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In these notes the concepts of circulants, 7 and Toeplitz matrices, Hessenberg al-
gebras and displacement decompositions, spaces of class V and best least squares
fits on such spaces, are introduced and investigated. As a consequence of the re-
sults presented, the choice of matrices involved in displacement decompositions,
the choice of preconditioners in solving linear systems and the choice of Hes-
sian approximations in quasi-Newton minimization methods, become possible
in wider classes of low complexity matrix algebras.

The Fourier matriz, circulants, and fast discrete transforms

Consider the following n x n matrix

0 1
0 1
P =
1
1 0
Let w € C. Note that
1 1 1 1 :}’2 1
P 1 _ 1 1 1 ) w _ —w w 7
n—1

1 1 1 w1 “’1 w1

where the latter identity holds if w™ = 1. More in general, if w™ = 1, we have
the following vectorial identities

1 W 1
Wl ; wl .
P = w(n—l)j =uw y 7=0,1,...,n—1,

(=1 1 (=1

or, equivalently, the following matrix identity

PlW == WDlwn—l,

1 1 1 1 1
D w W 1 w w’ wn—t
lwn—1 = ) =
w1 1 1 w(n—l)j w(n—l)(n—l)

Proposition. If w™ =1 and if w/ # 1 for 0 < j < n, then W*W = nl.

I we have

proof: since |w| =1, 0 =w"™
W*Wl; = [WWly = S0 WlinWlky = 35, @0 D Det=06-0

= ZZ:l w(kil)(Jf’L) = Zz’:l(wjfi)kfl.



Thus [W*W1;; = nif i = j, and [W*W];; = L@ " 0 if # j (note that

1—wi—?
the assumption w’ # 1 for 0 < j < n is essential in order to make 1 —w’ =% # 0).

By the result of the above Proposition, we can say that the following (sym-

metric) Fourier matrix

1
F=—W
NG

is unitary, i.e. F*F = 1.

FExercise. Prove that F?2 = JP; where J is the permutation matrix Je, =
€nt1-k, k=1,...,n (J is usually called anti-identity).

The matrix identity satisfied by P; and W can be of course rewritten in
terms of F', P\ F = FDy,»-1, thus we obtain the equality

P, = FDyn1F*

which states that the Fourier matrix diagonalizes the matrix P;, or, more
precisely, that the columns of the Fourier matriz form a system of n unitar-
ily orthonormal eigenvectors for the matriz Py with corresponding eigenvalues
Lw,...,w" L
But if F' diagonalizes Pj, then it diagonalizes all polynomials in P;:
PFY = EFDFLF

lwn—1

n k—1
B g an Dy, F*

Dkt @k . 1
- F Dok—1 GRW" P

n k—1
Dk Gk

S apwm=Dk=1)
= Fd(Wa)F* = /nFd(Fa)F*
where by d(z) we mean the diagonal matrix whose diagonal entries are z1, 22, . . . , 2.

Let us investigate the matrices Plkfl, k=1,...,n,and the matrix > ;_, akP{“l
in the case n = 4:

01 00 0010 0 0 01
0 010 0 0 01 1000
0_ 1_ 2 _ 3 _
h=1nkK= 0 0 01 = 1.0 00 = 010 0|
10 00 01 00 0010
P'=P}P =PI'P =1=P,
4 a1 a2 a3z a4 1 1 12 13
k-1 _ | @4 a1 az az | _ e o 1T w oW ow
;akpl |l as as ar ax | VAFd(Fa)F”, F = Vil 1l w? wt Wt
N as as a4 a1 1 w? Wb W

Wwh=1, W #£1,0<j <4 (w=et?/1),

Note that, for n generic, we have the identities e%ﬂPlk*1 =el, k=1,...,n,
and P = I (prove them!). So, the set C = {p(P1)} of all polynomials in P;



is spanned by the matrices Ji = Plkfl; the particular polynomial Y, _; apJy is
simply denoted by C(a). Note that C(a) is the matrix of C' with first row a’:

ap a2 Ap—1 (79}
n an QA1 ap—1
a) =Y axi = = Fd(FTa)d(FTe,) ' F~*.
as a2
a2 ag an, a1

C is known as the space of circulant matrices.
Ezercise. (1) Repeat all, starting from the n x n matrix

0 1

and arriving to the (—1)-circulant matrix whose first row is a’, a € C™:

ai a2 Gp—1 Gnp
—0Qnp a1 Gn—1
C_i(a) =
—as ag
—Qz2 —as —0Qn a

(ii) Let 7" be a Toeplitz n x n matrix, i.e. T = (t;—;);';—1, for some t; € C.
Show that T can be written as the sum of a circulant and of a (—1)-circulant,
that is, T = C(a) + C_1(b), a,b € C".

Why circulant matrices can be interesting in the applications of linear alge-
bra? The main reason is in the fact that the matrix-vector product C(a)z can
be computed in at most O(nlog, n) arithmetic operations (whereas, usually, a
matrix-vector product requires n? multiplications).

Proposition FFT. Given z € C", the complexity of the matrix-vector product
Fz is at most O(nlogyn). Such operation is called discrete Fourier transform
(DFT) of z. As a consequence, the matrix-vector product C(a)z is computable
by two DFTs (after the preprocessing DFT Fa).
proof: since w(*=V*=1) is the (i, k) entry of W and zy is the k entry of z € C",
we have
(Wz); = EZ W=D k=1) 5, 27/2 W=D(2i=2) 5 1 Zn/2 (i—1)(2j— 1)Z2
= E"/2( )=V 4 + E”/Q Wi 1)(2(J 1)+1)z2
- E"/Q( 2)(=DG-D . ) 4 i Z"/Q( 2)(i=1)=1) 4,
Note that w is in fact a function of n, i.e. the right notation for w should be
wy. Then w? = w2 is such that (w2)™? =1 and (w2)" # 10 < i < n/2; in other
words w2 = w, /2- So, we have the identities

n/2 n/2
(Whz); = Zws/gl)(ﬁl) ; -1 an/z Zgj, i1=1,2,...,n. (7)
j=1



It follows that, for i =1,..., 3,
21 Z2
z z
(an)i = (Wn/Q 3 )7 + W, 1(VVn/Q * )1
Zn—1 Zn
Moreover, by setting i = § +k, k=1,..., %, in (?), we obtain
(Wazdgon = S2wEU DB 0 0, B kot yo/2 30D, (6D
n%) %4k j=1%n/2  Wn - n%n J=1%n n
= YWl ey — kW DU 5,
21 22
_ Z3 _ k-1 Z4 _ n
= (Wn/Q )k Whn (Wn/Q )kv k= ]-a”'v PR
Zn—1 Zn
(wT% = —1; think w = *27/"). Thus
I D n_, W 0
— 1(,,;7? n/2
Wnz [ I -D 4. 1 [ 0 W ] @z,
0 0 1
! (72)
Wn, 10
D1w§71 - ’ Q o 0 1
w2 00 0 1
L 0 1 -

If ¢, denotes the complexity of the matrix-vector product Fj,z, then, by the
previous formula,
¢n < 2¢p/9 + 10, 1T constant.

But this implies ¢, = O(nlogy n). The proof of the last assertion is left to the
reader.

Of course, any time a n x n matrix U, well defined for all n, satisfies for n
even an identity of the type

Un/2 0

ermutation matrix |,
0 Un/2 :| |:p

U, = [ sparse matrix } {
the matrix-vector product U,z can be computed in at most O(nlog,n) arith-
metic operations. The above identity is verified for at least 10 matrices U, the
Fourier transform and its (—1) version, and the eight Hartley-type transforms.
Note, however, that there are also other 16 discrete transforms of complexity
O(nlog,n), sine-type and the cosine-type transforms. See [],[].

Ezercise G. Prove that the n x n matrix G = G,, defined by

2t +1)(27 +1 2i+1)(27+1
G - @i+D@j+Ur (24 )2+
2n 2n

(cos ), i,j=0,...

ik

224



is symmetric, persymmetric, real, unitary, and satisfies the identity:

o3|

(J § x 5 anti-identity) for some suitable 5 x § diagonal matrices D., D;. Prove,
moreover, that each row of G,, has at least a zero entry when n = 2 + 4s (this
is like to say, we will see, that the space {Gd(z)G : z € C"} is not a h-space for
such values of n); and that, instead, for all other n, [G,]1x # 0 Vk (i.e., for all
other n, the space {Gd(z)G : z € C"} is a 1-space).

