the remaining n − 1 eigenvalues of A
have absolute value less than ρ(A).
(iv) If Ak is positive, then the remaining n − 1 eigenvalues of A have absolute
value less than ρ(A).
(v) If the remaining n − 1 eigenvalues of A have absolute value less than ρ(A),

then 1
ρ(A)j Aj → zw

T

w
T
z
, and therefore there exists s such that As is positive.

(vi) A is similar to a ρ(A)-stochastic by rows and by columns matrix.

PROOF. SEE Appendix.

NOTE. Let A be a non negative n × n matrix. Then A is primitive (A ≥ 0, A
irreducible, ρ(A) dominates the remaining eigenvalues of A) iff there exists m
such that Am is positive.

EXERCISE (by Fra). Let A be irreducible, with hermitian pattern (in the sense
that aij 6= 0 iff aji 6= 0, and, in such case, aijaji ∈ R+), and such that A2 is
non negative and irreducible. Prove that then there exists m such that Am is
positive.

Corollary HYP. Let A be a stochastic by columns n× n matrix, i.e.
∑

i aij = 1
∀ j (aij ∈ C). Assume that there exists k ≥ 1 such that Ak ≥ 0. Then 1 is
eigenvalue of A and 1 = ρ(A) (SEE Appendix). If, moreover, Ak is irreducible,
then all assertions (i)–(vi) hold with ρ(A) = 1 and wT = eT = [1 1 · · · 1].

The result stated in the latter Corollary justifies the researches of Riccardo.

At the end of the Appendix, are reported some considerations on n×n stochastic
by columns matrices A (with complex entries), from which one deduces:
- If mA

a (1) = mA
g (1), then there exists z such that Az = z, zT e 6= 0.

- If mA
a (1) > mA

g (1) and ∃ k such that Ak ≥ 0, then (1 = ρ(A) is eigenvalue of
A, see above, and) A must have an eigenvalue λ 6= 1 such that |λ| = 1.
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2 × 2 THEOREM. Let A be a square n × n matrix that can be partitioned as
follows

A =

[

M 0
N L

]

where M (L) is square and the number of its columns (rows) is equal to the
number of columns (rows) of N . M can have complex entries, N ≥ 0, L ≥ 0.
Assume that M satisfies HYP (this implies ρ(M) positive). Assume also that
ρ(L) < ρ(M) (this implies (ρ(M)I − L)−1N ≥ 0).

Then ρ(A) (= ρ(M)) is positive, is a simple eigenvalue of A and of AT , and
exists a unique z ≥ 0 such that ‖z‖1 = 1 and Az = ρ(A)z:

z =

[

z̃

(ρ(M)I − L)−1N z̃

]

, z̃ > 0, M z̃ = ρ(M)z̃,

and a unique w ≥ 0 such that ‖w‖1 = 1 and AT w = ρ(A)w:

w =

[

w̃

0

]

, w̃ > 0, M
T
w̃ = ρ(M)w̃.

Moreover, there exists a diagonal matrix D with positive diagonal entries such
that DMD−1 is ρ(M)-stochastic by columns. As a consequence, by the third
Gershgorin theorem, if [Mk]ii > 0 for some i, then the remaining order(M)− 1
eigenvalues of M (the remaining n − 1 eigenvalues of A) have absolute value
smaller than ρ(M) (= ρ(A)), and thus, if j → +∞,

1

ρ(M)j
A

j →
zw

T

wT z

(

A
j =

[

M j 0
∑j

i=0 LiNM j−i Lj

] )

.

Proof. See the Appendix.
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3 × 3 THEOREM. Let A be a square n × n matrix that can be partitioned as
follows

A =





L1 0 0
N1 M 0
S N2 L2





with M , L1, L2 square. M and S can have complex entries, L1 ≥ 0, N1 ≥ 0,
L2 ≥ 0, N2 ≥ 0.
Assume that M satisfies HYP (note that this implies ρ(M) positive). Assume
also that ρ(L1) < ρ(M), ρ(L2) < ρ(M) (note that this implies (ρ(M)I −
L2)

−1N2 ≥ 0, (ρ(M)I − LT
1 )−1NT

1 ≥ 0).
Then ρ(A) (= ρ(M)) is positive, is a simple eigenvalue of A and of AT , and

exists a unique z ≥ 0 such that ‖z‖1 = 1 and Az = ρ(A)z:

z =





0

z̃

(ρ(M)I − L2)
−1N2z̃



 , z̃ > 0, M z̃ = ρ(M)z̃,

and a unique w ≥ 0 such that ‖w‖1 = 1 and AT w = ρ(A)w:

w =





(ρ(M)I − LT
1 )−1NT

1 w̃

w̃

0



 , w̃ > 0, M
T
w̃ = ρ(M)w̃.

