
The power method, Perron-Frobenius theory, Page-Rank computation

Preliminary considerations, A ∈ Cn×n

Given a n × n matrix A with eigenvalues λ1, λ2, . . . , λn, the following result
holds.

Theorem (inverse power). If λ∗
i is an approximation of the eigenvalue λi of a n×n

matrix A, i.e. |λi −λ∗
i | is smaller than |λj − λ∗

i |, ∀λj 6= λi, if ma(λi) = mg(λi),
and if v0 ∈ Cn is not orthogonal to the space spanned by the eigenvectors of A
corresponding to λi, then the sequence {vk} generated by the algorithm

(A − λ∗
i I)ak = vk−1, vk =

ak

‖ak‖
, k = 1, 2, . . .

converges to an eigenvector of A corresponding to the eigenvalue λi. If A is

diagonalizable, then the rate of convergence is O((maxj: λj 6=λi
| λi−λ∗

i

λj−λ∗
i

|)k).

Remark. In the general case the rate of convergence is

max
j: λj 6=λi

max
sλj

O(|psλj
−1(k)||

λi − λ∗
i

λj − λ∗
i

|k),

where, given the block diagonal Jordan form of A, J = X−1AX, for each λj 6= λi, the number

sλj
indicates the dimension of the generic Jordan block associated with λj , and psλj

−1(k) is

a polynomial of degree sλj
− 1, whose coefficients depend on 1

(λj−λ∗
i
)r , r = 1, . . . , sλj

− 1,

and on the coefficients of v0 with respect to the column vectors of X corresponding to the

Jordan block under consideration.

proof: See the Appendix. �

Let λ1 be such that |λ1| = ρ(A) and assume that all λi such that |λi| = ρ(A)
are equal to λ1 (in such case we say that λ1 dominates the eigenvalues of A).
Assume, moreover, that the algebraic and geometric multiplicity of λ1 are equal.
Then the power method (see the Theorem below) can be used to compute λ1

and an eigenvector corresponding to λ1.

Theorem (power). If λ1 dominates the eigenvalues of a n × n matrix A, if
ma(λ1) = mg(λ1), and if v0 ∈ Cn is not orthogonal to the space spanned by
the eigenvectors of A corresponding to λ1, then the sequence {vk} generated by
the algorithm

ak = Avk−1, vk =
ak

‖ak‖
, k = 1, 2, . . .

converges to an eigenvector of A corresponding to the eigenvalue λ1. Moreover,

uHvk+1

uHvk

→ λ1, k → +∞

for any u for which uHvk 6= 0. If A is diagonalizable, then the rate of conver-
gence is O((maxj: λj 6=λ1 |λj

λ1
|)k).

Remark. In the general case the rate of convergence is

max
j: λj 6=λ1

max
sλj

O(|psλj
−1(k)||

λj

λ1
|k),

where, given the block diagonal Jordan form of A, J = X−1AX, for each λj 6= λ1, the number

sλj
indicates the dimension of the generic Jordan block associated with λj , and psλj

−1(k) is
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a polynomial of degree sλj
− 1, whose coefficients depend on 1

λr
j

, r = 1, . . . , sλj
− 1, and on

the coefficients of v0 with respect to the column vectors of X corresponding to the Jordan

block under consideration.

proof: See the Appendix. �

For our purposes it is useful to recall also the following classic result on
matrix deflation: how to introduce a matrix whose eigenvalues are all equal to
the eigenvalues of A except one, which, instead, is zero.

Theorem. Let A be a n × n matrix. Let λ1 be a nonzero eigenvalue of A
and y1 a corresponding eigenvector, i.e. Ay1 = λ1y1. Call λ2, λ3, . . . , λn the
remaining eigenvalues of A. Then the matrix W = A − λ1

w∗y1
y1w

∗, w∗y1 6= 0,
has eigenvalues 0, λ2, λ3, . . . , λn.

proof. Introduce S = [y1 z2 · · · zn] non singular, and observe that pA(λ) =
pS−1AS(λ) = (λ − λ1)q(λ), pW (λ) = pS−1WS(λ) = λq(λ). �

Let G be the following matrix

G =





1
4

1
4

1
2

3
4

1
8

1
8

11
16

1
4

1
16



 .

Since ρ(G) ≤ ‖G‖∞ = 1, we can say that the spectrum of G lies in the circle
{z ∈ C : |z| ≤ 1}.

Note that Ge = 1 · e, i.e. one eigenvalue of G, λ1 = 1, and its corresponding
eigenvector, y1 = e = [1 1 · · · 1]T , are known. If λ2, λ3 denote the remaining
eigenvalues of G, then we can define a matrix W , in terms of G, λ1, y1, whose
eigenvalues are 0, λ2, λ3:

W = G − λ1

w∗y1
y1w

∗ = G − 1

w∗e





w∗

w∗

w∗



 , ∀w, w∗e 6= 0.

Since (eT
i G)e = eT

i (1 · e) = 1 6= 0, we choose w∗ = eT
i G:

W = G −





eT
i G

eT
i G

eT
i G



 .

For i = 1 the matrix W becomes

W =





1
4

1
4

1
2

3
4

1
8

1
8

11
16

1
4

1
16



 −





1
4

1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2



 =





0 0 0
1
2 − 1

8 − 3
8

7
16 0 − 7

16



 ,

so, the eigenvalues of A different from 1 are the eigenvalues of

W̃ =

[

− 1
8 − 3

8
0 − 7

16

]

,

i.e. − 1
8 and − 7

16 .
Thus, 1, − 1

8 and − 7
16 are the eigenvalues of G, and also, of course, of GT .

In particular, 1 is eigenvalue of GT , but note that the eigenvector p of GT
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corresponding to 1 is not obvious; it must be computed. For example, it can be
computed as the limit of the inverse power sequence {vk} defined as follows (ε
small positive number):

v0 ∈ R
3, (GT − (1 + ε)I)ak = vk−1, vk =

ak

‖ak‖
, k = 0, 1, 2, . . .

