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Example (Jessica). Let A and A′ be the following 3 × 3 matrices

A =





0 1 0
0 0 1
1 0 0



 , A′ =





0 1 0
3/4 0 1
1/4 0 0



 .

Observe that [111]A = [111], [111]A′ = [111], thus both A and A′ have 1 as
eigenvalue; moreover 1 = ρ(A) (use first Gershgorin theorem). Note also that
Ak, k = 1, 2, . . ., is never a positive matrix (it remains of course a permutation
matrix for all k), whereas there is an s such that (A′)s is positive, s = 5.
This corresponds to the fact that the first matrix A has, besides 1, also the
remaining two eigenvalues of absolute value 1, whereas for the second matrix
A′ the eigenvalue 1 = ρ(A) dominates in absolute value the remaining two
eigenvalues.

Question: when in a non negative stochastic by columns matrix a pertur-
bation of a zero to nonzero makes its powers positive, or equivalently makes
1 dominant with respect all the remaining n − 1 eigenvalues? This happens
for example when the perturbation makes some power of the matrix both
irreducible and non negative with at least a positive diagonal entry (so, first
of all, the perturbation must make, or maintain, the matrix irreducible . . .)
. . . (See the Theorem, Corollary and Note below).

In the following take into account that when we say that a matrix n×n A
is stochastic by columns (stochbycol) we mean only that

∑

i aij = 1, ∀ j, i.e.
the entries aij can be arbitrary complex numbers (they are not necessarily
non negative). Also recall that for a n× n matrix M , ρ(M) denotes the non
negative number maxi |λi(M)|, where λi(M), i = 1, . . . , n, are the eigenvalues
of M. The following Lemma is fundamental in our arguments.

Lemma (Perron-Frobenius)
Let M be a non negative (Mij ≥ 0), irreducible n×n matrix. Then ρ(M)

is positive, ρ(M) is a simple eigenvalue of M , and there exists a unique
positive vector z (zi positive for all i) such that ‖z‖1 = 1 and Mz = ρ(M)z.
If M is also stochbycol then 1 = ρ(M).

proof: see Varga, Matrix Iterative Analysis.

Lemma

If λ is an eigenvalue of a n × n matrix M then |λ| ≤ ‖M‖1.

proof: Let x 6= 0 be such that MT x = λx, and r such that |xr| =
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maxj |xj|. Note that |xr| is positive.

λxi =

n
∑

j=1

[MT ]ijxj =

n
∑

j=1

[M ]jixj, |λ||xi| ≤
n

∑

j=1

|[M ]ji||xj| ≤ |xr|
n

∑

j=1

|[M ]ji|, ∀ i,

|λ||xr| ≤ |xr|
n

∑

j=1

|[M ]jr|, |λ| ≤
n

∑

j=1

|[M ]jr| ≤ max
i

n
∑

j=1

|[M ]ji| =: ‖M‖1.

Theorem.
Let A be a stochbycol n × n matrix, i.e.

∑n
i=1

aij = 1, ∀ j. Assume that
there exists k ≥ 1 such that Ak ≥ 0. Then

i) 1 is an eigenvalue of A

ii) 1 = ρ(A)

iii) If Ak is irreducible (note that this implies that A is irreducible), then
1 is a simple eigenvalue of A (1 ≤ mA

g (1) ≤ mA
a (1) = 1) and ∃ ! z positive

such that ‖z‖1 = 1 and Az = z. If, moreover, [Ak]ii is positive for some i,
then the remaining n − 1 eigenvalues of A have absolute value less than 1.

Examples:

A =

[

1 1 + ε

0 −ε

]

, 0 < ε < 1, A2 ≥ 0; A =

[

−1

2
b

3

2
1 − b

]

, 0 < b <
1

2
, A2 > 0;

Eigenvalues of this second matrix A: 1, −b − 1

2
;

eigenvector corresponding to 1: [ 2

3
by | y]T , y ∈ C, it can be positive!