R, R_ Gnp 0

—-R_J RiJ } [ 0 G }@ Ry =D.=+ D,J,

Ezercise. Prove that the space C%; + JCK (%, symmetric n x n (—1)-
circulants, C9% skewsymmetric (—1)-circulants, is a commutative matrix alge-
bra (a matrix A is skewsymmetric if AT = —A).

The sine matriz and the (commutative) algebra of T matrices
Consider the n x n matrix
0 1
1 0 1
01 0 ,
1
1 0

and set J; = I, and Jo = Py+ P{. Note that el J; = el el J, = el. Moreover,
since

[1 0 1 1 [o o0 1 ]
0 2 0 1 01 0 1
0 2 1 01
(Py+ P)? = 1 1 + 1,
1 1
2 0 10
i 01| | 10 0 |

we have el (Py + PL)2 —1)=1[0010--- 0] =el. Set J3 = (Py + PI)? -1 =
Jo(Py + PE) — Jy; then el J3 = el

More in general, set J; 11 = J;(Po+PL)—Ji—1,i=2,3,...,n—1. The matrix
Jit1 is a polynomial in Py + P of degree i with the property e J; ;1 = eZTH.

proof: assume ef J; = e?, j=1,...,4; then
ef Jiy1r = ef (Ji(Po+ Py )= Jim1) = (ef (Po+Fy ) —el_, = (e]_+el, ) -l = el

Since Jp, Jo, ..., J, are linearly independent, we can say that they span the
set {p(Py + PL)} of all polynomials in the matrix Py + PI (use the Cailey-
Hamilton theorem). We call such set 7. Note that the matrices of 7 are deter-
mined once their first row is known; with the symbol 7(a) we denote the matrix
of 7 whose first row is a7, i.e. the matrix >k 0k

Let us find a useful representation of 7 and, in particular, of 7(a). First



observe that the following vectorial equalities hold:

1
in L in L
10 1 sin g [
sin P Jm sin PR .
1 = 2cos ,i=1,...,n.
1 +1
njm njm
1 sin 77 sin 77

Such n equalities can be rewritten as a simple matrix identity (Py+ P )S = SD
where S is the matrix

2 . igm
sin ,
n+1 n+1

Sij =

t,j=1,...,n,

and D is the diagonal matrix with diagonal entries D;; = 2 cos Jj: Note that
the matrix S, called sine matrix, is real, symmetric and unitary (prove it!).
Remark. Let Fy(,41) be the Fourier matrix of order 2(n 4 1). Then the sine
matrix S satisfies the following relation:

o o o o7
. o S 0 -S5J
I(I - F22(n+1))F2(n+1) 1o of o o7

0o -JS 0 JSJ

(note that F 5(n+1) is a permutation matrix). As a consequence, a sine transform
can be computed by performing a discrete Fourier transform.

So, the columns of the sine matrix .S form a system of unitarily orthonormal
eigenvectors for the matrix Py + P{. In other words, the unitary matrix S
diagonalizes Py + Pl and, of course, diagonalizes any polynomial in Py + P,
i.e. any 7 matrix:

Py+ PT =5SDS, (Py+ PI)* =SDks,
r={p(Po+ P} ={>1_,ar(Po+ PI)*1: a, € C} ={Sd(z)S : z € C"}.

In particular, it is clear that the matrix of 7 with first row a7 is

Zaka Sd(STa)d(STe;) 1S5~ L.

The latter formula states that matrix-vector products involving 7 matrices have
complexity at most O(nlogy n).

Proposition PC. Given X € C™*™ generic, we have

{p(X)} c{AeCm": AX = X A},
dim({p(X)}) <n <dim{A € C"*": AX = XA}

and if one equality holds then the other equality holds too. So, X is non
derogatory if and only if dim({p(X)}) =n =dim{4 € C**": AX = X A}.

The above Proposition suggests the following further representation of the
space T:
T={AeC™": A(Py+ P])=(Py+ Pl)A}.



The fact that any matrix of 7 must commute with Py + PI is equivalent to
require that the following n? cross-sum conditions hold:

Qi 5—1 + Q4 j+1 :ai,1,j+ai+1,j, ,j=1,...,n
where we have set ag; = ant1,; = @50 = Gijn+1 =0, 4,5 =1,...,n. We can use
such conditions in order to write down the generic 7 matrix whose first row is
[a1 a2 - - - ay]. For example, for n = 4, we can say that
a az as aq [0 1 0 0
N a2 ai+asz az+ayg asg _ _ 1 01 0
T(a) " | a3 astas ai+asz az |’ So=1, J2= 01 0 1|’
aq as a ay L0 0 1 0
0010 00 0 1 0 1 0 -1
01 0 1 0 010 1 0 0 O
B=l1 o010 o100l =0 00 1 |
01 00 1 0 0 O | -1 0 1 0
and so on.

Exercise. Prove that for n even the matrix Jy is invertible, and, if possible,
compute the inverse.

solution: We know that if Jy is invertible, then J5 Ler (from the fact that
Jo commutes with Py + P¢ it follows that also J; ' commutes with Py + P ).
Thus J; ! = 7(z) for some z € C". Note that the matrix identity 7(z)Jy = I is
equivalent to the vectorial identity z7.J; = ef. So, for example, for n = 4 we
have the condition

01 0 0
1 01 0

[21 Z2 23 Z4] 01 0 1 = [1 00 0],
00 1 0

which yields z; =0, z0 =1, 23 =0, z4 = —1, and thus
—1
=Js — Js.

SO O
= o o o
o = O

The proof for n = 6,8, ... is left to the reader.

Ezercise Ttau. Let T' be a symmetric Toeplitz nxn matrix, i.e. T = (t);_; )ijl,
for some t; € C. Show that T'= A + B where A is a 7 matrix of order n and

0 0 0
B=|0 R 0|, Rer, ReCln=2x(n=2),
0 0 0

Ezercise. Write down rank one 7 matrices (try firsst n =2, n =3, n=4,n=25,
n==6,...)

Hessenberg algebras



Let X be a lower Hessenberg 3 x 3 matrix

ail bl 0
X=| ax ax b
a31 as2 ass

We now show that the space of all polynomials in X is spanned by three matrices
Ji, o, J3 such that el J, = el k = 1,2,3, provided that X;;41 #0, i =1,2.
As J; we take the identity, J; = X° = I. Let us define J,:

0 by 0
X —anl=| an ax—an ba ;
as1 a32 a3z — a1
by 7& 0=
1 0 1 0
Jo = b—(X —anl)=| aa/bi (a2 —ai1)/bh ba /b1
! as1 /b asa /b (as3s —a11)/b1

Note that e Jo = el'. Then, let us define Js:

az/bi (a2 —ai1)/br ba/b1

b2#0:>

a a —a
Jy=2(J2 - biff— =2 1 » o).

Note that elJ; = el. Finally, Cailey-Hamilton theorem yields the thesis,
{p(X)} = Span {J, J2, J3}.

The following Proposition generalizes to a generic n the above remarks. For
a detailed proof see [].

Proposition. Let X be a lower Hessenberg n x n matrix. Then the space Hx of
all polynomials in X

Hx = {Zaka_l Dok € (C}
k=1

is spanned by n matrices J, ..., J,, such that el J, = ef, k=1,...,n, provided
that X;;41 #0,4=1,...,n— 1; in such case Hx is called Hessenberg algebra,
and for any a € C" there is a unique matrix in Hx with first row a” which is
denoted by Hx(a), i.e. Hx(a) =", arJi.

Of course, by Proposition PC, any Hessenberg algebra Hx admits also the
following representation

Hx = {AeCM™": AX = X A}.

Until now we have seen two examples of Hessenberg algebras, £-circulants
€ #0 (X = P) and tau matrices (X = Py + PJ). Both can be simultaneously



diagonalized by a suitable matrix. An example of Hessenberg algebra whose
matrices cannot be simultaneously diagonalized is Hp,, the space of all upper
triangular Toeplitz matrices. The matrix Hp,(a) is displayed here below

ayp a2 Qp
a1 a2
Hp,(a) =
a2
ai

Even the matrix Py, i.e. the matrix generating the space, is not diagonalizable.
(We shall see, however, that Hp, can be embedded in the space of 2n x 2n
circulants, which are diagonalizable).

Note that when X = Fj or, more in general, when X = P, the matrices Ji
are simply the powers of X, i.e. J, = X*~!. For example, for n = 3

Ji=1, Jh=X=

mo O

10 0 0 1
0 1|, Js=X>=]¢ 0 0
00 0 €0

Hessenberg algebras make up a subclass of commutative matrix algebras of
the class of 1-spaces defined here below

Definition. £ C C™*™ is said to be a 1-space if £ = Span{Ji,...,n} with Jj
such that el J, = el , k=1,... n.