(rate of convergence: O(
∣

∣

∣

1−(1+ε)

− 1
8−(1+ε)

∣

∣

∣

k

)). [Here a reference for the inverse power

iterations]. We shall see that the vector p can be also obtained as the limit of
the sequence

p0 ∈ R
3, p0 positive, ‖p0‖1 = 1, pk+1 = GT pk, k = 0, 1, 2, . . .

(rate of convergence: O(
∣

∣

∣

− 7
16

1

∣

∣

∣

k

)) [this result is in fact a particular case of the

Theorem at the beginning of this section (set ‖ · ‖ = ‖ · ‖1, u = e)]. Even if the
rate of convergence of the pk is not as good as the rate of convergence of the
vk, the computation of pk+1 from pk is much cheaper than the computation of
vk+1 from vk. In fact, for analogous problems, but of high dimension, even one
step of the inverse power iterations is prohibitive.

The Perron-Frobenius theory: A ∈ Rn×n, A ≥ 0 irreducible [Varga]

Lemma. Let A be a n× n non negative matrix, i.e. aij ≥ 0, ∀ i, j. Assume that
A is not reducible. Then (I + A)n−1 is a positive matrix, i.e. its entries are all
positive.

proof. We shall prove that the vector (I + A)n−1x is positive whenever x is a
non negative non null vector (prove that this is equivalent to the thesis!).

Let x be a non negative non null vector. Set x0 = x, x1 = (I + A)x0 =
x0 + Ax0, . . ., xk+1 = (I + A)xk = xk + Axk , k = 1, . . . , n − 2. Note that
xk = (I +A)kx, in particular xn−1 = (I +A)n−1x. So, our aim is to prove that
xn−1 is a positive vector. First observe by induction that all xk are non negative
vectors (xk non negative and A non negative imply Axk non negative and
xk+1 = xk + Axk non negative). Then the thesis (xn−1 positive) is now proved
by showing that xk+1 must have less zeros than xk for each k ∈ {0, . . . , n− 2}.
Note that xk+1 cannot have more zeros than xk, since Axk , in the definition
xk + Axk of xk+1, is non negative. Assume xk+1 has the same number of zero
entries as xk. Of course such zeros must be in the same places, i.e. there exists

a permutation matrix P such that Pxk =

[

α
0

]

, Pxk+1 =

[

β
0

]

, with α, β

positive vectors of the same dimension m, 1 ≤ m ≤ n − 1 (why such bounds
for m ?). Thus, Pxk+1 = Pxk + PAxk = Pxk + PAP T Pxk. Consider the
following partition of the matrix PAP T

PAP T =

[

M11 M12

M21 M22

]

where M11 is m × m. Then

[

β
0

]

=

[

α
0

]

+

[

M11 M12

M21 M22

][

α
0

]

,
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and, in particular, M21α = 0. The latter condition implies M21 = 0, being α
a positive vector and M21 a non negative matrix. But this is equivalent to say
that A is reducible, against the hypothesis! �

Example. Set

I + A =









1 0 0 1
a 1 0 0
0 b 1 0
0 0 c 1









, a, b, c positive.

Note that A is a non-negative irreducible matrix, and in fact (I + A)3 is a
positive matrix, i.e. its entries are positive. Moreover, 3 is the minimum j for
which (I + A)j is positive.

Let A be a n × n non negative irreducible matrix. Let x be a non negative
non null vector, and associate to x the number

rx := min
i:xi>0

∑

j aijxj

xi

= min
i:xi>0

(Ax)i

xi

.

Proposition. rx is a non negative real number; rx = rαx if α > 0; Ax ≥ rxx;
rx = sup{ρ ∈ R : Ax ≥ ρx}.
proof: easy, left to the reader.

Now associate to A the following number:

r = sup
x≥0,x6=0

rx = sup
x≥0,x6=0

min
i:xi>0

∑

j aijxj

xi

.

Proposition. r is a positive real number; if w ≥ 0, w 6= 0, is such that Aw ≥ rw,
then Aw = rw and w > 0.

proof. If e = [1 1 · · · 1]T , then re = mini: (e)i>0

∑

j
aij (e)j

(e)i
= mini

∑

j aij ≥ 0.

Assume re = 0. Then for some k we would have
∑

j akj = 0, so the kth row of
A would be null, and thus A would be reducible (exchange the k and n rows),
against the hypothesis. It follows that r ≥ re > 0.

proof. Set η = Aw − rw. We know that η ≥ 0. Assume η 6= 0. Then, by the
Lemma,

0 < (I + A)n−1η = (I + A)n−1Aw − (I + A)n−1rw
= A(I + A)n−1w − r(I + A)n−1w = Ay − ry, y > 0.

i.e. r < (Ay)i/yi ∀ i. Thus r < ry, which is absurd. It follows that η = 0, that
is, Aw = rw. Then, we also have w > 0 since 0 < (I +A)n−1w = (1+ r)n−1w.
�

In the following, given v ∈ Cn and M ∈ Cn×n we denote by |v| and |M |,
respectively, the column vector (|vk|)n

k=1 and the matrix (|mij |)n
i,j=1.

Theorem. There exists a positive vector z for which Az = rz; r = ρ(A); if
B ∈ Cn×n, |B| ≤ A, then ρ(B) ≤ ρ(A); if B ∈ Cn×n, |B| ≤ A, |B| 6= A then
ρ(B) < ρ(A).
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proof: We now show that there exists z ≥ 0 such that r = rz. Once this
is proved we will have the inequality Az ≥ rzz = rz which implies, by the
Proposition, Az = rz and z > 0.

r = sup
x≥0,x6=0

rx = sup
x≥0,x6=0

r x

‖x‖2
= sup

x≥0,‖x‖2=1

rx = (∗)

We have rx ≤ r(I+A)n−1x since r(I+A)n−1x = sup{ρ ∈ R : A(I + A)n−1x ≥
ρ(I+A)n−1x} and Ax ≥ rxx ⇒ A(I+A)n−1x = (I+A)n−1Ax ≥ rx(I+A)n−1x.
Thus,

