On lower Hessenberg Toeplitz matrices

Set
ay 7y ayp a2 Gnp,
az ai T Yoa1
Hn = 9 Hn =
0 a2
Gn, a2 a1 Yooal

Recall that

OT

B T B T(In—lym) 0
AX = XA=D Xpyh = A== 7(Jxpn) [ 1 o | t7(JAen)
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Note that if |[H,1]1:| = |[[H,, Yn+1—in| = |det A,,—;/ det A,| # 0 then
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So, if det A,,—1 # 0 then the first and the last columns of H,; ! define H,,!. How
to compute such columns ?
We now assume 7y = 1:
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H, e, = u—[(xn—l s 9y) (Tp—1 - 22) .. (Tp—1@n—2) (Tn-1) 1]
1 1 1 1
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An alternative way to compute H, 'e; and H, e, ...
Assume n even. So, H,, v = 1, can be written as follows

Hy  (eg)(er)T
Tn Hn
2 2

H» 0
2

Hn:[ }:An—ke%egﬂ, A, = [ 7. Ha }, m=n/2.
2 2

Note that 7'z is a generic (non symmetric) Toeplitz matrix. Then, by the
Sherman-Morrison formula, since el H;! = el (JH; )T = (H;'e,)TJ, we

1+ n
have the following formula for H !:
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As a consequence (for simplicity set e,, = el

(H;Llem)l
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H “en,

)), we have a formula for H le,:
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formula for H, 'b, in fact, if by and by denote the first and the second half of

|

b, then
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(computations: H.le,,, Tn(H, ‘ey), H '(TnH, e,), H. by, T,,(H, 'by),
H&l(bg — TmH;LIbl))
From now on, we set v = 1 in the matrix H,,.
Computing H, ‘e, from H, " 5:7 11)
Hn = An + en71e£7 An = Hn—l 0 )
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Thus, assuming Hy, non singular, K = 1,...,n, and starting from Hflel = 0,1_1’
one can compute H,, 'e, with n? + O(n) a.o. .
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Arrow matrices.
—t1+t1 t_o+ho topt1+hp_z  —hp+hp_2
—ta — ho —t_pt1 — hna
(T+H)X—X(T+H) = : :
~tp—1 — hp_3 —t_9 — hop_2
—hp—2+hn  tho1 4+ hpg to + han—2 —t_1+t
When the rank of the above (T'+ H)X — X (T + H) is equal to 27 For instance,
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O O O
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O o 0O O O o o 0
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rank 2. ...
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Evaluation of ((s)

r=1 rs

Assume s > 1. Then the Euler-Maclaurin formula for f(z)

1
- and n — +o00

becomes:
“+o00 k
1 1 1
r:mr_‘g T 2ms + (s — 1)ms—1t + 32::1 2)!

Byi(0) s(s+1)---(s+2j —2)
( mst2i—1

+ Uk+1,




| Bor2(0)] s(s + 1) - (s + 2k) ”
@k+2)l  meRel

(proof: [ % dv = 25 (G=r —5=r )i f9(2) = (=1)s(s+1) -+ (s~ )2~
JED@) = (s 1)+ (54 2] —2)a> 24 )

Ezercise. Assume m fixed (f.i. m = 2). Find the value of k that minimizes the
upper bound in (*).

|| <

k=0: —+
10 2ilaeine)

2L
2 ~.

b= 2 (s 1) (5+2)(s48) (s44)

k=3: 2 's<s+1>< ><s+s>£7 (s 5)(e16)

.O‘

Note. For k large (how much?) there is a good estimate of |Bagy2(0)| (see
below).

Estimates of ((3/2). Assume s = 3.

“+o00 k .
11 Ba,;(0 - (4j—1)
Z;nﬁ/; B 2m\/m +g2:1 (24) ' 221 1m23+1 + k1,

Bok12(0)| 3(5) --- (4k + 3
g1 | < |Bak+2(0)] 3(5) - - - ] ) (%)
(Qk + 2)' 22k y 2k+2+3

A rational approzimation . It is clear that the only way to avoid the computation
of radicals is to set m = 1:

“+o00 k .
1 1 By;(0)3(5)--- (45 — 1)
Y —=s+2+) L : + k41,
| 25—1
—oryr 2 = @) 22j
|Bak+2(0)[ 3(5) - - - (4k + 3)
k] < o) 92k ' )
k=0: 542, lw| <1
k=1: (3)+ 3, |u| < 192~0036
k=2: () — 35, |us| < §%~00214
k=3: (585)+7, |ua| < 1314 ~ 0.026.

So, 491 is the better rational estimate of ((3) which can be obtained (at least

by our knowledges). The error is bounded by 0.025 = %.