Exercise: Find a, b such that, if A =

[

a b

1 − a 1 − b

]

, then A2 is non negative,

irreducible and with some zero entry.

Remark: A irreducible does not imply Ak irreducible (A =

[

β − 1 β

2 − β 1 − β

]

)

proof of the Theorem.

i) Since A is stochastic by columns, we have ATe = e, e = [1 1 · · · 1]T ,
so 1 is eigenvalue of AT , and therefore of A (a matrix and its transpose have
the same eigenvalues).

ii) If λ is an eigenvalue of A then λk is an eigenvalue of Ak. Then, by the
Lemma,

|λk| ≤ ‖Ak‖1 = max
j

∑

i

|[Ak]ij| = max
j

∑

i

[Ak]ij = max
j

1 = 1

(recall that A stochbycol implies Aj stochbycol for all j). Thus, |λ|k =
|λk| ≤ 1, which implies |λ| ≤ 1. So the absolute value of any eigenvalue of A
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is bounded by 1, and, by i), there is at least one eigenvalue whose absolute
value is 1, i.e. 1.

iii) Since Ak is a non negative, irreducible, stochbycol n × n matrix, by
the Perron-Frobenius theorem 1 = ρ(Ak) is a simple eigenvalue of Ak and
there exists a unique positive vector z such that ‖z‖1 = eTz = 1, Akz = z.
Let y 6= 0 be an eigenvector of A corresponding to its eigenvalue 1, thus
Ay = y. Note that then y also satisfies the identities Ajy = y, ∀ j, and in
particular the identity Aky = y. Since mAk

g (1) = 1, this implies y = αz, for
some α ∈ C. So we have Az = z and mA

a (1) ≥ mA
g (1) = 1 (Stefano). Finally

note that mA
a (1) ≤ mAk

a (1) = 1, thus mA
a (1) = 1, and the first assertion is

proved.
Note that all the Gershgorin circles Gj of (Ak)T are in the set B = {z ∈

C : |z| ≤ 1} and their borders pass through 1. More precisely, they coincide
with B if [Ak]jj = 0, otherwise they touch the circle |z| = 1 only in 1. Since
Ak is irreducible, we can apply the third Gershgorin theorem and say that a
complex number z, |z| = 1, not being inside any circle, can be an eigenvalue
of Ak only if z = 1. This and the fact that 1 is a simple eigenvalue of Ak

imply that all the remaining n − 1 eigenvalues of Ak must have absolute
value smaller than 1, and thus, that exactly n−1 eigenvalues of A must have
absolute value smaller than 1.

Corollary (Francesco).
Let A be a stochbycol n × n matrix, and assume that there exists s ≥ 1

such that As is positive. Then 1 is an eigenvalue of A and the remaining
n − 1 eigenvalues of A have absolute value less than 1.

proof. Apply the Theorem for k = s.

Note

Let A be a stochbycol n × n matrix, and assume that there exists k ≥
1 such that Ak is non negative and irreducible. If the remaining n − 1
eigenvalues of A have absolute value less than 1, then there exists s such
that As is positive.

proof of the Note.

Let A be a n × n stochbycol matrix such that Ak is non negative and
irreducible for some k ≥ 1. Let J be the Jordan form of A. Then, by the
Theorem, there is a non singular matrix S such that

S−1AS = J =









1
[

|λ| = 1, λ 6= 1
]

[

|λ| < 1
]









.
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Moreover, we can assume that the first column of S is exactly the vector z

of the Theorem. If so, then eT
1 S−1Az = eT

1 S−1z must be equal to 1. But
eT

1 S−1A = eT
1 S−1 and in the same time, of course, eT A = eT , thus eT

1 S−1

must be equal to αeT for some α ∈ C (mAT

g (1) = mA
g (1) = 1). Then we have

αeTz = 1, that implies α = 1. In other words, if we assume that the first
column of S is exactly the vector z of the Theorem, then the first row of S−1

is exactly the vector eT .
Now partition S and S−1 according to the form of J :