(∗) ≤ sup
x≥0, ‖x‖2=1

r(I+A)n−1x = sup
y∈Q

ry = max
y∈Q

ry = rz ≤ r

for some z ∈ Q = {(I + A)n−1x : x ≥ 0, ‖x‖2 = 1} (ry is continuous in y

(why?) and Q is a compact). Note that z > 0.

proof: Let λ be an eigenvalue of A, i.e. ∃y 6= 0 | Ay = λy. Then |λ||y| = |λy| =
|Ay| ≤ A|y|, |y| ≥ 0, |y| 6= 0. Thus, by definition of r|y|, |λ| ≤ r|y| ≤ r, and we
have the inequality ρ(A) ≤ r. But r is an eigenvalue of A, thus r = ρ(A).

proof: Let λ be an eigenvalue of B, i.e. ∃y 6= 0 | By = λy. Then |λ||y| =
|λy| = |By| ≤ |B||y| ≤ A|y|, |y| ≥ 0, |y| 6= 0. Thus, by definition of r|y|,
|λ| ≤ r|y| ≤ r, and we have the inequality ρ(B) ≤ r = ρ(A).

proof: Assume ρ(B) = ρ(A), i.e. there exists λ eigenvalue of B (By = λy,
y 6= 0) such that |λ| = r. Then we can add an equality in the above arguments,

r|y| = |λ||y| = |λy| = |By| ≤ |B||y| ≤ A|y|, |y| ≥ 0, |y| 6= 0,

obtaining the inequality r|y| ≤ A|y|, |y| ≥ 0, |y| 6= 0. But by the above
Proposition, such inequality implies A|y| = r|y| with |y| > 0. So we have

r|y| = |λ||y| = |λy| = |By| = |B||y| = A|y| = r|y|, |y| > 0,

from which it follows |B| = A, against the hypothesis! Thus ρ(B) < ρ(A). �

We conclude this section with the following result of the Perron-Frobenius
theory, stated without proof (actually we shall give a proof of such result in the
case A is positive):

Result. If A is a non-negative irreducible n×n matrix, then r = ρ(A) is a simple
eigenvalue of A, i.e. λ − r divides pA(λ) but (λ − r)2 does not divide pA(λ).

Computing the Perron-pair of A irreducible non-negative by the power method

Let A be an irreducible non-negative n × n matrix. Then we know that ρ(A)
is positive and is a simple eigenvalue of A, and the corresponding eigenvector
can be chosen positive. Of course, such eigenvector is uniquely defined if we
require that its measure in the 1-norm is one. We also know that ρ(A) = r :=

supx≥0,x6=0 mini: xi>0
(Ax)i

xi
.

So, it is uniquely defined the Perron-pair (ρ(A), z). such that Az = ρ(A)z,
ρ(A) positive, z positive, ‖z‖1 = 1. The power method is a way to compute
such Perron-pair.

Theorem(power). Let A be an irreducible non-negative n×n matrix. Let a0 be
any positive vector, and set v0 = a0/‖a0‖1. Then set

ak+1 = Avk , vk+1 =
ak+1

‖ak+1‖1
, k = 0, 1, 2, . . . .
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Note that the sequences {ak}, {vk} are well defined sequences of positive vectors,
and ‖vk‖1 = 1, ∀ k. Let X be the non singular matrix defining, by similarity,
the Jordan block-diagonal form of A, i.e.

X−1AX = J =

[

r 0T

0 B

]

, X =



 z x2 · · · xn



 ,

and let r = ρ(A), λj , j = 2, . . . , n, be the eigenvalues of A (λj 6= r, ∀ j). If α in
the expression a0 = αz +

∑n
j=2 αjxj is nonzero, then, for k → +∞, we have

vk − z → 0, ‖ak‖1 − ρ(A) → 0,

provided that |λj | is smaller than r for all j = 2, . . . , n. In the particular case
where A is diagonalizable, the rate of convergence is

(

max
j=2...n

|λj |
r

)k

[for the general case, use the Remark in Theorem(power) of the section on
preliminary considerations].

proof: We prove the Theorem only in the case A diagonalizable, where Axj =
λjxj , j = 2, . . . , n. It is easy to observe that Aka0 = αrkz +

∑n
j=2 αjλ

k
j xj is a

positive vector, and that

vk =
αrk

z+
∑n

j=2 αjλk
j xj

‖αrkz+
∑

n
j=2 αjλk

j
xj‖1

=
αrk

z+
∑n

j=2 αjλk
j xj

eT (αrkz+
∑

n
j=2 αjλk

j
xj)

=
αrk

z+
∑

n
j=2 αjλk

j xj

αrkeT z+
∑

n
j=2 αjλk

j
eT xj

=
z+

∑

n
j=2

αj

α

(

λj

r

)k

xj

1+
∑

n
j=2

αj

α

(

λj

r

)k

eT xj

.

Moreover,

ak+1 = Avk =
rz +

∑n
j=2

αj

α

(

λj

r

)k

λjxj

1 +
∑n

j=2
αj

α

(

λj

r

)k

eT xj

and, since ak+1 is positive,

‖ak+1‖1 = eT ak+1 =
r+

∑

n
j=2

αj

α

(

λj

r

)k

λje
T
xj

1+
∑

n
j=2

αj

α

(

λj

r

)k

eT xj

=
r
(

1+
∑

n
j=2

αj

α

(

λj

r

)k+1

e
T
xj

)

1+
∑

n
j=2

αj

α

(

λj

r

)k

eT xj

.

Exercise. Discuss the convergence of the power method when applied to compute

the Perron-pair (1,

[

1
2
1
2

]

) of the following two 2 × 2 matrices:

A =

[

0 1
1 0

]

, A =

[

1/4 3/4
3/4 1/4

]

.
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In the second case, find a constant c such that ‖vk − z‖ ≤ c( 1
2 )k .

Exercise. Prove the Theorem in case A (non negative, irreducible) is 4× 4, and
there exists X non singular for which

X−1AX =









r
λ2 1

λ2 1
λ2









,

with |λ2| smaller than r. Prove that in such case the rate of convergence is

|p2(k)|
(

∣

∣

∣

∣

λ2

r

∣

∣

∣

∣

)k
,

where p2 is a degree-two polynomial.