An approzimation in Q[v/2]. It is clear that the only way to avoid the compu-
tation of radicals greater than v/2 is to set m = 2:

P +Zk3 5(0)306) (4 —1)
ST 4\f Ve o 2J 22J 2p
Bass ()] 3(5) -+ (b +3) \ 1
[un1] *( (2k + 2)! 22k )22k+2\/§' (+)



k=00 o5+ 5, Ju| < f50s = 0.044

k=1: (15)+ 55 |uQ|g$2 ~ 0.0015;
k=21 (575) - (3)231@ lug| < & 26f~000023
k=3: (Fam)+? lual < 152 s ~ 0.000071.

So, 1+ 61113(39[ = 2.6122817... approximates ((2) with an error bounded by

0.00025 = 5.

An approzimation in Q[v/2,1/3]. One can avoid the computation of radicals
greater than v/3 by setting m = 3, or, better, m = 4:

X1 1

B?J ) (4.7 - 1)
Z < r\/r BT Z 22j42j Ukt

| |ng+2(0)|3(5)---(4k+3)) 1
Ykt —( (2k +2)! 22k A2k+2+5

Let us check the approximations proposed, for small values of k:

k=0: &+1, jur| <1 —1—42+27:11%8'
k=1: (16)—’—206’ |us| < 153 P () 5 ~ 0.0000712;

256

21
k=20 (E)— ghw, lus| < 512461 = L ~ 0.0000026;
k=30 (27) + g, Jual < 53—~ 0.0000002.

So, (1+ ﬁ + 3—\1/5) + = approximates ((%) with an error bounded by ... .
Estimates of ((5/2). Assume s = 3.

R | 1

k
_ Bs; (0 (45 +1)
2 2 2m2\/ﬁ Bm\/_ +Z (27) ! 22J 1m2j+1+1 + Ukt

r=m Jj=1

| Bok+2(0)[ 5(7) - - - (4k +5) _ 4k +5
(2k 4+ 2)! 92k 2k+3+1 Y

[upt1] < - (bound for s = g)

4k+o

Thus, for m = 1, we have |ugy1| < - (bound for s = 2): 20.25 = 0.416
(k;—O) 3.0.036 = 0.108 (k=1), 1300214—00927 (k_2 and, for m = 2,
we have [uy41| < 2555 - (bound for s = 2): 20.044 = 0.036 (k = 0), £0.00159 =
0.0023 (k = 1), 130 000236 = 0.00051 (k = 2) 170.000071 = 0. 000201 (k= 3).

So, by settlng m = 2 and k = 3 we obtain an approxnnatlon of C( ) involving
the only radical /2 and with an error bounded by 0.000201:

[ ][V

~—

5 = 1 5 7 1113 _
C(?) 1+ 23\/_ 3v2 + (3)26/2 - 212\/5 (B3)2Tv2 1.34155356 .
I¢(3) = ¢(3)] <0.000201

We know that

8~ ((3) =26122817..., ((2) = & = 1.644934067 ...,
C(3) ~ ¢(3) = 1.34155356 ...



where the error for the first and the third value is bounded, respectively, by
0.000236 and 0.000201.

We can use the above estimates to obtain an approximation of the following
integral:

I_f (s 5—1+Z+D° ;Téds

f? ( fds = f eSIOgP rds = (log, r)r\/F(]' - %)

In fact, by the Romberg extrapolation method,

I =1[5¢(5) + 3¢ 1y = 5(3¢(3) +¢(2) + 3¢(3)],
221, -1y

(5
I=—F1 =1[3¢(3) +20(2) + 3¢(5) = 1.7555.. . ~ I.

Let € be in (0,1], and set f(z) = 2°~'. Then f'(z) = (¢ — )= =2 fO)(2) =
(e—1)(e—2)--(e—8)x=* 1, fF V() =(e—-1)(e—2) (e - 2] +1)25=%
=

Z:‘L ’mrllE _izé(mllfs—’_nll—e)_nze
B (e —1)(e -2 —2j+1 S
+Zj 1 2])' ( )(6 ) (E ] + )(n21 £ m2j—e) + ukJrla
| Bak+2(0)] 1 1
k] = (2k + 2)! (e =1)e—=2)- (e -2k - 1)||n2k+275 T m2kta—e k
Set ve = limy— 400 (D T%g —nf/e). Then
v = ¥ 11 e limy oo (0, e — L)
B Z:”:_]} Tlllae (t)ﬁ _Qm_ 2j+1
_ZJI 1 (2231)' € )(EM)J (EE L +uk+1(oo),

| Bar+2(0)] [(e = 1)(e =2) - (e =2k —1)|
(2k + 2)! m2k+2—e

g1 (00)] < 2

Ezxercise. Set ¢ = %

Remark. The number 7. seems well defined for any e € (—o0,0) U {0} U (0,1]
(casio PB200):

e=1: =0

e=0.75: .= —-0.724;

e=05: 7. =—1.4491T,

e=025: .= —-3.439613;

e=01: ~.=-9.429;

e=0.01: ~.=-99.42;

e=0: v =0577...;

e=—-05: v=261...;
e=—-10: y=164...;
e=—-15: v =134....