An example of 1-space £ which is not a Hessenberg algebra is the following

A JB n_n .
C—{[ JB A }.A,nggmrculants}.

One can easily prove that £ is a non commutative matrix algebra. An example
of 1-space which is not a matrix algebra is the set of all n xn symmetric Toeplitz
matrices (see the next section).

Toeplitz linear systems and displacement decompositions

A n x n Toeplitz matrix is a matrix of the form 7" = (ti—j)ijl- In applications
often one has to solve Toeplitz linear systems Tx = b.
For example, here below is a 3 x 3 Toeplitz matrix:

to t—1 t_2
T=1|1%t to t1
to 11 to

An example of Toeplitz matrix T is the coefficient matrix of the linear system
arising when solving, by finite differences or by finite elements, the boundary
value differential problem —u" = f, u(a) = «, u(b) = 3. In such case T is
symmetric and its first row is [2 —1 0 --- 0]. Another example, important is
applied probability, is T = (t“’j‘)f’j:1 with |t| (¢ € C) less than 1.

Ezercise. The vector space of all n x n symmetric Toeplitz matrices is a 1-space,
being (t‘i,ﬂ)?;j:l equal to the sum ZZ:1 tx_1J; where the Jy are the symmetric



Toeplitz matrices with first row el. Prove that such 1-space is not a matrix

algebra.

In the framework of displacement theory it is possible to obtain some de-
compositions of 7! involving matrices from Hessenberg algebras (or from more
general commutative h-spaces) of the type

T7'=> MNy, 2<a <4
k=1

Usually, the matrices My and Nj, appearing in such formulas, can be multi-
plied by a vector in O(n log, n) arithmetic operations; thus fast direct solvers of
Toeplitz linear system naturally arise. Here below there is one example of such
formulas:

71! = LUy 4+ LyUs. (GS)

The L; and U; are suitable lower and upper triangular Toeplitz matrices, i.e.
elements or transposed of elements from the Hessenberg algebra Hp,.

Remark. By the Gohberg-Semencul formula (GS), if the L; and U; are known (a
way to obtain them is indicated in []), then the matrix-vector product 7~!b can
be computed in at most O(nlog,n) arithmetic operations. That is, assuming
preprocessing on T', the complexity of the problem of solving any Toeplitz system
Tx = b is at most O(nlogyn).

proof: it is enough to prove that any Toeplitz matrix (in particular the triangular
ones) can be multiplied by a vector by means of a finite number of discrete
Fourier transforms. The latter result is immediate if we observe that any n x n
Toeplitx matrix can be embedded into a (2n + k) X (2n + k), k > 0, circulant
matrix; for example, if n = 3 we have

to t—1 t_o to t1

o o1 Lo b ot
T=1|t to t.|,C= 2 1 0 -1 T-2

1 o to t1 to t—1 t_2

t_o to t1 to t-—1

t_1 t_o to t1 to

(k =0). It is clear that the vector T - z is the first part of the vector C { (Z) } .

The above representation (GS) for the inverse of a Toeplitz matrix, which
can be very useful in order to solve Toeplitz linear systems efficiently [], follows
from the displacement decomposition formula stated in the following theorem

Theorem DD. Let X be a lower Hessenberg n x n matrix. Assume that X;; =
Xit1,j+1, %, =1,...,n—1 (X has Toeplitz structure), and that b = X;;11 # 0,
and consider the (commutative) Hessenberg algebra Hx generated by X (note
that Hx is a 1-space).

Assume that 4 € C"*" is such that AX — XA =" _ x,yL. Then

bA == Hp,(%m)  Hx(ym) +bHx(ATer) (DD)

m=1

10



where, for z € C", Hp,(z) is the upper triangular Toeplitz matrix with first
row zT, Hx(z) is the matrix of Hx with first row zT, and Z is the vector
021 -+ zp_1]".

Note: Besides DD several other displacement decompositions hold, which can
be general like DD, i.e. representing generic matrices A, or specialized for
centrosymmetric A (see []). Such decompositions yield formulas for the inverses
of Toeplitz, Toeplitz plus Hankel, and Toeplitz plus Hankel-like matrices useful
in order to solve Toeplitz plus Hankel-like linear systems. Recall that a Hankel
matrix is nothing else a matrix of the form JT' where T is Toeplitz (the well
known Hilbert matrix is an example of Hankel matrix).

In order to prove Theorem DD, the following Lemma is fundamental.

Lemma []. Let £ be a commutative 1-space of n x n matrices, i.e. £ =
{3, adi o € C}, with Jx € C"™™ such that el J, = el, JiJs = JsJi. Let
X be an element of £, and assume that A € C"*" is such that AX — XA = xy”.
Then xTL(y)T = 0T.

proof: note that the equality JiJs = JsJi implies e{JkJs = e{JsJk, eg.]s =
el Jj, Vs, k, thus

XTﬁ(Y)TeT = XT(Zk yka)Ter =x' Dok ykJ]?er

xS ypd e, =xT 0>, yes,

x"Jly = Zi,j iy [T )i

iy vyl =320 ;[AX — X Al [ )i
2l(AX = XA)JpJii = 5, [(AJr) X — X (ATy)]is
tr ((AJ)X) — tr (X(AJ,)) =0

(recall that the two matrices MN and NM, M,N € C"*™, have the same
characteristic polynomial, even if (in case det(M) = det(N) =0) M N and NM
might be not similar each other).

We now report a draft of the proof of Theorem DD (for a more detailed
proof see []). In order to obtain the equality (DD), which is of the type

bA=E +bHx(ATey),
it is enough to prove that
EX - XE = (bA)X — X(bA), (% % )

and to observe that the first row of E is null. In fact, the above equality implies
(bA—E)X — X(bA— FE) =0, and thus bA — F € Hx. The Lemma, applied for
L = Hy, is fundamental in proving (***).

A matrixz algebra which is not a 1-space: the class of spaces in 'V

Remember that a matrix A is said symmetric if AT = A (aj; = a;5), skewsym-
metric if AT = —A (aj; = —ai;) and persymmetric if AT = JAJ (aj; =
an+1—i,n+1—j)-

11



Consider a 6 x 6 symmetric (—1)-circulant matrix A € C¥,,

ag ai ay 0 —as —ai
a1 ag a1 a2 0 —as
A— as al ap ai as 0
o 0 as a1 ag a1 a2 ’
—ao 0 as aj ag ai
—a1 —az 0 ax a1 ag

a 6 x 6 skewsymmetric (—1)-circulant matrix B € C°¥ and the matrix J B,

0 b by by by b by —by —bs —by —by O
b 0 b by by by by —bs —by —bi 0 b
[ I S S (R S S [ I S S S S S
B=1 0 by by 0 by b "7 Sty by 0 by by b
by —bs —by —bi 0 b b0 b by by by
b by by by by O | 0 b by by by b

The vector space «y of all matrices of the type A + JB has dimension equal to
6 (recall that dim(A + JB) = dim(A) + dim(JB) — dim(A N JB)).

We now show that there is not a basis {Ji} for v such that el J, = el
k=1,2,3,4,5,6,1i.e. v is not a 1-space. Note that

el (A+JB) = [(ao — b1)(a1 — ba)(az — b3)(—bs)(—az — b1)(—a1)],
so, the equality el (A + JB) = e¥ is satisfied if and only if
(L()—bl :0, al—bgzl, ag—b3:0, —bQZO, —ag—bl :0, —a1:0.

Since we have both the conditions by = 0 and by = —1, a matrix Jy € 7 such
that e Jo = el cannot exist.

However, there exists a basis {J; } of v satisfying the equalities (e1+eg)? Jx =
el k =1,2,3,4,5,6. For example, a matrix J € 7 with the property (e; +
es)T Jo = el is obtained as follows. Note that

et (A+ JB) = [(—a1)(—az + b1)(b2)(az + bs) (a1 + bz)(ao + b1)],

so, for the sum of the first and of the sixth rows of A + JB, we obtain the
formula

(e1 +e6)" (A+ JB)
= [(ao — b1 —a1)(ar — by — az + b1)(az — b3 + bz)(—b2 + a2 + b3)(—az — by + a1 + ba2)(—a1 + ap + b1))].