Exercise. Set

A =





0 0 1
1
4 0 0
3
4 1 0



 .

Prove that the eigenvalues of A are {1,− 1
2 ,− 1

2} and that A is not diagonalizable.
Find X = [z x2 x3] such that

X−1AX =





1 0 0
0 − 1

2 1
0 0 − 1

2



 .

The only hypothesis A irreducible, non-negative, does not assure that r =
ρ(A) is the unique eigenvalue of A whose absolute value is equal to r. We only
know that if |λj | = r, j ∈ {2, . . . , n}, then λj 6= r. Let us see examples:

A =

[

0 1
1 0

]

; Eigenvalues: − 1, 1; Perron-pair: (1,

[

1
2
1
2

]

).

A =





0 a 0
1 0 1
0 1 − a 0



 , a ∈ (0, 1); Eig: − 1, 0, 1; Perron-pair: (1,





a
2
1
2

1−a
2



).

A =





2 1 1
1 2 1
1 1 2



 ; Eigenvalues: 1, 1, 4; Perron-pair: (4,





1/3
1/3
1/3



).

Note that if in the second example A is replaced by AT , then there is no need
of computation in obtaining the perron-pair, since it is clear that AT e = e,
e = [1 1 1]T . Moreover, in the third example r = ρ(A) (which is 4) dominates
the remaining eigevalues of A (which are 1, 1). We note that this fact is true for
any positive matrix A (see Theorem(positive) below), even if, as the following
example shows, it is not a peculiarity of positive matrices:

A =





2 1 0
1 2 1
0 1 2



 ; Eig: 2 ∓
√

2, 2; Perron-pair: (2 +
√

2,
1

2 +
√

2





1√
2

1



)
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(here computation is required to obtain the Perron-pair).

Theorem(positive). If A is a n × n positive matrix and r = ρ(A), λ2, . . . , λn are
its eigenvalues, then |λj | is smaller than r for all j = 2, . . . , n.

proof: Set W = A− szeT . The eigenvalues of W are r − s, λ2, . . . , λn (a sketch
of the proof:

Y :=
[

z y2 · · · yn

]

non singular,

Y −1AY =

[

r · · ·
0 M

]

, Y −1WY =

[

r − s · · ·
0 M

]

).

If there is a value of s for which |W | ≤ A, |W | 6= A, then ρ(W ) is smaller than
ρ(A), and thus |λ2|, . . . , |λn| are smaller than r = ρ(A). If A is positive, then
such s exists, s = mini,j aij . �

Irreducible non-negative stochastic-by-columns A and power method

Let A be an irreducible non-negative stochastic by columns n×n matrix. Then
we know that 1 = ρ(A) (AT e = e, ρ(A) ≤ ‖A‖1 = 1), that r = 1 = ρ(A) is a
simple eigenvalue of A, and that the corresponding eigenvector can be chosen
positive. Of course, such eigenvector is uniquely defined if we require that its
measure in the 1-norm is one.

So, it is uniquely defined the Perron-pair (1 = ρ(A), z). such that Az = z, z

positive, ‖z‖1 = 1. The computation of such Perron-pair, i.e. the computation
of the vector z, can be performed via the power method. Actually, we now see
that the power method in the particular case where A is stochastic-by-columns
(besides non-negative and irreducible) can be rewritten in a simpler form and
converges independently from the choice of a0 (provided that 1 dominates the
other eigenvalues). These results follow from some remarks, reported in the
following Proposition.

Proposition. Let A be an irreducible non-negative stochastic-by-columns n × n
matrix. Then

i)

v ∈ C
n ⇒

∑

i

(Av)i =
∑

i

vi

(
∑

i(Av)i =
∑

i

∑

j aijvj =
∑

j vj

∑

i aij =
∑

j vj),
ii)

v positive, ‖v‖1 = 1 ⇒ Av positive, ‖Av‖1 = 1

(use the irreducibility of A and assertion i)),
iii)

Av = λv, λ 6= 1, ⇒
∑

i

vi = 0

(
∑

i vi =
∑

i(Av)i = λ
∑

i vi, thus (λ − 1)
∑

i vi = 0).

Exercise. Assume that X−1AX = J where J is the Jordan block diagonal form
of A, where A is an irreducible non-negative stochastic-by-columns n×n matrix.
Assume that [J ]11 = 1. Prove that

∑

i[X ]ij = 0, j = 2, . . . , n.

Corollary(power). Let A be an irreducible non-negative stochastic-by-columns
n × n matrix. Let a0 be any positive vector such that ‖a0‖1 = 1. Then set

ak+1 = Aak, k = 0, 1, 2, . . . .
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The sequence {ak} is a well defined sequence of positive vectors, and ‖ak‖1 =
1 = ρ(A), ∀ k. If k → +∞, then

ak − z → 0,

provided that |λj | is smaller than 1 for all j = 2, . . . , n. The latter event is
assured by Theorem(positive) when A is positive. In the particular case where
A is diagonalizable, the rate of convergence is

( max
j=2...n

|λj |)k

[for the general case, use the Remark in Theorem(power) of the section on
preliminary considerations].

proof: The sequences ak and vk defined in Theorem(power) coincide, because,
by Proposition ii), we have ‖Avk‖1 = ‖vk‖1. It remains to show that α in
the expression a0 = αz +

∑

j αjxj is nonzero. Note that eT a0 = αeT z +
∑

j αje
T xj = α +

∑

j αje
T xj . In the case that A is diagonalizable the thesis

follows by Proposition iii) which asserts that eT xj , j = 2, . . . , n, must be zero.
In the generic case the proof is left to the reader . . .. �

Exercise. Discuss existence, unicity, and computation of the Perron-pair for

A =





0 1 − a a
a 0 1 − a

1 − a a 0



 , a ∈ [0, 1], A =





0 0 1
a 0 0

1 − a 1 0



 , a ∈ [0, 1],

A =























0 b1

1 0 b2

1 − b1 0
. . .