5F=0.75
10I=1:5=0:N =2000
208=8S+1/IB)): I=T+1:1F I < N;GOTO20
30Y =5 - (N®)/E

40 PRINT Y

10/=1:5=0:N=2800
208S=S+1/I:I1=1+41:1IF 1< N;GOTO20
30Y=S—-LNN

40 PRINT'Y

One guesses that 7. is equal to the Riemann zeta function when ¢ is negative;
is well defined and increasing (from —oco to 0) when ¢ € (0,1]; is equal to the
Eulero-Mascheroni constant when e = 0 (that is, is equal to lim,, oo (31—, 1/r—
log, n).

Computing the Bernoulli numbers

Assume we know that L& = S0 B’;(m)t” (yet, however, we have no proof of
this equality). In partlcular for z = 0 we have:
= Bn(0) \n _ t sz
oS B Sl
n=0
Then
400 Bk (0 “+o0 T
to= (—5t+22 (22’2)1)75%)75( =0 )
+oo " +o00 Bok (0 +00 £
= _%tQ( r= O(r+1 1) + 120 (22’2( LRy (S =Ty

+oo I +oo By (0)t2FFT
—3 2,0 Gor Tt 2 kr—0 BT

By setting 2k +r = j — 1 in the latter equality, one realizes that the coeflicient
of t/, 7 =2,3,..., on the right is
1 1 =] Bay,(0)
e b Y x
G- 2 @RI - 2R )

and it must be zero, like the coefficient of ¢/ on the left (note that the coefficient
of t on the right is 1, like the coefficient of ¢ on the left).
So we have the conditions:

[557]

——g+z< )ngo):O,j:2,3,4,.... (%)

(A) By considering separately the cases j even and j odd, we have

j=2s,8s=1,23,...: —s+y,_ ( )ng(O):O,
. s 2 1
j:25+1,5:1,2,3,-~-5 —QSTJrl—FZ}C_O( 82—]: )ng(O):O



It follows that

(o) () no | s
(o) (2) (%) ao |~ 1]
HEGRGNOMIE
_ (1 "B—O(O)' 1]

1 6 B(0) 2

1 15 15 B4(0) 3

1 28 70 28 Bs(0) | = |4 |

1 45 210 210 45 Bs(0) 5

and _ o _ o

(3) (2) no | [
(o) (3) (%) o |~ | 7 |
(o) (2) (1) (3) '
- (1 -—BO-(O)' (1]

1 3 Bs(0) 3/2

1 10 5 B4(0) 5/2

1 21 35 7 Bg(0) | = | 7/2

1 36 126 84 9 Bs(0) 9/2

In other words, the Bernoulli numbers can be obtained by solving (by forward
substitution) a lower triangular linear system (one of the above two). For ex-
ample, by forward solving the first system, I have obtained the first Bernoulli
numbers:

BO(O) = 17 BQ(O) = %7 B}(O) = 3107 Bﬁ(o) = 4_127
Bg(0) = —45, B1o(0) = &, B12(0) = — 255,
2 47021
Bia(0) = § ~ 116, Bio(0) = ~ G ~ =709,
, Bay(0) ~ (—1)’”14(%) Vrk (see below).

[... An algorithm bi-diagonalizing a lower triangular matrix ... a, 8 such that
aTy + BT3 has a sparse lower triangular inverse. . .].



A final remark. Let us consider the finite versions of the above two linear
systems. If b denotes the vector [Bo(0) Ba(0) B4(0) --- B2s(0)]T, then such
finite systems can be rewritten as follows

Tib =e, Tob =e, e:[ll...l]T

where T4, T are lower triangular (s+1) x (s+1) matrices, with [T1];; = 2j —1,
j=1,...,s+1, [To]11 =1, [T5];; =2, j =2,...,5+ 1. It follows that b is left
unchanged by the transformation Tfng, which is a lower triangular matrix with

diagonal entries 1, %, %, %, e Tﬁ-l’ i.e. b is the eigenvector of the dominant

eigenvalue 1 of the matrix 77 'T5. So, in principle, b could be computed by
means of the inverse power iterations. Write T, T

—1
1 1 1
I I F Y S Y
! 7 3 3 2 5 3
1 1 1
T, =] 1 3 2 9 = L2
! ? i55 §42 _1§_9 i 2
3 5 450 15 5

(B) Instead, by considering the equations obtained by equating (*) to zero
for j =3,4,7,8,11,12,...,4s+ 3,45 +4, ..., we obtain a lower block triangular
system whose blocks are 2 x 2 matrices. More specifically, the first block-row
condition:

% 311581308 (58]0 5 #11Y

o am ) | B2(0) 2 [ 3 B,(0) —om om J2L @

The second block-row condition:
ERICIRER]]
as mer J | B2(0) W o

o |-l T o

=

=
)

S

—_
|
-
7 N
| =
T 1
N|—2|—
—_
|
| — |
2| 2
73"
%)
58
| — |
T —
N S
—~
o O
S—
L '
~__

The generic block-row condition:

_ ) )
O!(4si+3)! 2!(4si+1)1 [ By(0) } i 4!(431—1)! 6T(4-3)! { B4(0) T
0l(4s+4)!  21(d4s+2)! B5(0) | 4(4s)! 61(4s—2)! | Bg(0) _

(4%!3! (45{2)!1! { By,(0) ] _1 (43«}2)1' s—0.1.9
@)1 4l (ds+2)12! Bis12(0) 2 (4s5+3)! , Y
from which we have the following formula:
1 1 1
{ By, (0) } — (45)\(4s 4 2)l41 | TeFDRT TR 1| @
Bis2(0) T @s)lat (@s)13! [@s+3)!

1 1
sl (4)1(4s+3—45)!  (47+2)!(ds+1—45)! B4j(0)
Zj:() 1 1 B (0) )
(@N(4s+4—4j5)!  (4j+2)/(ds+2—47)! 4j+2

10



s=0,1,2,..., or , alternatively, multiplying by { 1 (1) ] ,

_1
4
1 1 B (0 1 1 B.(0
0!§4s+3ﬂ4s 2!1(4s+1£i4s [ 0(0) } + 4!1(45719515 6!1(45736)1745 [ 4(0) ]+ +
0l(4s+4)! 4 2I(4s+2)! 4 B,(0) 4(4s) 4 61(45s—2)! 4 Bs(0)
@E @O Bys(0) | _ 1 eEEm _0.1.92
+ 1 =2 [ }+ _ 1 2 B (O) - 3 1 I-4s , s=U, L4, ..
(45—2)'6! 4 (4s+2)12! 4 4s5+2 (@s+3)! 4

Here below are three formulas for the generic Bernoulli number in terms of
the previous Bernoulli numbers:

s—1
1 1 2541 _
st(O)—2 2s+1§_( ok >B2k(0),s—1,2,3,... (odd)
s—1
2s+1 1 1 25+ 2 -
5 B5(0) 2 2512 E_( ok )ng(O),S—LZ,?),..., (even)
s—2
3—2s s—k+1-2/( 2s+1
25 +1)By,(0) = B , s=2,3,4,...
o030 = 52 S T () a0 =20

(third)
(the latter formula is obtained by combining the previous two).

Ezercise. Baj,(0)Bay(3) <0VEk > 0.

Assume Baj(0) = 0 for some k. Then, since Bag(z) = Bar(l — ), we also
have Bai(1) = 0. Moreover, we also have ng(%) = 0, otherwise, in order to
have fol Baj, = 0 it should be 2kBai—1(§) = B, (£) = 0 for some ¢ € (0,1)
which is not possible. So, Baj(0) = Bay(3) = Bor(1l) = 0. But this implies
again 2k Baj_1(£) = B, (€) = 0 for some £ € (0, §), which is not possible.

Now assume Bgg(0) > 0. Then ng(%) < 0 otherwise in order to have
fol Bay, = 0 it should be 2kBaj,_1(£) = Bb,(£) = 0 for some £ € (0, §), which is
not possible.

Ezercise. Bog12(0)Bak(0) <0

Since, for k large, ((2k) ~ 1 and (2k)! ~ (2k)*e~2k\/4rk (Stirling’s for-
mula), we have

Bar(0) = A (o) ~ ()" vk

/mathworld.wolfram.com/BernoulliNumber.html
http://numbers.computation.free.fr/Constants/Miscellaneous/bernoulli.html

Proof of the identity te*/(et — 1) = 3720 B, (z)t" /n!

Set F(x,t) = S+ Bulz)in (the function F' is well defined for any x € R

n=0 n!

provided that || <?). Note that F solves the following differential equation:

0 0 = B,(x) , = B,_1(z) ,, = B_1(z) ,,_4
ol ) = %(H; n(' ) ):Zr(l)!)t :t;r(l)!)t = tF(z,1),

n=1

11



and F(0,t) +t = F(1,t). So, F(x,t) = T(t)e*® where T'(t) +t = T(t)et. (alter-
natively, [\ F(z,t)de = T(t) [, e” dz = T(t)(e! — 1)/t. [, S525 Boledyn gy —

oo it 11 B (2) dw = 1).