Thus the condition (e; + eg)? (A + JB) = el is satisfied if and only if the
following system of equations has solution

ag — by —a; =0, al—bg—a2+b1:1,

as —bg+bs=0, —bs+as+bs3=0,
—ag—bl—l—al—l—bg:O, —a1+a0+b1:07

1

and such system has the unique solution ag = a1 = %, az =0, bg = b3 = —3,

12



b1 = 0. The matrix Jo € v such that (e; —|—e6)TJ2 = eg is displayed here below:

113 4 o0
1 1 1 0 O
19 1 1 g _1
Jo=1| 1% T 1 1
2 03 3 0 -3
0 0 O 0 0 O
1 1 1
-5 0 -3 =3 0 3
Analogously, one obtains the other .Ji, such that (e; + eg)” Jx = el:
r 1 1 7 r 1 17
IR N F R
7 : : " 3 1 1 1 9 -3
i 1 0 -1 _1 1 P SN B 0
=1 % 0 0 it ds= 0 P11 % 0
T2 1 g 1 TR S S
1 L1 1 _1 1 1 1 1
R B B R i % ozz ) od
L0 =3 -3 —3 —3 1 -2 =2 0.0 5 5 |
(a1=a12=0,a0=%7b2=b3=—%,b1=—%)7(ao=a1=a2=%,b1=b2=0,
b3:_§)7
Lo b Lo o
s 0 L 1 0 -3 00 0 0 0 0
0 R O 0 1 5 1 1 9 1
Ja = 0 O S 1 v ls=1 2 0 i i 1 IaE
2 7 % 2 N 2 2 2 2
—% 03z 1 3 o 0 1 1 1
-z -3 01 3 3 -3 0 3 3 1 3
(a0 =a1 =ay=73,bp =by=0,bg = 3), (a0 =a1 =3, ag =0, by = bg = 3,
by =0),
o -1 1 _1 _1 g
R B B
S 02 02 1 1
Jo = _i _i 0 1 i i
I
SO T A
0 3z 3z 3z 3 1

(a1 =a2=0,a0=3, b1 =by=b3=13).

Of course v = Span {J1, J2, J3, Ju, J5, Js } (the Ji are linearly independent!).
The matrix >, ajJy is denoted by v(a). Note that (e; + eg)”v(a) = a’, so
v(a) is called the matrix of v whose (e; + eg)-row is a’.

More in general, one can easily prove that the set v = C%, + JCSK C9,
nxn symmetric (—1)-circulants, C5% n xn skewsymmetric (—1)-circulants, is a
vector space of dimension n, and is a commutative matrix algebra. Moreover, it
is a 1-space if and only if n is one of the integers {3,4,5,7,8,9,11,12,13,15,...};
for the remaining values of n, i.e. for n = 2+ 4s s € Z, no row of a matrix
A+ JB of vy determines A + JB, that is, there is no index h for which there
exists a basis {J;} of v with the property e%Jk = eg. Instead, for all n the sum
of the first and of the nth row of A + JB determines A + JB, i.e. there exists

a basis {Jx} of v with the property (e; + e,)TJ, = el.
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The matrices of 7 can be simultaneously diagonalized by a fast discrete
transform. More precisely, for any value of n the following equality holds:

v ={Gd(z)G™': z € C"},

Gij = %ﬁ(cos (2i71)2(ij71)w 4 sin (21'71)2(72]’];1)#), ii=1. .n

(see []). Note that the matrix G is real, symmetric, persymmetric and uni-
tary. The fact that the matrix-vector product Gz can be computed in at
most O(nlog, n) arithmetic operations follows from the representation of G,
G, := G, stated in Exercise G.

Note that for n = 6 the matrix G has ten zeros among its entries, and that
these zeros are positioned as follows:

0
0 0 0
0
G = 0
0 0 0
0
Thus each of the vectors GTey, k = 1,...,6, has at least one zero entry, i.e.

the matrix d(GTex)~! is never well defined. The latter assertion is yet true
whenever n = 2 + 4s s € Z. In other words, v can be represented as

v ={Gd(GTz)d(GTex)'G' : z € C"}.

if and only n # 2 +4s s € Z (for such n one can choose k = 1).

However, as one may guess from the above discussion (detailed, for n = 6),
it can be easily shown that [GT(e; +e,)]x # 0 Yk and Vn. So, we have the
following representation for -y

v ={Gd(GTz)d(G" (e; +e,)) 'G™': zc C"}

valid for all n (also for n = 2+ 4s where d(G” ej) are not invertible). The latter
formula confirms the fact that the matrices of v are uniquely defined by the
sum of their 1st and nth rows; in particular, since the sum of the first and of
the nth row of the matrix Gd(GTa)d(GT (e; + e,)) 'G~! is equal to a’, we

can say that such matrix is exactly the matrix vy(a) (already defined above for

n = 6), i.e. the matrix of v whose (e; + e,,)-row is al.

It is now natural to introduce a class of spaces which include (besides the
1-spaces, like the Hessenberg algebras) also spaces like the algebra ~.

Definition. A subset £ of C™*" is said to be aspacein V,if £ = Span {J1,..., .}
with v7'J, = e} for some v € C". Given z € C", the matrix Y, zxJi, € L
is denoted by £(z). Since vI'L(z) = z”, L(z) is called the matrix of £ whose
v-row is z” .

Ezample. L =sd M = {Md(z)M~!: z € C"} is in V since
L= Span{Jyi,....Jn}, Jn = Md(MTey)d(MTv)"* M1,
for any vector v such that [M7Tv]; # 0 Vi, and
VIJe =vIMd(MTep)d(MTv)'M~ = el Md(MTv)d(MTv)"*M~ =e].
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Note that £(z) = Md(MTz)d(MTv)=1M~L.

A matrix X € C™*" is said to be non derogatory if the condition p(X) = 0,
p polynomial, implies dp > n. Note that by the Cailey-Hamilton theorem the
characteristic polynomial of X is null in X. So, X is non derogatory if and only
if the set {p(X)} of all polynomials in X has dimension n. In [] it is stated the
following result, which proves that V is a wide class of spaces of matrices.

Theorem ND. Let X be a n x n matrix with complex entries. Then X is non
derogatory if and only if {p(X)} := {p(X) : p polynomials} is in V.

The Proposition here below collects several properties of the spaces in V.
They will be used (in the next section) in order to prove important properties
of the best least squares fit in £ of a matrix A, holding for all spaces £ of a
particular subclass of V.

Proposition V (properties of spaces in V). Let £ be a space in V, i.e. £ =
Span {Ji,...,J,} with vI'J, = ejf for some v € C".
(1) If X € £ and vI'X = 07, then X = 0, thus v X = v'Y, X|Y € L,
implies X =Y
proof: 0T =vTX =v7T dorord =2, arel =Ja; -+ an] = ap =0VE.
(2)If ;X € £, X € C"*", then J; X =3, [ X]irJk
proof: there exist ay, such that J; X =), aiJi; multiplying the latter identity
by v we have

el X =vT'JX = Z arel =la; -+ ay)
k

which implies oy = [X]i.

(3) Let P, € C™ be defined by el P, = e;{JS (note that eg =vry =
> viel Jy = > viegP?; = e;‘g >, viP;, and thus )" v, P = I). Then the follow-
ing assertions are equivalent:

(i) £ is closed under matrix multiplication

(i) JiJj = Zk[Jj]ika Vi, j

(iii) P.J; = J; P Y1,j

(IV) PP = EZ[PT]IHR
proof: The implication (i) = (ii) follows from (2) for X = J;. The opposite
implication is obvious. The fact that conditions (ii) and (iii) are equivalent
follows by taking the (r,s) entry of the equality in (ii):

e/ PoJjes = el JiJjee =Y [Jiliklilrs = Y _[Jilin[Prlrs = [J;Prlis-
k k

The fact that conditions (iii) and (iv) are equivalent follows from the identities:

[PkPr]ms - [Jmpr]ks - [Per]ks - [JkJm]rs = Z[Jk]m[Jm]zs = Z[Pr]kz[Pz]ms

7 A

(3.5) If I € L, then ) ,v;J; = I and vIip, = e;{, i.e. also the space
Span{Py,...,P,} is in V (with the same v)
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proof: both I and ), v;J; have vl as v-row, and both, by assumption, are in
L, so they must be equal; moreover, we have

VTPk: E vieZTPk: E vie;{Ji:e;{ E U7J7=e£

(4) If L is closed under matrix multiplication, then
L(L(2)TZ) = L(z)L(z), V2,2 € C"

proof: since L is closed, the matrix £(z')£(z) is in £; moreover, its v-row is
2’7 L(z); the thesis follows from the fact that also £(£(z)T2’) is the matrix of
L whose v-row is z'* £(z).

(5) Assume I € £ and £ closed under matrix multiplication. Then X € £
is non singular if and only if 3z € C" such that z” X = v7; in this case
X1 =L(z)
proof: by inspecting the kth row of the matrix £(z)X, and applying properties
(3) and (3.5), we obtain the identities

efL(z)X =ef Y 2JX=) zelRX=2"PX=2"XP=v'P =ef,

or, equivalently, the equality £(z)X = I, which implies that X is non singular
and X! = L(z).