1 − b2
. . . bn−2

. . . 0 1
1 − bn−2 0























, bi ∈ (0, 1).

Page-rank computation [Berkhin, et al]

Consider an oriented graph with set of verteces V = {1, 2, . . . , n}, and set of
edges E, i, j ∈ E if there is a link from i to j.

Associate to such graph the adiacency matrix:

L =

{

1 ij ∈ E
0 ij /∈ E

Call deg (i) the number of edges starting from i. Of course, deg (i) = 0 (no
edge starts from i) iff Lij = 0, ∀ j. Moreover, deg (i) =

∑

j Lij .
Associate to the graph the transition matrix:

P =

{

1

deg (i)
ij ∈ E

0 ij /∈ E

9



Note that Pij = Lij/deg (i) if i is such that deg (i) > 0, and Pij = Lij = 0
otherwise. Moreover,

∑

j Pij = 1 if deg (i) > 0 and
∑

j Pij = 0 otherwise. So,
the matrix P is a non negative matrix quasi-stochastic by rows.

Remark. Row i of P is null iff no edge starts from i; column j of P is null iff no
edge points to j.

Let p ∈ Rn be the vector whose entry j, pj , is the importance (authority)
of the vertex j. Then

pj =
∑

i: i→j

pi

deg (i)
=

n
∑

i=1

Pijpi =

n
∑

i=1

P T
jipi = (P T p)j , p = P T p

(note that such fixed point p may not exist, or, if exists, may be not unique or
with zero entries; see below).

Let p
(k+1)
j be the probability that at step k + 1 of my visit of the graph

(navigation on the web) I am on the vertex (page) j. Then

p
(k+1)
j =

∑

i: i→j

p
(k)
i

deg (i)
=

∑n
i=1 Pijp

(k)
i

=
∑n

i=1 P T
jip

(k)
i = (P T p(k))j , p(k+1) = P T p(k)

(note that such sequence of vector probabilities exists and is uniquely defined,
once p(0) is given, but the p(k) may loss the possible ddp property of p(0); see
below). [A vector w is said ddp (discrete distribution of probability) if w is
positive and ‖w‖1 = 1].

Note that it is natural to require that: p
(k)
i > 0 (at step k there is a prob-

ability that I am on vertex i),
∑

j p
(k)
j = 1 (at step k I am on some vertex);

pi > 0 (any vertex has a portion of importance . . .),
∑

i pi = 1 (. . . of the total
1).

So, the following facts must be true:
a) p such that p = P T p, p > 0, ‖p‖1 = 1, exists and is uniquely defined,
b) the method p(0) = ddp, p(k+1) = P T p(k) converges to p.

We now show that in order to have a) and b), the matrix P T must be both
stochastic by columns and irreducible.

Theorem(stoc). If the above facts a) and b) are true, then P T must be stochastic
by columns.

proof: We know that ∃ ! p such that p = P T p, p > 0, ‖p‖1 = 1. Assume that
P T is quasi-stochastic but not stochastic by columns. Then

‖P T p‖1 =
∑

i(P
T p)i =

∑

i

∑

j(P
T )ijpj =

∑

j

∑

i Pjipj

=
∑

j: deg (j)>0 1 · pj +
∑

j: deg (j)=0 0 · pj <
∑

j pj = ‖p‖1,

analogously,

‖p(k+1)‖1 = ‖P Tp(k)‖1 ≤ ‖p(k)‖1 ≤ ‖p(1)‖1 < ‖p(0)‖1 = 1.

Thus p cannot be equal to P T p, and p(k) cannot converge to a ddp. �

Theorem(irred). If the above facts a) and b) are true, then P T must be irre-
ducible.

10



proof: assume P T reducible. Then there exists a permutation matrix Q such
that

QT P T Q =

[

A11 A12

0 A22

]

, (∗)

with A11 and A22 at least 1×1 square matrices. Note that QT P T Q is stochastic
by columns, like P T . We know that ∃ ! p such that p = P T p, p > 0, ‖p‖1 = 1,
but this is equivalent to say that ∃ ! QT p such that

QT p =

[

A11 A12

0 A22

]

QT p, QT p > 0, ‖QTp‖1 = 1. (∗∗)

Case 1: assume A12 = 0. Then A11 and A22 are non negative stochastic by
columns matrices. We can assume they are also irreducible (why?). Then, by
the Perron-Frobenius theory,

∃ ! y1,y2 > 0, ‖y1‖1 = ‖y2‖1 = 1, y1 = A11y1, y2 = A22y2.

and, as a consequence, for all α ∈ (0, 1) we have
[

αy1

(1 − α)y2

]

=

[

A11 0
0 A22

][

αy1

(1 − α)y2

]

,
[

αy1

(1 − α)y2

]

> 0, ‖
[

αy1

(1 − α)y2

]

‖1 = 1.

So, all vectors p such that QT p =

[

αy1

(1 − α)y2

]

satisfy the properties p > 0,

‖p‖1 = 1, p = P T p, which is against the hypothesis of unicity.

Case 2: assume A12 6= 0. Then A22 in (*) is not stochastic by columns, thus
A22 may have no eigenvalue equal to 1, i.e. the equations in (**) involving A22

may be verified only if part of p is null, against the hypothesis of positiveness
of p. �

Viceversa, we know that if the non negative matrix P T is irreducible and
stochastic by columns, then 1 = ρ(P T ) is a simple eigenvalue of P T and there
exists a unique vector p such that p = P T p, p > 0, ‖p‖1 = 1. We also know
that such hypotheses are not sufficient to assure the convergence (to p) of the
sequence p(k+1) = P T p(k), p(0) > 0, ‖p0‖1 = 1, or, equivalently, to assure that
the remaining eigenvalues of P T have absolute value smaller than 1. We can
only say that the sequence {p(k)} is a well defined sequence of ddp.

We have to modify P (the graph) so to make well posed (∃ !) the mathemat-
ical problem and to make convergent the algorithm for solving it.