n=0 n! Jo

Discussing with Francesco

Set
0
as
7 = as
a, 0O
Then Z° =1,
_ 0 _
5 0
0
Z2 = a2a3 asa s Z3 = a2a3a4
3t asa4as
dn-18n 0 0 L An—2an-1an, 0 0 0 |

Note that (I —Z) ' =T+ Z+2Z%+...+ 2" =3/ ZF. In fact,

1
—ag 1 A
=1—-Z= —az 1 _ n-1 0
An=1-2 . . |: _aneZ—l 1 ],
—a, 1
— 1 -
a9 1
1
_ At 0 d2ds 43
Anl_ aneg_nlfll;il 1 = az2a304 A3G4 Q4 1
Ap—1 1
L Ap—1Qp  ap 1 |

Define X = E;:j) VAR Z;é 5 Z". Since, for i > j,

gi—i — | 0203 Gijt1
a3aq - Qj—j42

An—(i—j)+1 """ Gn—10n

where the non zero entries are in positions i —j+s,s, s = 1,...,n— (i — j), the
entry 4,7 (1 <j<i<mn)of X is
1 1

[(X]ij = =) (275 = m%‘ﬂ S Q-1

12



In particular, if as = s — 1, then

20 = (]

The lower triangular matrices appearing in the linear systems defining the
Bernoulli numbers (see the sections below) are submatrices of X, a; = s — 1:

(X1 =

0 _
0
1 (1
0 1
2 2 2
0 1 2 11
3 3 3 3 1 2
X = 0 1 2 3 =|1 3
4 4 4 4 (4 1 4
0 1 2 3 4
5 5 5 5 5 5
0 1 2 3 4 5
6 6 6 6 6 6 <6>
0 1 2 3 4 5 6
Remark:
" o -
0 0
1 2
2 2 6
4 20
30
L 42 .
o _ o _
0 0
2 0
0 6
= 12 , U= 0 )
0 20
30 0
0 42
-0 _
0
2
(o)
0 0
4 4
=, (o) o ()
§W¢: 0 0 0 0
6 6 6
(o) o (3) o (2)
0 0 0 0 0 0
8 8 8 8
() o (3) o (%) o (5)
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and

+oo

(2

k=0

(2k + 1)!wk> 3 0 -

N—— N N~

OO O UIO O WO oo

o
r 1
/N N TN TN
~

o O o o o o

TN TN TN

NJONITONW

N—

N———  ~—

o o o o

Compact representations of the (even and odd) Bernoulli triangular matrices

(Note: 2=1-2,12=3-4,30=5-6, 56 =

12

-8,

30
56

O 0O OO O

A e e g

K

- (
N EL (
(

20
42
72

(Note: 6=2-3,20=4-5,42=6-7,72=8-9, ...

(E
= (2k +1)!

> 57.._

w
1
N N N N

- OO Ut Oo W o
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Given ~

12

o6
90

the Bernoulli triangular even and odd linear systems can be easily reduced to
the systems

[ 1/2 ] [ 1/2 ]
By(0)
o Bg(O) % 11//160
oF B4(0) | — = =q., (even)
kzzo(%”)‘ Bu(0) ‘gfgg }j};‘ !
11 7 [ 1]
+ mo | |0 |
=3 1
Z oF B4(0) | = (7/2)/7 | = | 1/2 | =9 (odd)
(2k+1) B6.(0) (9/2)/9 1/2

In other words, we can use the same matrix ¢ in order to define them.

Question.
There exists M sparse non singular such that the matrices
+o0o _
M( IJ@F 0 (gklﬁ)ﬁbk) Zk 0 (2k+2 I(M¢M Hk,
M2 (2k+1)'¢ )M Zk 0 (2k+1 r(M¢M71)k

are much more sparse than Zk o (2k+2),¢ and Zk o (2k+1),¢
If yes, then ...

Remark.
Introduce the e-circulant- type matrlces C. and C, With the same lower triangu-

lar part of the matrices Zk o (2k+2), #* and Zk 0 (2k+1), @*. Then the solutions
of the systems C¢z = q. and C,z = q, could be satisfactory approximations of
the Bernoulli numbers; smaller € better the approximations.

An e-circulant-type matrix is any polynomial in the following matrix

0 gaq
as
as , (@ =17).

a, O

15



Set

R IR
G(Z)—kgomz s O(Z) ;m .

Note that 2z2e(2?) = e® + e~% — 2 and 2z0(x?) = ¢ — =% (Roberto Peirone).
Thus, for any n x n matrix A such that there exists B for which B2 = A
(B = v/A), we have the equalities

+oo +oo
1 1
2AY A = P —2I, 2BY o Af =P P,
kzo (2k + 2)! ¢ te kzo 2k + 1)! © e

Unfortunately, for our matrix ¢ there is no matrix B such that B? = ¢.