The best least squares fit to A in L C C™*"

Given a subspace £ C C™*™ and a n x n matrix A, it is well defined L4, the
projection on L of A. In the following theorem we state some assumptions on £
(in particular we consider n-dimensional subspaces of C™*™) which assure that
L 4 is hermitian whenever A is, and that the eigenvalues of £ 4 are bounded by
those of A. Such assumptions imply that £ € V.

Theorem L 4. Assumptions:
LCcCv™ Tel, L= Span{Jy,...,J,} with J such that

THT = g e, 6,5 =1,...,n. (%)
k=1
A c (Cn)(’n,.
La€Ll, ||A—Lallr <||A—-X|F, VX € L (such matrix L4 is well defined
since C**™ is a Hilbert space with respect the norm || - || p induced by the inner

product (A, B)p =3, @ijb;; and L is a subspace of C"*™).
Thesis: If A = A", then £, = LI and min A\(4) < \(L4) < max \(A).
Note: if A is real symmetric, then L 4 is in general hermitian; it is real symmetric

under the further condition that £ is spanned by real matrices (prove it!).

Note: we shall see that the hypotheses of Theorem L 4 are satisfied by spaces of
the type {Md(z)M 1 : z € C"} if M* M is diagonal and its diagonal entries are
positive; however, the same hypotheses can be satisfied also by non commutative
spaces (we shall see an example, for others see []), so also in the latter cases we
can say that the conclusions of Theorem L 4 hold.
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Applications of Theorem L 4. If the conditions of Theorem L 4 are satisfied, then
L4 is positive definite (i.e. L4 = L and z € C" z # 0 = 2 L4z positive)
whenever A is positive definite. So, in order to solve the linear system

Ax = b, A positive definite
we can solve the equivalent system
L Ax =L,'b

whose coefficient matrix has real and positive eigenvalues, often better dis-
tributed than those of A (this results, for example when solving Ax = b it-
eratively, in less iterations).

Moreover, if the conditions of Theorem L 4 are satisfied and L is spanned by
real matrices, then then £ 4 is real positive definite (i.e. £4 = L%, L4 € R™*",
and z € C" z # 0 = z/ £ 4z positive) whenever A is real positive definite. That
is, the following implications hold

By, real positive definite =

Lp, real positive definite =

o(Lp,, sk, yi) real positive definite =
Lo(Lp, si.yx) real positive definite

(provided s!yy, is positive), and thus both the S and NS LQN search directions,
diy1 = —(Lp, 85, y6) 7 VI (xpg1) and dipr ==L, ooV (Xkp),

are well defined descent directions in xj4; for the function f : R” — R (see []
for the definitions of By, sg, y, ¢, S and NS LQN).

proof (of Theorem £4): The matrix L4 = )  a,Js is uniquely defined by the
following condition
(X, A—LA)p=0,XeL

or, equivalently, by the n conditions (Jy, A — >  asJs)r =0, k =1,...,n,
which can be rewritten as follows

n

S (ko) ras = (e, A)p, k=1,...,n.

s=1

In other words we have the formula

La=) [B7'sJs, Brs = (Jr,Jo)r, ek = (Ju, A, kys=1,...,n.

S

Remark. B is positive definite, i.e. B = B* and z Bz > 0Vz € C"z # 0.
proof: Bjs = (Jk, Js)F = (Js, Ji)F = Bsk, that is; B is a hermitian matrix.
Moreover, since 0 < (3, zsJs, Y, 2sJs)F = Zkysz_kzs(Jk, Js)r = z' Bz when-
ever z # 0, the matrix B is also positive definite.

Remark. Let v, € C be such that I = )", viJ (such vy exist because I € £).
Then the vector v whose entries are the vy satisfies the equalities vI.J, = el

thus £ € V and all results stated for spaces in V hold for our space L.
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proof: Multiply (*) by 7; and sum on i:

Gy = wldklig e, Iy =Y Q wldkli) Ik =Y (v ce;) i
k koo k
This implies v Jye; =0 if k # j and vl Je; = 1if k= j, ie. vIJ, =el.

As an immediate consequence of the above two Remarks, we have that £ 4

is the matrix of £ whose v-row is (B~'c)7,

La=) [B ']y =L(B ),

S

and, moreover,
La=L(B c)=L((B")tc)=L((B H)Te).

Remark. L is closed under conjugate transposition.

proof: multiply (*) by v; and sum on j:

JiH’Uij :Zvj[Jk]iij, JiH:Z(ZUj[Jk]ij)Jk = JiH eL.
k kg

The latter Remark yields part of the thesis of Theorem L 4, because it implies
that L% € £, and this fact together with the equalities

1A= Lallr = A" = L|F = A~ LL]F

(remember that our A is hermitian!) and the unicity of the best approximation
of A, yield the identity £4 = L£%. In other words, under our conditions on £
the projection on L of a hermitian matrix is hermitian too.

Remark. L is closed under matrix multiplication (£ is a matrix algebra).

proof: the set {J} forms an alternative basis for £ (prove it!), thus there exist
zi(s) € C such that J, =), zi(s)JiH. Multiply (*) by zi(s) and sum on ¢,

2T =3 A e Ty =3 (Y 2 Tkis) T

to observe that J,J; € L.
Remark. B =Y, tr(Jy)Jk, thus B € L, and, since B is non singular (it is
positive definite!), by the result V (5) also the matrix B lisin L.

proof: by equality (*) we have:

Bij = (JoJj)r = 2, WiletlJilee = 30, [T er [ T3]

The latter two Remarks, together with V (4), let us rewrite again £, as

follows )

La=...=L(B HTc)=L(c)B~

Now note that there exists a hermitian matrix M such that M? = E_l, and
that the matrices £4 and M L(c)M have the same eigenvalues (by the last
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representation of £ 4 they are similar!). So, if A(£4) is the generic eigenvalue of
L4, then there exists x € C" ||x||2 = 1 such that

ML) =xTML(c)Mx = (Mx)" L(c)(Mx).

Remark. 1f z € C", then z7 L(c)z = 3", (PHz)? A(Pz).

proof: here again equality (*) is fundamental:

zfL(c)z = 27 (3, (Jk, A)rJi)z L
ZZ]‘:I ZiZj Z:,t:l art D g [Jlij [Trlre
ZZ]‘:I ZiZj Z:;t:l are[ T il L
= Zf,tzl Qrg ZZj:l Zizj D op [T ekl ]kt
= 2 (X wl P ) (2 2 [P ey)
= Y2 ar(Pl2),(P2):.

By the above Remark we have:
MLa) = Y (PEMx)"A(PHMx) <max\(A) Y., (P Mx)" (PHMx)
= maxA(A)x"M (Y, P.PT)Mx.
But the matrix in the brackets is nothing else the matrix B:
Remark. B=Y", PPl
proof:

Bij = (Ji, J)p = Y [TilrslTiles = Y [PislPeljs = > [PLis[P1s; = >[PPI i

T,8 T,8 T,8 r

We can now conclude one of the inequalities (stated in Theorem £ 4) satisfied
by the eigenvalues of A and L4:

MLa) < max AN A)xT MM =2 Mx = max A\(A)xx = max A(A).

Analogously, one can prove that A\(£4) > min A(A). O
Exercise DG. Prove that the dihedral group space

X JY}

n_n .
L',:{[JY Y .X,Y—><§c1rculantb}

2
satisfies the hypothesis of Theorem L4, i.e. I € £, £L = Span{Ji,...,J,} with
Ji linearly independent such that

n

g = Z[Jk]iij, ihj=1,...,n.
k=1

Thus, the projection £4 on £ is hermitian and such that min A(A) < A\(L4) <
max A\(A) whenever A is hermitian. Note that £ is not commutative.

Proposition cV (properties of commutative spaces in V) [mitia]. Let £ be a space
in V,ie. £= Span{Ji,...,J,} with vIJ, = el for some v € C". Assume
that £ is commutative. Then
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(1) el J; = el'Ji, Vi, j, and thus Ji = P,
proof: J;J; = J;J; = VTJiJj = VTJjJi, and the definition v7J;, = eg yields
the thesis.

(2) 27L(2') = 2" L(z)
proof: by (1) we have

2l L(z)) = Z ziel Z 2 Jk = Z 2 Z zelJ; = Z 2 el Z 2 ;.
i k i k k i
B)I=L(v)eL
proof: note that £(v) = Y v;J; € £ and e] L(v) = >, viel J, = vIJ, = el
sol=L(v)eL.
(4) L is closed under matrix multiplication
proof: from (1) we have that Jy = Py, thus PyJs = JpJs = JsJx = Js Pk, which
is one of the necessary and sufficient conditions for the multiplicative closure.