Moreover, there exists a diagonal matrix D with positive diagonal entries such
that DMD−1 is ρ(M)-stochastic by columns. As a consequence, by the third
Gershgorin theorem, if [Mk]ii > 0 for some i, then the remaining order(M)− 1
eigenvalues of M (the remainining n − 1 eigenvalues of A) have absolute value
smaller than ρ(M) (= ρ(A)), and thus, if j → +∞,

1

ρ(M)j
A

j →
zw

T

wT z

(

A
j =





L
j
1 0 0

M j 0

L
j
2





)

.

Proof. Left to the reader.
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Consider a n × n matrix A of the form

A =

[

M 0
N L

]

(∗∗)

with M, L square, non negative, N non negative, M and N with the same
number of columns, Mii = 0 ∀ i,

∑

i Mij +
∑

k Nkj = 1 ∀ j, and L with the
structure

L =













0 0 · · · 0

L21 0
. . .

...
...

. . .
. . . 0

Lr1 · · · Lr,r−1 0













where the diagonal zeros are null square matrices not necessarily of the same
order, and

∑r
s=t+1

∑

i[Lst]ij = 1 ∀ j ∀ t = 1, . . . , r − 1. Then

ρ(A) = ρ(M) =







1 N = 0 (⇒ M stochbycol)
≤ 1 N 6= 0, M reducible
< 1 N 6= 0, M irreducible

Assume also that no column of M is null.
These assumptions are satisfied by QP T QT where P is the transition matrix

of the web and Q is the permutation putting together and down all null rows
and null sub-rows of P , in the sense that

QPQT =

[

MT NT

0 LT

]

with M, L square, each row of MT non null, and L with a strictly lower trian-
gular block structure (see below for a precise definition of Q). By the 2×2 The-
orem, if the square matrix M satisfies HYP (iff M irreducible (M ≥ 0!)), since
ρ(L) = 0 < ρ(M) = ρ(P ), then it is uniquely defined z, z ≥ 0, ‖z‖1 = 1, such
that QP T QT z = ρ(P )z, P T (QT z) = ρ(P )(QT z) with ρ(P ) < 1, unless N = 0

in which case ρ(P ) = 1, i.e., if we set p = QT z, we have pj =
∑

i: i→j
(1/ρ(P ))

deg (i)
pi,

‖p‖1 = 1, pi ≥ 0.
Note that pi = (QT z)i = zqi

is null whenever qi = order(M) + s where the
sth row of (I − 1

ρ(M)L)−1N is null. If we want pi > 0 ∀ i, then it is enough to

perturb one zero entry of each null row of (I − 1
ρ(M)L)−1N . In order to do this,

it is sufficient to perturb one zero entry of each null row of N
[

in fact,

(I −
1

ρ(M)
L)−1N = N +

1

ρ(M)
LN + . . . +

1

ρ(M)r−1
Lr−1N

where LiN ≥ 0
]

(f.i. 0 → 1

deg (·)+1
), say the one in position r, and maintain non null but reduce

(f.i. 1

deg (·)
→ 1

deg (·)+1
) the nonzero entries in the r column of N and of M

so that the resulting M ′ and N ′ yet satisfy
∑

i M ′

ij +
∑

k N ′

kj = 1 ∀ j, and all
other assumptions [M ′ ≥ 0, N ′ ≥ 0, M ′ satisfies HYP iff M ′ irreducible].
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Observe also that 0 < ρ(P ′) = ρ(M ′) < ρ(P ) = ρ(M) ≤ 1 (= 1 iff N = 0),
where P ′ is defined by the following equality

Q(P ′)T QT =

[

M ′ 0
N ′ L

]