Perhaps, the matrix ZZ:?) mgbk is similar to a lower triangular Toeplitz
matrix:

a 0 F a~t
b ( 4 2 ) bt
c Z 12 ¢!
d k=0 (2k + 30
e 56 0
a 0 b a~!
4 1 b 2 b1
Z c 12 ¢!
2%k +1)!
= ( d 30
e 56 0
[ a 0 a”?
4 1 ( b 2 b1
> c 12 -1
= (2k+1)! d 30 -1
i 56 0
) a~t
4 2b bt
1 k
Z S — 12¢ ¢t
o 2R+ 1)1 g 30d q-1 )
i 56e 0 e !
0
4 ( 2ba~1! )k
> 12¢b~! .
= Qk + 1! 30dc!
56ed”t 0

Choose a, b, ¢, d, e such that

200! =12¢b™! = 30dc™! = 56ed ! = cost # 0

16



If it is possible, then one can compute Bernoulli numbers by solving a lower
triangular Toeplitz linear system.

Perhaps generalized-Toeplitz (generalized circulants) simply reduce to Toeplitz
(circulants). Perhaps it is useless to introduce such generalized matrices . ..

Solving infinite Toeplitz lower triangular linear systems

Assume we want to compute the solution of the system T,,x,, = c,,, n-section
of the infinite lower triangular Toeplitz linear system

1 C1
a9 1 Co

i.e. T, is the n x n upper left submatrix of T and ¢,, = I}c (thus x,, = I}x).
Note that

Tk 0 Xk Ck
Torxor = M, Ty Ig,:rlx - Igljlc = C2k,

so, if we have solved Tjx; = cx (we have xz) then Xz, (I57'x) is obtained by
calculating the matrix-vector product Myxy (note that My, is Toeplitz!) and by
solving the linear system

Ty I5x = 15 e — Myxy,.
In other words,

s(2k) < t(k) + 2s(k),
s(k) = multiplicative complexity of solving a system Tz = w,
t(k) = multiplicative complexity of a matrix-vector multiplication Mjz.

An obvious algorithm solving T5-X2» = cor consists in solving the first equation
(no operation is required, i.e. s(1) = 0), solving the second equation (by one
multiplication, i.e. t(1) = 1, s(1) = 0), solving the third and fourth equations
simultaneously (doing #(2) and s(2) < (1) + 2s(1) operations), solving the 5th-
8th equations simultaneously (doing ¢(4) and s(4) < ¢(2) + 2s(2) operations),
and so on. It is clear that

$(27) < s(1) + (1) + s(1) + £(2) + 5(2) + £(4) + s5(4) + £(8) + 5(8) + ... +t(2771) + (2771,
=252 H+t2 ) =...=2""15(2) + Z;: 2i=1¢(2r 7).

(s(1) =0, t(1) =1, s(2) = 1). Noting that t(k) = O(klog, k) one easily proves
that s(2") = O(2"r?) = O(n(logy n)?) (if n = 27).

Bernoulli numbers computation by solving a triangular Toeplitz linear system
0
d1 2 dit
do 12 dy!
D¢D™' = . 30
d, a7t
2n—-3)(2n—2) 0

17



[N}
e

(2n — 3)(2n — 2) 4=

n—1

where the latter identity holds if

or, equivalently, if

xk—ldl
=—— k=1,2,3,...
(2]{—2)!’ ) ) )
1
D, = ar

wn—l

(2n—2)!

It follows that the Bernoulli triangular linear systems Zz_é (2ki1)!¢kb = qo

and >}~ 0 F +2), #*b = q. (b is the vector of the first n Bernoulli numbers) are

equivalent to the Toeplitz triangular systems Zk:o (2k+1)1( dD;HF(D,b) =

n—1 _
Dydo, and 37770 iy (Dy¢ Dy )" (Dyb) = D

Let us write them explicitly:

3
|

—
=

b
Il
o

n—1

M

k:O 2k+2

k+1
2k +1)!

k+1

1

yde (for any z, y # 0).

(DTb) = quo-

(Dyb) = Dyqe.

The Toeplitz triangular linear system solver (what is the optimal? The one we
know of cost O(n(log, n)?) ?) gives the following vector z:

1+ By(0)

i32(0)

77 B4(0)
o B2s(0)

" 1

18
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from which one computes the vector of the first n Bernoulli numbers b = D'z

Choice of z (y) ? So that the entries of the solution vector z have magnitude
smaller than 1:

& Bol0) =1
% 2(0)] < 1iff |2 < 12
{mBa 4(0)] < 1iff 2] < 26.84
|gf— 6(0)] < 1iff 2| < 31.2
I{g— s(0)| < 1iff 2] < 33.2
| Bro(0)] < 1 iff |a] < 34.37
6
| 57) 12(0)] < 1iff |z] < 35.2
| i B1a(0)] < 1iff [ < 35.8
| fs 16(0)] < 1iff |2] < 36.2
- 1 x® s° : s s)! (we)?®
| ;) 25(0)] < 1 about 1ff\@4\/ Sﬁ|§1ﬁ |z]* < (?22' (4\/%
32
| &35 Bs2(0)] < 1 about iff [2[16 < - E2U = iff [a] < 37.82

((29),B25(0);:z( )s+1(2$9)|4w/ (m)%)'
(2s)! as41 _ (2n41)(2n+2) 1

Roberto Peirone: as = “5-, o ntDZ (A1 D)7)?