Example of commutative L € V. Let M be a non singular n x n matrix with
complex entries, and set £ = sd M = {Md(z)M~! : z € C"}. Note that
L €V, in fact if v is any vector such that [M7Tv], # 0, Vk, then the matrices
Jp = Md(M7Ter)d(MTv)~1 M1 satisfy the identities v J, = el and span L.
We have, for £, the following alternative representation:

L={MdMTz)d(MTv)"'M~1: zecC"}.

Tt is clear that the matrix of £ whose v-row is z7 is

L(z) = Md(MTz)d(MTv)" M~

Obviously, £ is commutative.

Proposition chV (properties of commutative, closed under conjugate transposi-
tion spaces in V) [stefano]. Let £ be a space in V, i.e. £ = Span{Jy,...,Jn}
with vTJ;, = eg for some v € C™. Assume that £ is commutative and closed
under conjugate transposition. Then, besides the above ¢V (1),(2),(3),(4), we
have L
THT = ij e, 4,5 =1,...,mn
k

proof: since JH € £ and £ is commutative, one has JH.J; = J;JH; since L is
closed under matrix multiplication and J# € L, one has that JjJiH eL; by V
(2), it follows that

THTy = 17 =3 T e = [ilkg Je = > [ilig s
k k k

where in the latter identity we have used property c¢V(1).

Example of commutative, closed under conjugate transposition L € V. Let M
be a non singular n X n matrix with complex entries, and set £L = sd M =
{Md(z)M~' : z € C"}. We already know that £ is a space in V which is
commutative. We want to prove that £ is closed under conjugate transposition
if and only if MY M is diagonal with positive diagonal entries. Moreover, in
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such case there is a diagonal matrix d(w) w € C" such that M = Md(w) is
unitary and £ = {Md(z)M~!: z € C"}.

One implication is easy: assume M M = D, D;; positive Vi, D;; = 0 i # j;
then

(Md(z)M " = (M*) Yd(zZ)M" = MD'd(Z) DM~ = MdZ) M~ € L.

Now assume that £ is closed under conjugate transposition. Thus, for any
z € C" there exists w € C" such that (Md(z)M ~1)? = Md(w)M~'. But this
implies

d(z)C = Cd(w), C = M7 M,

or, equivalently, ¢;;Z; = c;jw;. Assume the z; distinct. Then the identities

ci1Zi = cpwi, © = 1,...,n, imply ¢;; = 0 for all i except one of them, say
i1 (otherwise, ¢;1 # 0 and cx1 # 0, ¢ # k, would imply w1 = Z; = Zi!).
Analogously, the identities ¢;3Z; = cppws, ¢ = 1,...,n, imply ¢;5 = 0 for all 4

except one of them, say 72, and such is must be different from i; otherwise C'
would be singular. Proceeding in this way one concludes that

C = DR, D diagonal, R permutation.

The fact that C' is hermitian implies that the permutation matrix R must be
symmetric. The fact that the diagonal entries of C' cannot be zero implies that
R is the identity. Finally, the fact that C is positive definite implies that D;
are real and positive. Let us prove the last assertion. For M = M d(w) we have

MM = dw) M Md(w) = d(w)Dd(w).

Choose |w;| = 1/v/Dy;; then MHM = I and, for any z € C", Md(z)M~' =
Md(w)d(z)d(w) " *M~! = Md(z)M~! = Md(z)M*.

Question. Find an example of £ satisfying the assumptions of Proposition chV
which is not of the type {Md(z)M ! : z € C"}, M M diagonal with positive
diagonal entries.

Remark. It L = {Ud(z)U* : z € C"} where U is a unitary matrix, then the
thesis of Theorem L 4 can be proved very simply as follows. Since Vz € C"

A= Ud(2)U"|[r = [UTAU — d(z)]|F,

it is clear that ||A—Ud(z)U*||  is minimum for z; = (U*AU);;. So, the following
formula for £4 holds
La =Udiag (UAU);)U”

from which it immediately follows the assertion: A = A* = L4 hermitian and
min A\(A) < A(La) <maxA(A). As an application compute Lyyr, X, y € C".

Other remarks/exercises on spaces in V

Ezercise. Prove that there are (besides I) infinite matrices in the algebra ~
whose first row is ef .

Ezxercise. Consider the matrix in Exercise G. Prove that the sum of its first
and last rows is a vector with all entries nonzero (i.e. 7 is a space in V with

vV=e; ‘|’en)
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proof: for j =1,...,n we have

[Glij + [Gla; = (cos BZDT 4 in (2j—11)7r
+(cos En=lRi=lr |y Gnol)@iby
= (cos (2j;1)w +sin (2j;1)w)
+(COS((2j - 1)7T — W) + SIH((2] _ 1)ﬂ_ . W))
@j=Dm | G, 2i=Dr

= COS-—F5—— —+ sin

Exercise. Prove that any n-dimensional space £ C C™*™ with the property
Aej = 0 VA € L cannot be in V. (Suggestion: show that J; € £ such that
vTJ; = el does not exist).

Exercise. Let £ be in V and closed under matrix multiplication. Prove that
(1) If the matrices in £ are symmetric, then £ is commutative
(ii) If the matrices in £ are persymmetric, then £ is commutative

proof: by the assumptions on £, we have, in the symmetric case,
Jsdw = JXTE = (eJo)T = Ji s,
and, in the persymmetric case,

JoJy = JJJ Ty = JILTET = J(Je J) )T = J(J T JoJ) T = Ty Js.

Question. And if we start from the more general definition £ C C"*™, L =

Span {J1,...,J,} with vTJ, = uy, for some v,u; € C" such that ufu; = 0
k#s?
EXERCISE.

0 1

0 1
P = | g#0
1

13 0

(1) If p" = € and w™ =1, then
1 1
i . Pl
P = pw’ , j=0,1,...,n—1
pnflw(nfl)j pnflw(nfl)j

Thus, if W = (wij)zj;lo and Dy n—1 = diag (p',i=0,...,n—1), then

Pe(Dyyn-1W) = (D1pn-1W)pDyyn-1, Dyyn-1 = diag(w’, j =0,...,n—1).

(2) If, moreover, |¢] = 1 and w® # 10 < i < n, then U = ﬁDlpan is unitary
and

Cg = HPE = {ZZ:1 kagk_l T2k € (C}
— (Ud@)U": z€ C} = {UdUT)d(UTe))" U : 2z € C}.
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The matrix Ce(a) :== Y p_; akPEk*1 =Ud(UTa)d(UTe;)" U~ is the ¢-circulant

matrix whose first row is aT:

ai a Ap—1 (79}

fap, a1 An—1
Ce(a) =

Eas a2

fax  Eas a, @

EXERCISE.

Set X = P, + PL.

1) Find a convenient representation for the set C of all polynomials in X,
and deduce the dimension of C'°.

2) Prove that any matrix of the form C; + JCy, C1,Cy circulants, J anti-
identity, belongs to the space {A € C"*" : AX = X A}. Deduce a lower bound
for the dimension of {A € C"*™: AX = X A}.

Repeat the exercise for X = P_; + PT,.

EXERCISE

1) Write precisely an algorithm that computes the matrix-vector product
T2, T=(ti—j)ij—1, in O(nlog, n) arithmetic operations.

2) Write an algorithm that computes the matrix-vector product (T~!) - z in
O(nlogyn) arithmetic operations (after preprocessing on T').

EXERCISE
Do exercise DG

EXERCISE Prove Theorem DD

EXERCISE Let T be a n x n Toeplitz matrix

1) Prove that T'Py— PyT has rank at most 2, and write the Gohberg-Semencul
formula for 71

2) Let H be a Hankel matrix, i.e. H = (hj+;—2);' 1, and show that (T +
H)(Py+ P§) — (Po + PF)(T + H) has rank at most 4

3) Write the matrix of the algebra 7 whose first row is [2 —1 00 --- 0],
and observe that it is a Toeplitz matrix. Call A such matrix and compute A~1
explicitly by using the fact that A= € 7 (so, it is sufficient to compute its first
row). Is A~! a Toeplitz matrix ?

4) Do exercise Ttau

EXERCISE Under the assumptions of Theorem L 4
1) prove the last of the following identities

La=L(Bc)=LE)B =B 'L(c)

(hint: find an expression of B in terms of the matrices P, eZPk = est Vs, k)
2) prove that B is positive definite (besides hermitian)

EXERCISE (0) Let £ € C™*", £ = Span {Ji, ..., J,} with vI'.J, = el for some
vector v (that is, £ € V). Assume that £ is closed under matrix multiplication,
that I € £, and that J = a;J;,, || = 1 Vi, for some t; € {1,2,...,n}.