(since M ′ ≤ M , M ′ 6= M , M is irreducible, we have ρ(M ′) < ρ(M)) and it
is uniquely defined z′, z′ > 0, ‖z′‖1 = 1, such that Q(P ′)T QT z′ = ρ(P ′)z′,
(P ′)T (QT z′) = ρ(P ′)(QT z′) with ρ(P ′) < 1, i.e., if we set p′ = QT z′, we have

p′j =
∑

i: i→j
(1/ρ(P ′))

deg ′

(i)
p′i, ‖p

′‖1 = 1, p′ > 0.
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Consider a n × n matrix A of the form

A =





L1 0 0
N1 M 0
S N2 L2



 (∗ ∗ ∗)

with M, L1, L2 square, non negative, N1, N2, S non negative, M and N2 with
the same number of columns, L1, N1, S with the same number of columns,
∑

k[L1]kj +
∑

i[N1]ij +
∑

k[S]kj = 1 ∀ j,
∑

i Mij +
∑

k[N2]kj = 1 ∀ j, Mii = 0
∀ i, and L2 with the structure

L2 =













0 0 · · · 0

(L2)21 0
. . .

...
...

. . .
. . . 0

(L2)r1 · · · (L2)r,r−1 0













where the diagonal zeros are null square matrices not necessarily of the same
order, and

∑r
s=t+1

∑

i((L2)st)ij = 1 ∀ j ∀ t = 1, . . . , r − 1, and L1 with the
structure

L1 =













0 0 · · · 0

(L1)21 0
. . .

...
...

. . .
. . . 0

(L1)s1 · · · (L1)s,s−1 0













where the diagonal zeros are null square matrices not necessarily of the same
order.

Then

ρ(A) = ρ(M) =







1 N2 = 0 (⇒ M stochbycol)
≤ 1 N2 6= 0, M reducible
< 1 N2 6= 0, M irreducible

Assume M with no null row and no null column.
These assumptions are satisfied by QP T QT where P is the transition matrix

of the web and Q is the permutation putting together and down (together and
on left) all null rows and null sub-rows (null columns and null sub-columns) of
P , in the sense that

QPQT =





LT
1 NT

1 ST

0 MT NT
2

0 0 LT
2





with M, L1, L2 square, each row and column of MT non null, and L1, L2 with a
strictly lower triangular block structure (see below for a precise definition of Q).
By the 3× 3 Theorem, if the square matrix M satisfies HYP (iff M irreducible
(M ≥ 0!)), since ρ(L2) = ρ(L1) = 0 < ρ(M) = ρ(P ), then it is uniquely defined
z, z ≥ 0, ‖z‖1 = 1, such that QP T QT z = ρ(P )z, P T (QT z) = ρ(P )(QT z) with
ρ(P ) < 1, unless N2 = 0 in which case ρ(P ) = 1, i.e., if we set p = QT z, we

have pj =
∑

i: i→j
(1/ρ(P ))

deg (i)
pi, ‖p‖1 = 1, pi ≥ 0.

Note that pi = (QT z)i = zqi
is null whenever qi ≤ order(L1) or qi =

order(L1) + order(M) + s where the sth row of (I − 1
ρ(M)L2)

−1N2 is null. If

6



we want pi > 0 ∀ i : qi > order(L1), then it is enough to perturb one zero entry
of each null row of (I − 1

ρ(M)L2)
−1N2. In order to do this, it is sufficient to

perturb one zero entry of each null row of N2
[

in fact

(I −
1

ρ(M)
L2)

−1N2 = N2 +
1

ρ(M)
L2N2 + . . . +

1

ρ(M)r−1
Lr−1

2 N2

where Li
2N2 ≥ 0

]

(f.i. 0 → 1

deg (·)+1
), say the one in position r, and maintain non null but reduce

(f.i. 1

deg (·)
→ 1

deg (·)+1
) the nonzero entries in the r column of N2 and of M

so that the resulting M ′ and N ′

2 yet satisfy
∑

i M ′

ij +
∑

k(N2)
′

kj = 1 ∀ j, and
all other assumptions [M ′ ≥ 0, N ′

2 ≥ 0, M ′ satisfies HYP iff M ′ irreducible].
Observe also that 0 < ρ(P ′) = ρ(M ′) < ρ(P ) = ρ(M) ≤ 1 (= 1 iff N2 = 0),

where P ′ is defined by the following equality

Q(P ′)T QT =





L1 0 0
N1 M ′ 0
S N ′ L2





(since M ′ ≤ M , M ′ 6= M , M is irreducible, we have ρ(M ′) < ρ(M)) and it
is uniquely defined z′, z′ ≥ 0 (z′i = 0 iff i ≤ order(L1)), ‖z