Make P T stochastic:

P ′ = P + dvT , d =







δ deg (1),0

...
δ deg (n),0






, v =







1
n
...
1
n







i.e, where P has null rows P ′ has the row vector vT . The vertex i with deg (i) =
0 now links to all verteces of the graph. [We discuss the uniform case, but what
follows can be repeated for the more general case v =ddp].

11



Observe that (P ′)T is stochastic by columns, (P ′)T ≥ 0, thus 1 is eigenvalue
of (P ′)T and the other eigenvalues of (P ′)T , λ′

2, . . . , λ
′
n, are such that |λ′

j | ≤ 1.

Make (P ′)T irreducible:

P ′′ = cP ′ + (1 − c)evT , e =







1
...
1






, c ∈ (0, 1).

Since

eT
i P ′′ =

{

cvT + (1 − c)vT = vT deg (i) = 0
c[· · · 0 1

deg (i)
0 · · ·] + (1 − c)vT deg (i) > 0

we are assuming that a visitor of the graph can go from the vertex i to one of
its neighborhoods with probability c/deg (i) + (1− c)/n , and with probability
(1−c)/n to an arbitrary vertex of the graph. Of course the parameter c must be
chosen near to 1, in order to maintain our model faithful to the way the graph
(web) is visited.

Observe that (P ′′)T is stochastic by columns and positive, therefore, in par-
ticular, it is non negative and irreducible. So, we have all we need.

Theorem(page-rank). 1 = ρ((P ′′)T ) is a simple eigenvalue of (P ′′)T , there exists
a unique vector p such that p = (P ′′)T p, p > 0, ‖p‖1 = 1 (i.e. we have fact
(a)), and the other eigenvalues of (P ′′)T , λ′′

2 , . . . , λ′′
n, are such that |λ′′

j | < 1 (by

Theorem(positive)). Thus, p(k+1) = (P ′′)T p(k), p(0) > 0, ‖p(0)‖1 = 1, is a
sequence of ddp convergent to p and, in case P ′′ is diagonalizable,

‖p(k) − p‖ = O(( max
j=2,...,n

|λ′′
j |)k)

[for the general case see the Remark in Theorem(power) of Section 1] (i.e. we
have fact (b)). Moreover, for the particular choice of (P ′′)T , the cost of each step
of the power method is O(n) and is dominated by the cost of the matrix-vector
multiplication P T z, and if A is diagonalizable, then the rate of convergence is

‖p(k) − p‖ = O(ck)

[for the general case see the Remark in Theorem(power) of Section 1] (Google-
search engine sets c = 0.85 [Berkhin]).

proof: We have to prove only the final assertions.

O(n) arithmetic operations are sufficient to perform each step of the power
method. We have

(P ′′)T = c(P T + vdT ) + (1 − c)veT ,

and, if x ≥ 0, then

(P ′′)T x = cP T x + γv,
γ = cdT x + (1 − c)eT x = eT x − c[eT x − dT x] = ‖x‖1 − c‖P Tx‖1

(why the latter equality holds?). Thus, in order to compute p(k+1) from p(k)

one can use the following function

y = cP T x,
γ = ‖x‖1 − ‖y‖1,
(P ′′)T x = y + γv

12



where the dominant operation is the matrix-vector multiplication P T x. Note
that each row j of P T has (on the average) a very small number of nonzero
entries, i.e. exactly the number of vertices pointing to j, so P T x can be com-
puted with O(n) arithmetic operations. Note also that in order to implement
the above function one needs only 2n memory allocations.

Rate of convergence ‖p(k) − p‖ = O(ck). We first prove that if eT v = 1 then

pP ′(λ) = (λ − 1)pn−1(λ) ⇒ pP ′+ 1−c
c

evT (λ) = (λ − 1

c
)pn−1(λ). (∗ ∗ ∗)

In fact,
S =

[

e y2 · · · yn

]

, det(S) 6= 0,

S−1P ′S =

[

1 uT

0 M

]

, pP ′(λ) = (λ − 1)pM (λ),

S−1(P ′ + 1−c
c

evT )S =

[

1 uT

0 M

]

+ 1−c
c

S−1evT S

=

[

1 uT

0 M

]

+ 1−c
c





1 · · · ∗
0 · · · 0



 =

[

1
c

ũT

0 M

]

.

As a consequence of (***), if 1, λ′
2, . . . , λ

′
n are the eigenvalues of P ′ (re-

call that |λ′
j | ≤ 1, j = 2, . . . , n), then the eigenvalues of P ′ + 1−c

c
evT are

1
c
, λ′

2, . . . , λ
′
n, and thus the eigenvalues of cP ′ + (1 − c)evT are 1, cλ′

2, . . . , cλ
′
n.

It follows that if A is diagonalizable, then ‖p(k)−p‖ = O((maxj=2,...,n |cλ′
j |)k) =

O(ck). �

Why to compute p? [Berkhin].
QUERY: Berkhin survey.
Go in the inverted terms document file, which is a table containing a row

for each term of a collection’s dictionary. In such file, for each term there is a
list of all documents that contain such term

...
term → LISTAterm = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}
...
Berkhin → LISTABerkhin = {1, 4, 6}
...
survey → LISTAsurvey = {1, 3}
...

Define the set of relevance of the query

∪
term∈QUERY LISTAterm = {1, 3, 4, 6}

Reading p (p is updated once each month) considers and orders the correspond-
ing set of authorities {p1, p3, p4, p6}, for example p4 ≥ p6 ≥ p3 ≥ p1

Finally, show the titles of the documents 1, 3, 4, 6 in the order 4, 6, 3, 1, from the
one with greatest authority to the one with smallest authority.

13



Main criticism: This procedure, being independent from the query allows a
fast answer, but does not make distinction between pages with authority from
pages with authority on a specific subject.

Exercise. Draw the graph whose transition matrix is

P =

















0 1/2 1/2 0 0 0
0 0 0 0 0 0

1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

















.