(1) Prove that JHJ; =3, [Ju)ijJw, Vi, 5.
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(2) Assume that {1,2,...,n} is a group with identity element 1. Prove that
the space

L = {AG(C”X":aij:asiysj,Vi,j,se{1,...,n}}
= {AG(C”X": Qjj :a17i—1j,Vi,j€{l,...7n}}

satisfies the assumptions (0). (Any space £ of this type is usually called group
matriz algebra; for example, circulants and the £ in Exercise DG are group
matrix algebras).

(3) Prove that the space £ spanned by the matrices J; = I,

1 1 1
= |1 - - - !

satisfies the assumptions (0). Prove that £ is not commutative.

EXERCISE Let T be a symmetric Toeplitz matrix.

(1) Compute the first row of Cr where C' is the space of circulant matrices

(2) Compute the first row of 7p where 7 is the space of tau matrices

(3) Compute the first row of L7 where £ is the space in the point (3) of the
previous exercise (so, n = 4)

(4) Compute the vector (e; +eg)Tyr where 7 is the space of all 6 x 6 gamma
matrices (i.e. assume n = 6).
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Solving EXERCISES:

C3, + JC3K is a commutative matriz algebra. Assume A; € C%,, B; € C5K.
Note that A; and B; are also persymmetric. Then

(Ao + JBo)(A1 + JB1) = AgA; + AgJB1 + JByAy + JByJB;
= AgAy+ JAyB1 + JByA; + BgBl.

Since A()Al is (—1)—circulant and (AoAl)T = A,{Ag = A1A0 = A()Al, A()Bl
is (—1)-circulant and (A¢B;)T = BY Al = —B1Ag = —A¢B; (C_; is closed
under matrix multiplication and is commutative), we have AgA4; € C®, and
AgB; € Cf{{

Since B{ By is (—1)-circulant and (BI B1)T = BI By = —B1By = —B1(—B{) =
B1BY = BI'By, BoA; is (—1)-circulant and (BoA;)T = ATBT = —~A,By =
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—BgA; (C_1 is closed under transposition and matrix multiplication, and com-
mutative), we have BI B; € C° and BpA; € C9K.

Proof of Theorem DD.
[ 32 Hpy (xm)" Hx (ym)] X = X[ X2 Hp,(xim)" Hx (ym)]

= [Hp, ()" X — X Hp, ()" | Hx (Ym)
=b> [Hp, ()" Po — PoHp, ()" Hx (ym)

0 (Xm )1
=3 (%m )1 o PR |Hx (ym)
0 (Xm)n—l (Xm)l 0 0
_(Xm 1
= bZ _(Xm)n71 HX(ym)
0 (Xm)nfl (Xm)l

= bZ(_Xme{ + enX%J)HX(ym)
= bZ(—xmyg;L + enX%HX(ym)TJ) = ...

Compute the first row of Cp. Let Ji, € C™*™ be the circulant matrices with first
row el, k=1,...,n. Let us compute (B~1c)” with respect to such basis (i.e.
the first row of C4) when A is a symmetric Toeplitz matrix. So, we have

to t th—1
A=T= tl tO ,
tq
th-1 ty 1o

(Jla A)F = ntOv (‘]27A)F = (n - 1)t1 + tn—lv (‘]37A)F = (n - 2)t2 + 2tn—2;
(J4, A)F = (n . 3)t3 + 3tp_3,... (Jn, A)F =tn_1+ (n . ].)tl,

and thus
(Jk,A)F = (n —k+ 1)tk_1 + (k — 1)tn—k+1; k=1,...,n.

Since B = nl, we have B™! = %I, and

1
[B~'c]y = E((n —k+Dtpy+ (k= Dtppy1), k=1,...,n.

Compute the first row of Tp. Let Jp € C™*™ be the 7 matrices with first row
el k=1,...,n. Let us compute (B~'c)” with respect to such basis (i.e. the
first row of 74) when A is a symmetric Toeplitz matrix. So, we have

(Jl, A)F = nto, (JQ, A)F = 2(TL - ].)tl, (Jg, A)F = (TL - 2)t0 + 2(TL - 2)t2,
(.]4,A)F = 2(TL — 3)t1 + 2(TL — 3)t3, (J5,A)F = (n — 4)t0 + 2(TL — 4)t2 + 2(77, — 4)t4.

One can guess that

[k/2]
(Jk,A)F = (n —k+ 1)[(5k’0t0 +2 Z tk,QjJrl], k=1,...,n,
Jj=1
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where 0y, = 1 if k is odd and dx , = 0 if k is even. Since B! = ﬁ(&h —J3)
(prove such formulal), we have

(B™'e)1 = 57 (3(J1, A)p — (J3, A)r), (B7'e)2 = 545 (2(J2, A)p — (Ja, A)p),
(B ek = g (—(Jr—2, A)p +2(Jk, A)r — (Jit2, A)F),
(B_lc)n—l = ﬁ(_(Jn—&A)F + 2(Jn—17A)F); (B_lc)n = ﬁ(_(Jn—QaA)F + B(JnyA)F)

It is not difficult to conclude that
(B*1C)1 =1 ((n+ Dto — (n — 2)ta),
(B7le), = (n—k+3)th—1 —(n—k—1)tg1), k=2,...,n—1,
(B_lc)n = (Btn—1).

T
T
n+1

Compute the sum of the first row and of the last row of yp. We know that

yr =3 _ [B i = GA(GT B 1c)d(GT (e1 + e6)) G,
(e1 +es) yr = (B~te)T, Bij = (Ji,Jj)r, ¢i = (Ji,T)F,

where the Jj are the matrices in v with the property (e; + eg)?Jy = eg,
k=1,...,6 (they have been written explicitely above). So, we have to compute
the vector B~'c. Recall that we expect (from theory) that B, B~! are matrices
in 7:

1 2 10 -1 -2 -2 1 1 0 -1 -1
2 1 21 0 -1 1 -2 1 1 0 -1
1 2 12 1 0 . .11 =2 1 1 o0
B=31 49 1 21 2 1 "B =m0 1 1 =2 1 1|
-1 0 1 2 1 2 -1 0 1 1 -2 1
2 -1 01 2 1 -1 -1 0 1 1 =2
3to
3to + 5t1 — t5

3to + bt1 + 4ty — 2ty — t5
3to + bt1 + 4ty — 2ty — t5
3tg + 5t1 — t5
3to

Note that B, B~! are symmetric (—1)-circulant matrices, which is a stronger
condition than the expected B, B~! € . Moreover, note that the vector c
is centrosymmetric; thus, since B~! is centrosymmetric, i.e. JB~! = B~1J
(it is both symmetric and persymmetric!), the vector B~'c is expected to be
centrosymmetric. In fact, we have

—6to + Bty + 4ty — 2ty — t5
8t2 —4t4

_ 1 6tg + 5ty — dto + 24 — t

_ 1. L 0 1 2 4 5

yr(e1+es) =B c= 12 6tg + 5t1 — 4tg + 2t4 — t5
8to — 4ty

—06tg + 5t1 + 4ty — 2t4 — t5

Note that a v matrix A + JB with (e; + eg)T (A + JB) centrosymmetric must
be in C'%}; more precisely, the following implication holds:

(e1 +e6)T(A+ JB) = [21 20 23 23 22 1]
= a2 =23, a1 =22+ 23, a9 =21 + 22+ 23, b; =0 Vi.
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In our case:

1 1 1
as = E(6t0+5t1—4t2+2t4—t5), a; = E(6t0+5t1+4t2—2t4—t5), ag = E(lOt1+8t2—4t4—2t5)

But y7 should coincide with the T.Chan (Ci)r ! ... is there something wrong
o

An alternative preconditioner for Toeplitz systems?
Consider the n — 2 x n — 2 7 matrix with first row [a] as -+ an—2] and call it
Taya,_,- FOr example

a a a ai as as
1 2 3
a2 a1 +as as+ay
n=05:Taas = | G2 @1+az a2 |, =01 T, = a3 as+as ap+as
as as al
aq as ag
Consider the n x n matrix
0o o o
Aalan,Q = O Tal(ln—2 0
0o o o
For example,
0 O 0 0 0 8 c? c?
0 o @2 az 0 0 a; ai —iag
n=>5 Aa1a3 0 az a1+ag a 0 y V= 6 A(l1(l4 0 a as + a
0 as as a1 0 0 Cl3 2& 4
4 3
0 0 0 0 0 0 0 0
We want to find 74, , ,,1le the n x n 7 matrix defined by the following

minimization property
HTAalan_g - Aalan72||F = mln{”X - Aalan72||F : X € T, X n X n}’

Let Ji be the nxn 7 matrices defined by the conditions ef J, = el k=1,...,n,
and set 74,, , = 7(z) = Y, 2kJr. We want to find z. We know that if
Bij = (Ji, Jj)r, ¢i = (Ji, Aayan_»)F, then z = B~ lc.