— 24 which is less
€
than one, so az; — 0.
s 2s ..
as = ﬁ%/wsﬁ, x positive =
conclude neither ay — 0 nor as — +00.
(29),B25(0), T positive = 2=tL

— I3, thus if z = 472 ~ 39.4 we can

As41 x
as

’I'Bg s+2 (0)
= [@512)(25+1)B2:(0) —7

Other criteria for the choice of x: the entries of the coefficient matrix less
than 1 but great as possible; the diagonal entries of D~ less big as possible; . ..

Remark.
1
k+1 i 2
1 T
aj"n,—l
1 @n—oy
k+1 1
= o
wn—k—l
L Cln—k—1))! i
k+1 1 k+1 1
= o
',L‘nfk'fl 1
L @n—k—1))1 J - -
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Set Bp(0) =1 and k := 1. Choose . Then REPEAT {

2k

1 WB%(O)
z gh+1
30 msz-‘-z(O)
solve . .
zk.—l = o )
fer==l 3 1 & Bak—2(0)
.
_z s 22 - Bo(0
,i%cli)l‘ @k+n! BT 3_; EB?((()))
1| @ | : z ae
2 . ) :
2,; 1 ‘,E2k71 Ik Ik_l )
e r— @t @R Tz B2s—2(0)
IF ?7: {compute B2 (0), Bak+2(0), ..., Bap—2(0), and, if necessary, update z}
Set k :=2k. }
T 1z T 1
2 2 2
emae [ O][EBO) LIS T8 8] s
. x b)
501 2= Bs(0) 2| 2 g = (5 B2(0))
4 4 4 3 2
! 5 5.0) 1% % %
T 5 5 4 3
3 1 2 Bi1o(0) 1| = z oz oz
k=4 1 100 — 2|1 || 9 7
z_ Z 1 z° 2 z° x z° z?
55 ! i Buz(0) g |l oY
osom L 22 B14(0) z T
Set Bp(0) =1 and k := 1. Choose y. Then REPEAT {
k
: B0
Y k41
Py msz-‘-z(O)
solve : )
yk.—l y l P °
(21@)1 a2 %34]@_2(0)
1y k 2
) B
e o e Sy
_ 4k+6 (2k+2)! _ %—. 2122
o 2k—1 k k—1
ﬁ% y(4k)! o (2ky+2)! (ka,g),sz—z(O)
IF ?7?7: {compute Bz (0), B2k+2(0), ..., Bar—2(0), and, if necessary, update y}
Set k:=2k. }
1 vy ly Y 11
k=1: - - ZByoy=-2_Y =
5 P20 = go = PO =55
1 y2 1 y2 2
e (1 0[O (955 2] 0
o3 Y B (0) L L oL (31 B2(0))
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w
o

: Bs(0) s ] [ 4 % 4%
71 % 1 18 ygs g%' 54 53 ;}2
_ i 2 BoO) | _ 1l sig || @ i & &
k=4 vy 1 % = ; 1/% y% y(% S g
q 1 2 Bi2(0) | 2| iy i 1y 19§
v o oy o1 1y vyt oy
8T 6T i 2 L7 B14(0) 354 oL L L
A lower triangular Toeplitz system whose solution is B2(0), B4(0), ...
n—1 k
7Zk D,b) = D,q,
k=0
n—1
PlZ PIY*(P,D,b) = PD,q,
k:O
Zn_1 € Z: | e
P1ZnP1T:[ OT1 01],(P12nP1T)2:{ OT1 02],-~~
_ Z5
z:: 2% + 1 |: OT 0 :| (PlD b) Dqu
n—1 k ( )
——_(ZF I} [(P.D,b)+ (D,b)e" V)=1I'  PD,q,
kz:;) (2k+1) ( 1( 1 ) ( x )1ek ) 11124,
n—1 xk n—1 )
> ———ZF \I2(D;b) = I'Dsq, — (Dzb)1 Y ———e}""!
| “n—1"n x nt’xUo k
= (2k +1)! k:O 2k + 1!