S =



 z X X̃



 , S−1 =





eT

Y

Ỹ





(note that X and X̃ must satisfy the identities eT X = 0T , eT X̃ = 0T ; note
also that in case A is also stochastic by rows then z = 1

n
e and Y e = 0,

Ỹ e = 0). Then

Aj = SJ jS−1 =



 z X X̃













1
[

|λ| = 1, λ 6= 1
]j

[

|λ| < 1
]j













eT

Y

Ỹ



 ,

Aj = zeT + X
[

|λ| = 1, λ 6= 1
]j

Y + X̃
[

|λ| < 1
]j

Ỹ .

If there is no eigenvalue λ of A such that |λ| = 1, λ 6= 1, then the last formula
implies that Aj tends to the rank one matrix zeT , which is positive. Thus
there must exists an s such that As is positive.

Problem

Let M be n × n, stochbycol, non negative, irreducible, with Mii = 0, ∀ i.
Assume also that 1 is not the only eigenvalue of M whose absolute value is
1 (or, equivalently, that M s is not positive, ∀ s).

(Examples of such M: irreducible permutations, . . ., see below).

Set M ′ = M + εere
T
s − εeke

T
s , with r, s, k such that r 6= s, Mrs = 0, Mks

positive, and ε positive, ε < Mks (≤?).

(Note that also M ′ is n × n, stochbycol, non negative, irreducible, with
M ′

ii = 0, ∀ i).

Look for r, s such that the remaining n−1 eigenvalues of M ′ have absolute
value less than 1 (which is equivalent to say that there exists s such that (M ′)s

is positive).
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(Note that M in the Problem has the role of the matrix Ak in the Theo-
rem).

Example: irreducible permutations, a conjecture

Any n×n permutation matrix is stochbycol, non negative. Moreover, all
its eigenvalues have absolute value equal to 1. So, irreducible permutation
matrices satisfy the assumption on M in the Problem. Note that the diagonal
entries of an irreducible permutation matrix are all zeros.

Conjecture (Riccardo): Given a generic n × n irreducible permutation
matrix P , if we perturb one of its zeros, say the one in position (i, j) (i 6= j),
to a positive value ε, and the 1 in the same column, say column j, to the
positive value 1 − ε (thus 0 < ε < 1), and call P ′ the resulting matrix (P ′ is
n×n, stochbycol, non negative, irreducible), then the remaining eigenvalues
of P ′ have absolute value less than 1 (∃ s such that (P ′)s > 0) if and only
if either the diagonal (i + t, j + t), t ∈ Z, or the antidiagonal (i + t, j − t),
t ∈ Z, of P contains only zero entries.

We now see that the conjecture is true for the following particular irre-
ducible n × n permutation matrix

P =















1
1

. . .

1
1















.

Set X = P + εeie
T
j , 1 ≤ i, j ≤ n. Then (Paolo)

Xn =

{

I + εXn−i+j−1 i ≥ j (checked for X = P + εei−j+1e
T
1 )

I + εXj−i−1 i < j (checked for X = P + εe1ej−i+1 )

(prove this formula for Xn !). Note that in case i < j the matrix Xn is
reducible iff j − i = 1, and in case i ≥ j the matrix Xn is reducible iff
i − j = n − 1.

Now set

P ′ =

{

P + εeie
T
j − εej−1e

T
j j > 1

P + εeie
T
1 − εene

T
1 j = 1

.

The matrix (P ′)k has the nonzero entries exactly in the same places where Xk,
X = P + εeie

T
j , has the nonzero entries (k = 0, 1, 2, . . .). As a consequence,

for all i, j such that [P ]ij = 0 ((i, j) /∈ {(n, 1), (t, t + 1), t = 1, . . . , n − 1}),
the matrix P ′ satisfies all the hypothesis on A of the Theorem at least for
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k = n, and thus, for such i, j, we can say that 1 is an eigenvalue of P ′ and
the remaining n − 1 eigenvalues have absolute value less than 1.