Note that P is non negative, reducible and quasi-stochastic, but not stochastic,
by rows. Prove that there is no positive vector p such that p = P T p. Starting
from P and proceeding as indicated in the theory, introduce a non negative
matrix P ′ stochastic by rows. Note that P ′ is reducible, like P . Prove that there
is no positive vector p such that p = (P ′)T p. Starting from P ′ and proceeding
as indicated in the theory, introduce a non negative matrix P ′′ irreducible and
stochastic by rows. Prove that there exists a unique positive vector p such that
p = (P ′′)T p, ‖p‖1 = 1, and describe an algorithm for the computation of p.
Here below is an approximation of such vector p:

pT = [0.03721 0.05396 0.04151 0.3751 0.206 0.2862].

Assume, for example, that the set of relevance of a query is {1, 3, 4, 6}. Then
the documents 1, 3, 4, 6 are listed in the order 4, 6, 3, 1, being p4 ≥ p6 ≥ p3 ≥ p1.

APPENDIX

Proof (Theorem(inverse power)):
Assume A diagonalizable, Axj = λjxj , {xj}n

j=1 linearly independent. Then

Axj − λ∗
i xj = (λj − λ∗

i )xj ⇒ (A − λ∗
i I)−mxj =

1

(λj − λ∗
i )

m
xj .

Call αj the numbers for which v0 =
∑

j: λj=λi
αjxj +

∑

j: λj 6=λi
αjxj . Note that

the first sum is a non null vector (by the assumption on v0). Then the following
equality holds

(λi − λ∗
i )

m(A − λ∗
i I)−mv0 =

∑

j: λj=λi

αjxj +
∑

j: λj 6=λi

αj

( λi − λ∗
i

λj − λ∗
i

)m

xj

which, for m → +∞, yields the thesis.

Assume that A is not diagonalizable. In this case call xj , j = 1, . . . , n, the
columns of the non singular matrix X for which X−1AX = J where J is the
block diagonal Jordan form of A. Assume that the upper-left diagonal block of
J is diagonal and its diagonal contains all λj such that λj = λ := λi. Assume
that there are t of such eigenvalues. Then consider any other diagonal block
of J ; of course it corresponds to an eigenvalue λj different from λ, call such

14



eigenvalue µ. The block under consideration has an order, say s = sµ.

J =









































λ

λ

. . .

λ

•
µ 1

µ
. . .

. . . 1
µ

•









































.

Restrict the matrix equation X−1AX = J to this block, thus, for some r ≥ t
we have

A[xr+1 xr+2 xr+3 · · · xr+s] = [xr+1 xr+2 xr+3 · · · xr+s]













µ 1

µ
. . .

. . . 1
µ













.

It follows that

Axr+1 = µxr+1, (A − λ∗I)xr+1 = (µ − λ∗)xr+1,
(A − λ∗I)−1xr+1 = 1

µ−λ∗ xr+1, (A − λ∗I)−mxr+1 = 1
(µ−λ∗)m xr+1.

Axr+2 = µxr+2 + xr+1, (A − λ∗I)xr+2 = (µ − λ∗)xr+2 + xr+1,
(A − λ∗I)−1xr+2 = 1

µ−λ∗ xr+2 − 1
(µ−λ∗)2 xr+1,

(A − λ∗I)−mxr+2 = 1
(µ−λ∗)m xr+2 − m

(µ−λ∗)m+1 xr+1.

Axr+3 = µxr+3 + xr+2, (A − λ∗I)xr+3 = (µ − λ∗)xr+3 + xr+2,
(A − λ∗I)−1xr+3 = 1

µ−λ∗ xr+3 − 1
(µ−λ∗)2 xr+2 + 1

(µ−λ∗)3 xr+1,

(A − λ∗I)−mxr+3 = 1
(µ−λ∗)m xr+3 − m

(µ−λ∗)m+1 xr+2 +
1
2 (m2+m)

(µ−λ∗)m+2 xr+1.

Axr+4 = µxr+4 + xr+3, (A − λ∗I)xr+4 = (µ − λ∗)xr+4 + xr+3,
(A − λ∗I)−1xr+4 = 1

µ−λ∗ xr+4 − 1
(µ−λ∗)2 xr+3

+ 1
(µ−λ∗)3 xr+2 − 1

(µ−λ∗)4 xr+1,

(A − λ∗I)−mxr+4 = 1
(µ−λ∗)m xr+4 − m

(µ−λ∗)m+1 xr+3

+
1
2 (m2+m)

(µ−λ∗)m+2 xr+2 −
1
6 m3+ 1

2 m2+ 1
3 m

(µ−λ∗)m+3 xr+1,

(A − λ∗I)−mxr+s =
1

(µ − λ∗)m
xr+s − . . . + (−1)s−1 qs−1(m)

(µ − λ∗)m+s−1
xr+1,

(A − λ∗I)−m[xr+1 xr+2 xr+3 · · ·]

= [xr+1 xr+2 xr+3 · · ·]













1
(µ−λ∗)m − m

(µ−λ∗)m+1

1
2 (m2+m)

(µ−λ∗)m+2 · · ·
0 1

(µ−λ∗)m − m
(µ−λ∗)m+1

0 0 1
(µ−λ∗)m

...
. . .













.
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Set also λ∗ := λ∗
i (λ∗

i is the given approximation of λ = λi). Choose v0, and call
αj the numbers for which v0 =

∑

j: λj=λ αjxj + { . . . +
∑r+s

j=r+1 αjxj + . . . }.
Note that

∑

j: λj=λ αjxj =
∑t

j=1 αjxj . Then

(A − λ∗I)−mv0

=
∑

j: λj=λ αj(A − λ∗I)−mxj + { · · · +
∑r+s

j=r+1 αj(A − λ∗I)−mxj + · · · }
=

∑

j: λj=λ αj
1

(λ−λ∗)m xj + { · · · + [ αr+1(
1

(µ−λ∗)m xr+1)

+αr+2(
1

(µ−λ∗)m xr+2 − m
(µ−λ∗)m+1 xr+1)

+αr+3(
1

(µ−λ∗)m xr+3 − m
(µ−λ∗)m+1 xr+2 +

1
2 (m2+m)

(µ−λ∗)m+2 xr+1)

+αr+4(
1

(µ−λ∗)m xr+4 − m
(µ−λ∗)m+1 xr+3

+
1
2 (m2+m)

(µ−λ∗)m+2 xr+2 −
1
6 m3+ 1

2 m2+ 1
3 m

(µ−λ∗)m+3 xr+1)

+ . . . + αr+s(
1

(µ−λ∗)m xr+s − . . . + (−1)s−1 qs−1(m)
(µ−λ∗)m+s−1 xr+1) ] + · · · }.