′‖1 = 1, such that
Q(P ′)T QT z′ = ρ(P ′)z′, (P ′)T (QT z′) = ρ(P ′)(QT z′) with ρ(P ′) < 1, i.e., if we

set p′ = QT z′, we have p′j =
∑

i: i→j
(1/ρ(P ′))

deg ′

(i)
p′i, ‖p

′‖1 = 1, p′ ≥ 0 (p′i = 0 iff

qi ≤ order(L1))].
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Example: A = QP T QT , P web transition matrix
Let P be the n × n transition matrix of an oriented graph with n vertices (f.i.
the web graph), i.e. Pij = 1

deg (i)
if there is a link from i to j ( deg (i) = #

links from i), and Pij = 0 otherwise. Note that P is a non negative matrix such
that

∑

j Pij = 1 if deg (i) > 0, and
∑

j Pij = 0 if deg (i) = 0, i.e. P is a non
negative quasi-stochastic by rows matrix.

Here below is the procedure generating QPQT

P =





































Move the r1 null rows of the upper-left n × n submatrix of P down:

R1PRT
1 =



















0 · · · · 0 0



















Move the r2 null rows of the upper-left (n − r1) × (n − r1) submatrix of R1PRT
1 down:

R2R1PRT
1 RT

2 =

















 0 · · · · 0
0 · · · · · 0



















Move the r3 null rows of the upper-left (n−r1−r2)×(n−r1−r2) submatrix of R2R1PRT
1 RT

2
down:

R3R2R1PRT
1 RT

2 RT
3 =



















0 · · · 0
0 · · · · 0
0 · · · · · 0



















In the upper-left (n − r1 − r2 − r3) × (n − r1 − r2 − r3) submatrix of R3R2R1PRT
1 RT

2 RT
3

there is no null row. Call it MT and try to apply the 2 × 2 THEOREM.
Move the c1 null columns of the upper-left (n−r1 −r2 −r3)×(n−r1 −r2−r3) submatrix

of R3R2R1PRT
1 RT

2 RT
3 on the left:

C1R3R2R1PRT
1 RT

2 RT
3 CT

1 =



















0
·
·
0
0 · · · 0
0 · · · · 0
0 · · · · · 0



















Move the c2 null columns of the almost upper-left (n−r1−r2−r3−c1)×(n−r1−r2−r3−c1)
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submatrix of C1R3R2R1PRT
1 RT

2 RT
3 CT

1 on the left:

C2C1R3R2R1PRT
1 RT

2 RT
3 CT

1 CT
2 =



















0
· 0
· ·
0 0
0 · · · 0
0 · · · · 0
0 · · · · · 0



















Move the c3 null columns of the almost almost upper-left (n − r1 − r2 − r3 − c1 − c2) × (n −
r1 − r2 − r3 − c1 − c2) submatrix of C2C1R3R2R1PRT

1 RT
2 RT

3 CT
1 CT

2 on the left:

C3C2C1R3R2R1PRT
1 RT

2 RT
3 CT

1 CT
2 CT

3

=



















0
· 0
· · 0
0 0 0 MT

0 · · · 0
0 · · · · 0
0 · · · · · 0



















=





LT
1 NT

1 ST

O MT NT
2

O O LT
2





In the almost almost almost upper-left (n − r1 − r2 − r3 − c1 − c2 − c3) × (n − r1 − r2 −

r3 − c1 − c2 − c3) submatrix of C3C2C1R3R2R1PRT
1 RT

2 RT
3 CT

1 CT
2 CT

3 there is no null column

(besides no null row). Call it MT and try to apply the 3 × 3 THEOREM.
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APPENDIX

Perron-Frobenius theorem. Let M be a non negative (Mij ≥ 0), irreducible
n × n matrix. Then ρ(M) is positive, ρ(M) is a simple eigenvalue of M , and
there exists a unique positive vector z (zi positive for all i) such that ‖z‖1 = 1
and Mz = ρ(M)z. If M is also stochastic by columns, then 1 = ρ(M).