By a direct calculation one can see that the conjecture is also true for the
following particular 4 × 4 irreducible permutation matrix

P =









0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0









.

In fact, the matrix P ′ obtained by perturbing the zeros of P in positions
(2, 1), (1, 3), (3, 4), (4, 2) to ε, and the 1s in the same columns to 1− ε, never
satisfies the inequality (P ′)s > 0. For example,

P ′ =









0 1 − ε 0
0 0 0

0 0 0
0 ε 0









, (P ′)k =









0 0
0 0
0 0

0 0









, (P ′)k+1 =









0 0
0 0
0 0

0 0









(note that the eigenvalues of such P ′ are 1,−1,±i
√

1 − ε). The inequality
(P ′)s > 0 is instead obtained by perturbing all remaining zeros of P .

Exercise (Valerio). Check the conjecture for

P =













0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0













.

For example, if we perturb the (1, 3) zero entry:

P ′ =













0 ε 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 − ε 0 0













, (P ′)k =













0 0 0
0 0
0 0

0 0 0













, (P ′)k+1 =













0 0
0 0 0
0 0 0

0 0













,

. . .

Note that in the conjecture the assumption P= permutation is essential.
Consider, for instance, the following 5×5 non negative stochbycol irreducible
matrix.

P =













0 1 0 0 0
0 0 1 − ε 0 0
1 0 0 1 0
0 0 0 0 1
0 0 ε 0 0













, 0 < ε < 1.
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It is simple to observe that the matrix P s is not positive, ∀ s, and thus there
is at least an eigenvalue λ of P such that λ 6= 1, |λ| = 1. So, all assumptions
in the conjecture are satisfied by P except the permutation assumption.
Now, perturbing the (4, 2) zero entry of P does not yield (P ′)s > 0 (instead,
perturbing any other zero entry yields (P ′)s > 0).

Other matrices: other conjectures.

If P is any irreducible matrix with [P ]i,i+1 6= 0, ∀ i, not satisfying P s > 0,
then (P ′)s > 0 whenever P ′ is obtained by perturbing a zero in a diagonal of
zeros of P . Is this assertion true?

For example check the assertion for the following matrices P

P =









0 ε 0 0
0 0 1 0
1 0 0 1
0 1 − ε 0 0









, P =













0 1 0 0 0
0 0 1 − ε 0 0
1 0 0 1 0
0 0 0 0 1
0 0 ε 0 0













, 0 < ε < 1,

P =





















0 b1

1 0 b2

1 − b1 0
1 − b2

bn−2

0 1
1 − bn−2 0





















, bi ∈ (0, 1)

[characteristic polynomial of the first: λ(λ3 − 1); −1 is eigenvalue of the
third]. For example, in the third 3 × 3 case, by perturbing the (3, 1) zero
entry, we obtain

P ′ =





0 b 0
1 − ε 0 1

ε 1 − b 0





whose characteristic polynomial is (λ − 1)(λ2 + λ + bε) . . .

If P ′ is any irreducible matrix with [P ′]i,i+1 6= 0, ∀ i, such that at least
two of its diagonals contain each at least one nonzero entry, then (P ′)s > 0
for some s. Is this assertion true ?

The assertion can be verified on the matrices

P ′ =









0 1 0 0
0 0 ε 0
1 0 0 1
0 0 1 − ε 0









, P ′ =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1 − ε

0 0 0 ε 0













, 0 < ε < 1

[characteristic polynomial of the first: λ(λ − 1)(λ2 + λ + ε)].
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Exercise.
If we start from a reducible permutation matrix P , then at least two zeros

of P must be perturbed in order to obtain a matrix P ′ with the property
(P ′)s > 0. Prove it! (hint: P is the direct sum of two permutations)

What zero entry in P to perturb in order to reduce as more as possible
the absolute value of the remaining n − 1 eigenvalues?