Extern algorithm:

For each step (computing Bag, ..., Bsyk—2 from By, ..., Bap_2) we have to
multiply a k x k Toeplitz matrix by a vector, and to solve a k x k lower triangular
Toeplitz linear system, k = 1,2,4,8, ..., i.e. for each step we have to call two
functions. The first function use FFT. The second function is identical to the
Extern algorithm.

A lower triangular sparse system whose solution is B2(0), B4(0), ... (Ramanu-
jan)

Ramanujan in his first paper states that the Bernoulli numbers satisfy the
following equations

M1 1T B2(0) ] 1/6

0 1 B4(0) —1/30

0o 0 1 Bg(0) 1/42

% 0 0 1 Bg(0) 1/45

0 2 0 0 1 B1o(0) —1/132

0 0 11 0 0 1 Bi2(0) | 4/455

i 0 0o ¥ 0o o0 1 Bi4(0) | | 1/120

04 0 o0 2 9 0 1 Bi6(0) —1/306

0o 0 2 o0 0 221 0 0 1 B15(0) 3/665

i 0 o 18 o o 2 0 01 B (0) 1/231

o % o o H¥ o o 22 001 Bi(0) —1/552
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(actually, since Ramanujan Bernoulli numbers are the moduli of ours, his equa-
tions are a bit different).

So, for example, from the above equations I have easily computed B1g(0), B2o(0), B22(0)
(from the ones already computed):

43867 174611 854513
Bis(0) = —5o= ~ 5497, Bao(0) = ——5— & —529.12, By (0) = — o2

~ 6192.12.

Problem. 1Is it possible to obtain such Ramanujan sparse equations by our
arguments ? Is it possible to obtain other sparse equations (hopefully more
sparse than Ramanujan ones) defining the Bernoulli numbers ?

Note that the Ramanujan matrix, say R, has nonzero entries exactly in
the places where the matrix Y., 7%x(Z3)* has nonzero entries, but it is not a
polynomial in the matrix d(v)Z3 whatever vector v is chosen. ...

Zd v; ZlZaij = Z Z a;d(vi)) Z*

k=0 i,5:i+j=k

k=0 aod(Vo)

k=1: ald(Vo) + aod(Vl)

k=2: OéQd(Vo) + Oéld(Vl) + Oé(]d(VQ)

k=3: Oégd(Vo) + OéQd(Vl) + qu(VQ) + Oéod(Vg)

k=4: Oé4d(V0) + Oégd(Vl) + OéQd(VQ) + Oéld(Vg) + Oé()d(V4)

k=5: asd(vo)+ asd(vy) + asd(ve) + aad(vs) + ard(vy) + apd(vs)

k=6: agd(vo)+ asd(vi) + aud(ve) + asd(vs) + aed(vy) + a1d(vs) + apd(ve)

Discussing with Fra

Given wo, w1, wa, ... € R** (in the simplest case wj, = wre, e =[111 ---]T),
look for vg, vy, va,... € RT such that

ZdeZZaJZJ Zdwk (%)

i.e. such that
+oo

Z( > Oéjd(Vz'))Zk=J§d(wk)Z’“
k=0

k=0 i,j:i+j=k
For such equality to be valid it is enough to require
k+1 k1o,
I+—go ( Z ajvi) = I + Wi
i,j:itj=Fk
i.e.
k+1 k+1 k+
Iy * oV = — o (I + wk—Zaeroovk J)
j=1

The above general arguments (i.e. the above arguments with wy # wge) are
necessary in order to obtain the Ramanujan lower triangular system (defining
Bernoulli numbers B3 (0), B4(0), . ..) starting from our lower triangular Toeplitz
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systems (defining Bernoulli numbers), because the coefficient matrix of the Ra-
manujan system is of the type Z:i?) d(wi)ZF, wo = e, wzji1 = Wzj12 = 0,
w343 suitable, j = 0,1,2,..., but is not a polynomial in d(v)Z3. [I have yet
to verify that such general arguments are also sufficient; in particular, it is im-
portant to check if there’s an explicit formula for the infinite Ramanujan lower
triangular matrix].

In the simplest case, wi = wge, one can look for v = vie solving (*), and
thus (*) reduces to

—+o00 —+o00 —+o00
ZviZiZaij = Zwka, L(v)L(a)) = L(w).
i=0 j=0 k=0

This is equivalent to solve the system L(a)v = w. By choosing w sparse (for
instance w =[1 00100 1...]7) and solving L(a)v = w we will have v such
that the system

L(w)(Dyb) = L(v)L(e)(Dzb) = L(v)D2qqo

is more sparse than our system L(a)D.b = D,q, (or L(a)D,b = D,q.), and
thus easier to be solved. But, in order to obtain a sparse system easy to solve
we have to solve a full system, like the original !

Problem. There exists a sparse w for which L(a)v = w, in spite of its fullness,
is much easier to solve than our original system L(«)D,b = D,q, ?
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