But this implies

(λ − λ∗)m(A − λ∗I)−mv0

=
∑

j: λj=λ αjxj + { . . . +
(

λ−λ∗

µ−λ∗

)m

[

(

αr+1 − αr+2
m

µ−λ∗ + αr+3

1
2 (m2+m)

(µ−λ∗)2 . . . + (−1)s−1αr+s
qs−1(m)

(µ−λ∗)s−1

)

xr+1

+
(

αr+2 − αr+3
m

µ−λ∗ + αr+4

1
2 (m2+m)

(µ−λ∗)2 . . . + (−1)s−2αr+s
qs−2(m)

(µ−λ∗)s−2

)

xr+2

+ . . . +
(

αr+s

)

xr+s

]

+ · · · },

from which it is clear that the sequence (λ−λ∗)m(A−λ∗I)−mv0 converges to an
eigenvector of A associated with λ. The assertions about the rate of convergence
follow by setting

ps−1(λ) = αr+1 − αr+2
m

µ−λ∗ + αr+3

1
2 (m2+m)

(µ−λ∗)2

−αr+4

1
6 m3+ 1

2 m2+ 1
3 m

(µ−λ∗)3 . . . + (−1)s−1αr+s
qs−1(m)

(µ−λ∗)s−1 .

Proof (Theorem(power)):
Assume that A is diagonalizable, so Axj = λjxj , {xj}n

j=1 linearly independent.
Choose v0, and call αj so that v0 =

∑

j: λj=λ1
αjxj +

∑

j: λj 6=λ1
αjxj . Note that

the first sum is non null by assumption. Then we have the equalities:

Amv0 = λm
1

∑

j: λj=λ1
αjxj +

∑

j: λj 6=λ1
αjλ

m
j xj ,

1
λm
1

Amv0 =
∑

j: λj=λ1
αjxj +

∑

j: λj 6=λ1
αj

(λj

λ1

)m
xj .

The thesis follows letting m go to infinite.

Assume that A is not diagonalizable. Set µ := λj , where λj 6= λ1, and restrict,
as above, the Jordan matrix equation X−1AX = J to a diagonal Jordan block
of order s associated with µ. Then

Axr+1 = µxr+1, Amxr+1 = µmxr+1,
Axr+2 = µxr+2 + xr+1, Amxr+2 = µmxr+2 + mµm−1xr+1,

Axr+3 = µxr+3 + xr+2,
Amxr+3 = µmxr+3 + mµm−1xr+2 + 1

2 (m2 − m)µm−2xr+1,
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Axr+4 = µxr+4 + xr+3,
Amxr+4 = µmxr+4 + mµm−1xr+3 + 1

2 (m2 − m)µm−2xr+2

+( 1
6m3 − 1

2m2 + 1
3m)µm−3xr+1,

and so on. Set λ := λ1 and t = ma(λ1) = mg(λ1), so we can assume that the
upper-left t × t submatrix of J is diagonal with diagonal entries all equal to λ.
Then

Amv0 = Am
(
∑t

j=1 αjxj + {. . . +
∑r+s

j=r+1 αjxj + . . .}
)

=
∑t

j=1 αjλ
mxj + {. . . +

∑r+s
j=r+1 αjA

mxj + . . .}
= λm

∑t
j=1 αjxj + {. . . + [ αr+1A

mxr+1 + αr+2A
mxr+2

+αr+3A
mxr+3 + αr+4A

mxr+4 + . . . + αr+sA
mxr+s ] + . . .}

= λm
∑t

j=1 αjxj

+{. . . + [ αr+1(µ
mxr+1) + αr+2(µ

mxr+2 + mµm−1xr+1)
+αr+3(µ

mxr+3 + mµm−1xr+2 + 1
2 (m2 − m)µm−2xr+1)

+αr+4(µ
mxr+4 + mµm−1xr+3 + 1

2 (m2 − m)µm−2xr+2

+( 1
6m3 − 1

2m2 + 1
3m)µm−3xr+1)

+ . . . + αr+s(µ
mxr+s + . . . + qs−1(m)µm−s+1xr+1) ] + . . .},

Amv0 = λm
∑t

j=1 αjxj

+{. . . + [ (αr+1µ
m + αr+2mµm−1 + αr+3

1
2 (m2 − m)µm−2

+αr+4(
1
6m3 − 1

2m2 + 1
3m)µm−3

+ . . . + αr+sqs−1(m)µm−s+1)xr+1

+(αr+2µ
m + αr+3mµm−1 + αr+4

1
2 (m2 − m)µm−2 + . . .

+αr+sqs−2(m)µm−s+2)xr+2 + . . . + (αr+sµ
m)xr+s ] + . . .},

1
λm Amv0 =

∑t
j=1 αjxj + {. . . +

(

µ
λ

)m

[ (αr+1 + αr+2
m
µ

+ αr+3

1
2 (m2−m)

µ2

+αr+4

1
6 m3− 1

2 m2+ 1
3 m

µ3 + . . . + αr+s
qs−1(m)

µs−1 )xr+1

+(αr+2 + αr+3
m
µ

+ αr+4

1
2 (m2−m)

µ2 + . . . + αr+s
qs−2(m)

µs−2 )xr+2

+ . . . + (αr+s)xr+s ] + . . .}.

It is clear that, as m goes to infinite, the sequence 1
λm Amv0 converges to an

eigenvector of A associated with λ, the dominant eigenvalue of A. Finally, the
assertions on the rate of convergence follow by setting

ps−1(m) = αr+1 + αr+2
m
µ

+ αr+3

1
2 (m2−m)

µ2

+αr+4

1
6 m3− 1

2 m2+ 1
3 m

µ3 + . . . + αr+s
qs−1(m)

µs−1 .
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