Case of the particular permutation P :

Eigenvalues of

P ′ =





0 1 0
ε 0 1

1 − ε 0 0



 : 1,
1

2
(−1 ±

√

1 − 4(1 − ε)),

so, for ε going from 0 to 1, they are first complex and coniugate with real
part −1

2
, then real and coincident (equal to − 1

2
), and lastly real and distinct,

one going to −1 and the other one going to 0.

Eigenvalues of

P ′ =





ε 1 0
0 0 1

1 − ε 0 0



 : 1,
1

2
(−(1 − ε) ± i

√

(1 − ε)(ε + 3)),

so, for ε going from 0 to 1, they are complex and coniugate and go both to
coincide to 0.

Eigenvalues of

P ′ =









0 1
1

ε 1
1 − ε 0









: 1, ???

When ε goes to 1, only one of the remaining three eigenvalues goes to 0. The
other two go to ei2π/3 and ei4π/3.

Eigenvalues of

P ′ =









0 1
ε 1

1
1 − ε 0









: 1, ??????

When ε goes to 1, two of the remaining three eigenvalues goes to 0. The
third goes to −1.
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In the n × n case, if in

P ′ = P + εeie
T
1 − εene

T
1 =















1
1

ε
. . .

1
1 − ε















,

the parameter ε tends to 1, then, of the eigenvalues of P ′ different from 1, n−i
eigenvalues become 0, and the remaining i−1 tend to ei2πk/i, k = 1, . . . , i−1.

Let aij be real numbers. There exist α, β, γ, δ ∈ R such that
[

α β

γ δ

] [

α β

γ δ

]

=

[

a11 a12

a21 a22

]

if a11a22 − a12a21 ≥ 0. Formulas: compute β from the equality

β2 =
a2

12

a11 + a22 ± 2
√

a11a22 − a12a21

,

and γ, α, δ from the identities

γ =
a21

a12

β, α =
a12

2β
− (a22 − a11)β

2a12

, δ =
(a22 − a11)β

2a12

+
a12

2β
.

Result (Francesco). A n × n non negative, irreducible, ρ(A) = 1. Then
there exists a diagonal matrix D with positive entries such that DAD−1 is
stochastic by columns, non negative, and has the same pattern of A (the
positive entries of DAD−1 are exactly where are the positive entries of A).

proof: use the Perron-Frobenius lemma.

Exercise. A n × n, 1 = ρ(A) is eigenvalue of A, and there exists k ≥ 1
such that Ak is non negative and irreducible. Then there exists a diagonal
matrix D with positive entries such that DAD−1 is stochastic by columns,
and has the same pattern of A (the nonzero entries of DAD−1 are exactly
where are the nonzero entries of A, and have the same sign).

Is this assertion true ? Yes! (see (ii) of the next Theorem)

Questions: A non negative and unitary implies A permutation ? Yes!
(if one of the columns of A has at least two nonzero entries, then another
column of A must have two nonzero entries in the same positions and one
of them must be negative, by the unitary condition). A irreducible with all
eigenvalues on the circle {z : |z| = 1} implies A unitary ? Fra: no! see

1√
2

[

1 1
1 −1

] [

1 x

0 −1

] [

1 1
1 −1

]

1√
2

=
1

2

[

x 2 − x

x + 2 −x

]
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Remark: ATx = x, xi 6= 0 ⇒ (D−1AT D)(D−1x) = D−1x, (D−1x)i > 0.
Example: A = QP T Q, P web transition matrix

Let P be the transition matrix of the web (which is quasi-stochastic by
rows). Then there exists a permutation Q such that

QPQT =























[ 0 ]
...

. . . NT
1

[ 0 ] · · · [ 0 ]
[ 0 ] · · · [ 0 ] MT NT

2

[ 0 ]

O O
...

. . .

[ 0 ] · · · [ 0 ]























where the columns are all non null except the first ones which clearly are
null, the rows are all non null except the last ones which clearly are null, no
row or column of M is null, NT

1 may have null columns, NT
2 may have null

rows, [M ]ii = 0 ∀ i.
Of course, also QPQT is quasi-stochastic by rows. So, 0 ≤ ρ(M) ≤ 1.