PROOF of THEOREM HYP

(i) Since Ak is a non negative, irreducible n×n matrix, by the Perron-Frobenius
theorem ρ(Ak) is a positive simple eigenvalue of Ak (this implies that ρ(A) is
positive!) and there exists a unique positive vector z such that ‖z‖1 = eT z = 1,
Akz = ρ(Ak)z = ρ(A)kz. Let y 6= 0 be an eigenvector of A corresponding
to its eigenvalue ρ(A), thus Ay = ρ(A)y. Note that then y also satisfies the
identities Ajy = ρ(A)jy, ∀ j, and in particular the identity Aky = ρ(A)ky.

Since mAk

g (ρ(A)k) = 1, this implies y = αz, for some α ∈ C. So we have

Az = ρ(A)z and mA
a (ρ(A)) ≥ mA

g (ρ(A)) = 1 (Stefano). Finally note that

mA
a (ρ(A)) ≤ mAk

a (ρ(A)k) = 1, thus mA
a (ρ(A)) = 1. The assertion on w follows

by observing that A satisfies HYP iff AT satisfies HYP.

(ii) By (i) we know that there exists a unique positive vector w such that
‖w‖1 = 1, AT w = ρ(A)w. It follows that

∑

i[A
T ]jiwi = ρ(A)wj , and thus

∑

i wi[A]ijw
−1
j = ρ(A) (∀ j). Now observe that the latter identity can be rewrit-

ten as follows
∑

i[DAD−1]ij = ρ(A), ∀ j, where D = d(w) is a diagonal matrix
with positive diagonal entries.

(iii) Let D be the matrix introduced in (ii). Then
(Ak)ii positive implies (DAkD−1)ii = [(DAD−1)k]ii positive.
Ak non negative implies DAkD−1 = (DAD−1)k non negative.
Ak irreducible implies DAkD−1 = (DAD−1)k irreducible.
Note also that, since DAD−1 is ρ(A)-stochastic by columns, i.e. (DAD−1)T e =
ρ(A)e, we have that (DAD−1)k is ρ(A)k-stochastic by columns, i.e. ((DAD−1)k)T e =
ρ(A)ke.

Note that then all the Gershgorin circles Gj of ((DAD−1)k)T are in the
set B = {z ∈ C : |z| ≤ ρ(A)k} and their borders pass through the point ρ(A)k.
Moreover, the Gj coincide with B if [(DAD−1)k]jj = 0, otherwise they touch the
circle |z| = ρ(A)k only in ρ(A)k . So, we can apply the third Gershgorin theorem
to the matrix (DAD−1)k and say that a complex number z, |z| = ρ(A)k, not
being inside any circle, can be an eigenvalue of (DAD−1)k only if z = ρ(A)k,
since ρ(A)k is the only point in ∩j∂Kj . This and the fact that ρ(A)k is a
simple eigenvalue of (DAD−1)k imply that the remaining n − 1 eigenvalues of
(DAD−1)k must have absolute value smaller than ρ(A)k , and thus, that exactly
n − 1 eigenvalues of DAD−1 must have absolute value smaller than ρ(A).

(iv) It follows from (iii)

(v) Assume that A satisfies HYP. Let J be the Jordan form of A. Then there
is a non singular matrix S such that

S−1AS = J =











ρ(A)
[

|λ| = ρ(A), λ 6= ρ(A)

]

[

|λ| < ρ(A)

]











.

10



Moreover, we can assume that the first column of S is exactly the vector z

introduced in (i). Note that eT
1 S−1A = ρ(A)eT

1 S−1 and in the same time, of
course, wT A = ρ(A)wT , where w is the other vector introduced in (i). Thus

eT
1 S−1 must be equal to αwT for some α ∈ C (mAT

g (ρ(A)) = mA
g (ρ(A)) = 1).

Then, since eT
1 S−1z = 1, we must have αwT z = 1, that implies α = 1/wT z.

In other words, if we assume that the first column of S is exactly the vector z,
then the first row of S−1 is exactly the vector 1

w
T
z
wT .

Now consider a partition of S and S−1 according to the form of J :

S =



 z X X̃



 , S
−1 =





1
w

T
z

w
T

Y

Ỹ





(note that X , X̃, Y , Ỹ must satisfy the identities wT X = 0T , wT X̃ = 0T ,

Y z = 0, Ỹ z = 0). Then
1

ρ(A)j Aj = 1
ρ(A)j SJjS−1

=





z X X̃

















1

1
ρ(A)j

[

|λ| = ρ(A), λ 6= ρ(A)

]j

1
ρ(A)j

[

|λ| < ρ(A)

]j

















1
w

T
z

w
T

Y

Ỹ



 ,

1

ρ(A)j
Aj =

1

w
T
z

zw
T + X

1

ρ(A)j

[

|λ| = ρ(A), λ 6= ρ(A)

]j

Y + X̃
1

ρ(A)j

[

|λ| < ρ(A)

]j

Ỹ .