ρ(M) is certainly equal to 1 if N2 = 0; if M is irreducible then ρ(M) is
certainly less than 1 if N2 6= 0. ρ(M) = 0 when ?

QP TQT has the structure of A in the Theorem. Note that ρ(L1) =
ρ(L2) = 0 < ρ(M).

Moreover, there exists a permutation Q such that

QPQT =

























MT [ 0 ] · · · [ 0 ]

[ 0 ]
. . .

...
. . . [ 0 ]

[ 0 ]
[ 0 ] · · · · · · [ 0 ] [ 0 ]
...

. . .
. . .

[ 0 ] · · · · · · · · · · · · [ 0 ] [ 0 ]

























where each row and each column of M is non null.
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Yet, there exists a permutation Q such that

QPQT =

























MT [ 0 ] [ 0 ] [ 0 ]

[ 0 ]
...

...

[ 0 ] [ 0 ] [ 0 ] [ 0 ]
...

[ 0 ]
...

[ 0 ] · · · · · · [ 0 ] [ 0 ] [ 0 ]
[ 0 ]

[ 0 ] · · · · · · · · · · · · [ 0 ] [ 0 ]

























where each row and each column of M is non null.

The procedure generating QPQT

P =









































Move the r1 null rows of the upper-left n × n submatrix of P down:

R1PRT
1 =





















0 · · · · 0 0





















Move the r2 null rows of the upper-left (n−r1)×(n−r1) submatrix of R1PRT
1

down:

R2R1PRT
1 RT

2 =



















 0 · · · · 0
0 · · · · · 0




















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Move the r3 null rows of the upper-left (n−r1 −r2)× (n−r1 −r2) submatrix
of R2R1PRT

1 RT
2 down:

R3R2R1PRT
1 RT

2 RT
3 =





















0 · · · 0
0 · · · · 0
0 · · · · · 0





















In the upper-left (n−r1−r2−r3)×(n−r1−r2−r3) submatrix of R3R2R1PRT
1 RT

2 RT
3

there is no null row.
Move the c1 null columns of the upper-left (n−r1−r2−r3)×(n−r1−r2−r3)

submatrix of R3R2R1PRT
1 RT

2 RT
3 on the right:

C1R3R2R1PRT
1 RT

2 RT
3 CT

1 =





















0
·
·
0

0 · · · 0
0 · · · · 0
0 · · · · · 0





















Move the c2 null columns of the upper-left (n− r1 − r2 − r3 − c1)× (n− r1 −
r2 − r3 − c1) submatrix of C1R3R2R1PRT

1 RT
2 RT

3 CT
1 on the right:

C2C1R3R2R1PRT
1 RT

2 RT
3 CT

1 CT
2 =





















0 0
· ·
0 ·

0
0 · · · 0
0 · · · · 0
0 · · · · · 0





















Move the c3 null columns of the upper-left (n − r1 − r2 − r3 − c1 − c2) ×
(n − r1 − r2 − r3 − c1 − c2) submatrix of C2C1R3R2R1PRT

1 RT
2 RT

3 CT
1 CT

2 on

12



the right:

C3C2C1R3R2R1PRT
1 RT

2 RT
3 CT

1 CT
2 CT

3 =





















MT 0 0 0
0 · ·

0 ·
0

0 · · · 0
0 · · · · 0
0 · · · · · 0





















=





MT 0 NT
2

NT
1 UT

1 ST

0 0 LT
2





In the the upper-left (n − r1 − r2 − r3 − c1 − c2 − c3) × (n − r1 − r2 − r3 −
c1−c2−c3) submatrix of C3C2C1R3R2R1PRT

1 RT
2 RT

3 CT
1 CT

2 CT
3 there is no null

column (besides no null row). Call it MT .

A =





M N1 0
0 U1 0

N2 S L2




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