If there is no eigenvalue λ of A such that |λ| = ρ(A), λ 6= ρ(A), then the last
formula implies that, as j → +∞, the matrix 1

ρ(A)j Aj tends to the rank one

matrix 1
w

T
z
zwT , which is positive. Thus there must exists an s such that As is

positive.

(vi) Let S be a non singular matrix. First notice that SAS−1 is ρ(A)-stochastic
by columns and by rows iff (SAS−1)T e = ρ(A)e, (SAS−1)e = ρ(A)e iff AT (ST e) =
ρ(A)(ST e), A(S−1e) = ρ(A)(S−1e). Since A satisfies HYP, there exist pos-
itive vectors z and w′ such that AT w′ = ρ(A)w′, Az = ρ(A)z, ‖z‖1 = 1,
∑

i w′

izi = n. Now the problem is reduced to find S such that ST e = w′ (1),
Sz = e (2). The matrix S = M + (e − Mz)eT satisfies (2) for all M , so it is
enough to choose M such that (1) holds:

ST e = MT e + ((e − Mz)T e)e = w′.

The latter equality is satisfied in particular by M = d(w′), and such choice of
M makes S non singular (check it!).

PROOF of COROLLARY HYP

Since A is stochastic by columns, we have AT e = e, e = [1 1 · · · 1]T , so 1 is
eigenvalue of AT , and therefore of A (a matrix and its transpose have the same
eigenvalues). If λ is an eigenvalue of A then λk is an eigenvalue of Ak. Then

|λk | ≤ ‖Ak‖1 = max
j

∑

i

|[Ak]ij | = max
j

∑

i

[Ak ]ij = max
j

1 = 1

(recall that µ eig of M implies |µ| ≤ ‖M‖1, and that A stochbycol implies Aj

stochbycol for all j). Thus, |λ|k = |λk| ≤ 1, which implies |λ| ≤ 1. So the
absolute value of any eigenvalue of A is bounded by 1, and at least one of them
(i.e. 1) has absolute value one.
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PROOF of the 2 × 2 THEOREM

By the Perron-Frobenius theorem, ρ(Mk) is a positive simple eigenvalue of Mk

and there exists z̃ > 0 such that Mkz̃ = ρ(Mk)z̃. ρ(M) is positive since
ρ(M)k = ρ(Mk) > 0. Observe that My = ρ(M)y, y 6= 0, implies Mky =
ρ(M)ky = ρ(Mk)y, thus y = αz̃, M z̃ = ρ(M)z̃, and mM

g (ρ(M)) = 1. Moreover,

mM
a (ρ(M)) ≤ mMk

a (ρ(M)k) = mMk

a (ρ(Mk)) = 1. So, ρ(M) is positive, is a
simple eigenvalue of M , and thus ρ(A) (= ρ(M)) is positive, and is a simple
eigenvalue of A. In fact,

[

M 0
N L

][

z̃

x

]

=

[

M z̃

N z̃ + Lx

]

= ρ(M)

[

z̃

x

]

implies x = (ρ(M)I − L)−1N z̃. Finally, of course, z̃ can be chosen so that
‖z‖1 = 1 where

z =

[

z̃

(ρ(M)I − L)−1N z̃

]

.

Analogously, ρ(M) is a simple eigenvalue of MT and there exists w̃ > 0 such
that MT w̃ = ρ(M)w̃, and thus ρ(A) (= ρ(M)) is a simple eigenvalue of AT . In
fact,

[

MT NT

0 LT

] [

w̃

x

]

=

[

MT
w̃ + NT

x

LT
x

]

=

[

ρ(M)w̃ + NT
x

LT
x

]

= ρ(M)

[

w̃

x

]

implies x = 0. Finally, of course, w̃ can be chosen so that ‖w‖1 = 1 where

w =

[

w̃

0

]

.

The proof of the remaining assertions is left to the reader (proceed as in the
proof of (ii),(iii),(v) of Theorem HYP).

PROOF of the 3 × 3 THEOREM

Left to the reader.
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In the following A is stochastic by columns and in Cn×n

Assume ma(1) = mg(1) = q (⇒ q = mAT

a (1) = mAT

g (1)). Let zi 6= 0 be linearly
independent and such that Azi = zi, i = 1, . . . , q, and consider the Jordan
canonical form of A:

S =
[

Z X X̃
]

, Z =
[

z1 · · · zq

]

, S
−1 =





E

Y

Ỹ



 ,

S
−1

AS =









Iq
[

|λ| ≥ 1, λ 6= 1
]

[

|λ| < 1
]









.

Observe that the equalities (eT
r S−1)A = (eT

r S−1), r = 1, . . . , q, and eT A = eT

imply eT =
∑q

i=1 βie
T
i S−1. Moreover, E must be such that Iq = EAZ = EZ.

Thus eT Z =
∑

i βi(e
T
i S−1)Z =

∑

i βie
T
i , and therefore βi = eT zi. In other

words, the following formula must hold:

eT =

q
∑

i=1

(eT zi)(e
T
i S−1) [if q = 1 : eT = (eT z)(eT

1 S−1)].

Note: the latter formula proves that at least one eT zi must be nonzero [if q = 1:
eT z must be nonzero] !
Then we have the following representation of Ar:

A
r = ZE + X

[

|λ| ≥ 1, λ 6= 1

]r

Y + X̃

[

|λ| < 1

]r

Ỹ

Such formula let us conclude that if the eigenvalues λ of A different from 1
are such that |λ| < 1, then Ar → ZE, and, in particular, Arv converges to

a linear combination of the eigenvectors of 1 [if q = 1: Ar → ze
T

e
T
z

and Arv

converges to a multiple of z; as a consequence, if z > 0 (as in the example

A =

[

− 1
2 b

3
2 1 − b

]

0 < b < 1
2 ) then ∃ r such that Ar > 0 (A2 > 0)].

Example. For both the following matrices

A =





1 0 0
1 1

2
1
2



 , A =





1
0 1
1 0



 ,

we have ma(1) = mg(1) = 2. For the first matrix 1 is dominant, whereas for
the second one 1 is not dominant.

Assume now ma(1) = 2 > mg(1) = 1. In this case we shall do the following
remark: if Ak is non negative for some k, then A must have an eigenvalue λ 6= 1
such that |λ| = 1. We conjecture that the latter remark holds in the more
general case ma(1) > mg(1) (it is not true if ma(1) = mg(1), see the above
Example).
Let z1, z2 6= 0 and linearly independent be such that Az1 = z1, Az2 = z1 + z2.
Consider the Jordan canonical form of A:

S =
[

Z X X̃
]

, Z =

[

z1 z2

]

, S
−1 =





E

Y

Ỹ



 ,
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S
−1

AS =













[

1 1
0 1

]

[

|λ| ≥ 1, λ 6= 1
]

[

|λ| < 1
]













.

Then we have the following representation of Ar:

Ar = Z

[

1 r

0 1

]

E + X

[

|λ| ≥ 1, λ 6= 1

]r

Y + X̃

[

|λ| < 1

]r

Ỹ

= z1e
T
1 S−1 + z2e

T

e
T
z2

+ r z1e
T

e
T
z2

+ X

[

|λ| ≥ 1, λ 6= 1

]r

Y + X̃

[

|λ| < 1

]r

Ỹ

(prove it!).
Now let us prove the remark. So, assume Ak ≥ 0 [⇒ 1 = ρ(A) is eigenvalue of
A (by Corollary HYP)]. If all λ 6= 1 are such that |λ| < 1, then, chosen p such
that (z1)p 6= 0, we would have |(Akm)p,j | → +∞ as m → +∞, and this is not
possible since Akm is non negative and stochastic by columns for all m.

Note: If A ∈ Cn×n is stochastic by columns and S is the matrix transforming
A in Jordan form, i.e.

S−1AS =





[1]
[|λ| ≥ 1, λ 6= 1]

[|λ| = 1]



 , [1] =







Uq1

. . .

Uqg







, Us =







1 1

. . . 1
1

















s ,

then eT (Sej) = 0, if j 6= q1, q1 + q2, . . . , q1 + q2 + · · · + qg (prove it!).
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