For example for n = 5:

5 0 3 0 1 3a1 + as 3 0 -1 0
0 8 0 4 0 4aq 1 0 2 0 -1
B=|3090 3|,¢c=|30+3a|,B't=—]-1 0 2 0
0408 0 das 299 1 0 2
1 0 3 0 5 3as + a1 0 0 -1 0
Then
3&1
2(L2
z=B l¢=2 a1 + as
2&2
3&3
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n = 6:

Since B;; = (J;,J;) and B € 7, one can easily obtain the first row of B and

write down B:

6 0 4 0 2 O 4as + 2a3 3 0 -1 0 0
0 10 0 6 0 2 6as + 2a4 0 2 0 -1 0
B_ 4 0 12 0 6 O o 6as + 4aq g1 1 -1 0 2 0 -1
0 6 0 12 0 4|’ 6as +4ay |’ 6+2 0O -1 0 2 0
2 0 6 0 10 O 6as + 2aq 0 0O -1 0 2
L0 2 0 4 0 6 | | 4as + 2as 0 0 0 -1 0
Then
4&1
3(L2
z= B '¢ 1 a + 2a3
7| 2a2 +aq
3&3
4&4
FExercise. Prove that
o1 (3J1 — J3)
T2t

(first find B and w such that w? B = el then B! = 7(w)).

By observing the z obtained for n = 5, n = 6 (see above), and in the cases
n="7and n =23,

T

zl = %[5@1 das a1 + 3ag 2az + 2a4 3as + as 4ay Sas),
T §[6a1 Sas a1 + 4az 2as + 3a4 3asz + 2as5 4ays + ag bas 6&6],

Z =

one can conjecture a formula for z in case n is generic:
Ezercise. Prove that 74 = 7(z) with

ajan 2

ZT:L[[OOCI& 2a9 ---

n+l (n—=4)an—q (n = 3)an—3 (n — 2)an—2]

+ [(n—2)a; (n—3)az (n—4)az -+ 2ap_3 an—2 0 0] } ()

APPLICATION. Let T' = (t,_;))i';—; be a symmetric Toeplitz matrix. It is
easy to realize that

0 o7 0
T = Ttotn—1 — At2tn—17 Atztn—l = 0 Ttotn_1 0
0o of o

From the equality

T =Ttgt, 1 — TAiyt + TAtyty_1 — Atyt,

n—1

follows the inequality:

1T = 7rllr < I7a., ., = Avsta s le = 1T = (Trotn 1 = Ta,, )P
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could be for some reasons (...) a

preconditioner for 7' better than 7r. Note that 74,,, = = 7(z) where zT is

However, the 7 matrix 7., , — TAige, 4

like in (**) but with a; replaced by t;11,i=1,...,n — 2.

Displacement decompositions.
Let £ be in V, and X a matrix in £. Assume that £ is commutative.

Denote by £(z) the matrix of £ whose v-row is zT, and assume that £(z)7Q =
QL(z), Vz € C". (For example, the latter condition is satisfied with Q = Q = I
if £ is symmetric, or with Q = Q = J if £ is persymmetric).

Assume AX — XA =3, x,y.. Then

ST L(yn)T = 07

>, xE L(ym)Ter =...=0), and thus

N
i
|
>
AN

|

> XY
Zm XmVTL(ym)
Do Xm W L(W) T L (ym)
)ﬁ( ) !

1

1

> X W L(ym

Yo X W L(ym)L(W) ™ =D Y
Yo Xm W L(ym)L(w) "t =D Qﬁ(ym) (w)~*
Zm(XmW —bx ], Q)L(ym)L(W )
3, W — bxZ Q) LL(W)T yim)

(w must be chosen such that £(w) is non singular; it can be simply chosen
equal to v so that £(w) = I).

We want to find Z,, (Z,, = Ry, + Ey) such that

mL(ym)TQL(wW) ™!

ZnX — X Zp = %w? —bxhQ (%)

so that A -3 ZmE(L(w)T_lym) must be a matrix commuting with X.

Note that the left hand side in (*) has zero trace. Thus, if £ is symmetric,
since Q = I, then b must be chosen equal to w (otherwise the right hand side
may have nonzero trace). If £ is persymmetric, since Q = J, then b must be
chosen equal to Jw (for the same reason).

Symmetric case:

I X — XZ,, = meT — WX

Persymmetric case:

ZmX = X Zm = XpmwW' — Jwx? J.

NOTE: Assume moreover £ both symmetric and persymmetric. Then we
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have also

JAJX — XJAJ] = JAXJ—JXAJ=J(AX — XA)J

= > Jxmy L J
= > Ixu VI L(ym)J
= > IxpmWI L(W) T L(y )]
= Y Ixm W JL(ym)L(w) ™!
= Y Ixm W TL(ym)L(W) ™t =3, x5 L(ym)SL(w) ™!
= Y Ixa W JL(ym)L(W) ™t =3, X, SL(ym) L(w) ™!
- Em(JmeTJ — cx%bj)ﬁ(ym)ﬁ(w)_l
S (JxmwTJ — exT 8)L(L(W)  ym)

By summing this result with the previous one, we obtain

(A+JANX-X(A+JAT) = (%W +Jxmw" J—bx], Q—cx}, 5) L(L(W) ™ ym)

m

(w must be chosen such that £(w) is non singular; it can be simply chosen
equal to v so that £(w) = I).

We want to find Z,, (Z,, = Ry, + E,) such that
ImX — X Zp = %pmw! + Jxpw?J —bxDQ —cxI § (')

(see page 209 of DiF,Zell, LAA 268 (1998) for a matrix Z,, satisfying (*’)) so
that A+JAJ->" Zm L(L(W) ™ 'y,) must be a matrix commuting with X. ...
Note that if A is centrosymmetric, i.e. A=JAJ, (as in the case of A =symmetric
Toeplitz matrix), then one can conclude that 24 — 3" Zn L(L(W) ™ ypm) must
be a matrix commuting with X, from which we have a representation for A ...

Note that the left hand side in (*) has zero trace. Thus, if S = S = I then
c =w and Q = Q can be chosen either equal to I (in such case b = w) or
equal to J (in such case b = Jw). If $ = S = J then ¢ = Jw and Q = Q can
be chosen either equal to I (in such case b = w) or equal to J (in such case
b = Jw). Compare with page 209 of DiF,Zell, LAA 268 (1998).

Displacement decompositions involving spaces in V
1) Look for 7 = 71(z) matrices of rank one.

2) Verify if there exist v such that 7, (ATv) = 71 (ATv)7 (v) ™! = 71 (2z) with
z as in 1), and such that 71(v) is non singular (or equivalently that 7 is a in V
for such v).

3) Find a displacement decomposition of the type
A=0+7,(ATv), viO=0"

where v is as in 2) (so that 7,(A”v) has rank 1!). Attempt:

L[ 1m]
VT Z Zmﬁm - Z(VTZm)Lm = Z (VT E[ . -Qm] )‘Cm
" " " L)
[ 1m]+[ 2m]+ +[ nm]:xa



T matrices of rank 1

First observe that the entry (1,1) of a non null 7 matrix A of rank 1 must be
nonzero. In fact, if A;; = 0, then also Ajo = 0 because A2 # 0 would imply
A1 # 0 (A is symmetric!) and so A would have rank at least 2. Thus 417 =0
implies A2 = 0 and, by symmetry, As; = 0. But then also A;3 must be zero
because A3 # 0 would imply As; # 0 and so A would have rank at least 2.
Going on one proves that the first row and column of A must be null, so A itself
must be the null matrix.

A faster proof is the following: if A € 7, A = uv’ and A;; = 0, then
u1v; = 0, and thus either w; or v; must be zero; but uq; = 0 (v1=0) implies
el'A =07 (Ae; = 0), that is, A =0 since A € 7.

n odd:

7 matrices A of rank one for n = 3: since A is in 7, is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

1 @
A=| a 140 Ll =140, af =a.
16} @
We have two possible alternatives, @« = 0, 8 = —1, and f = 1, a = £V2
(a? —2=0):
1 0 -1 1 +/2 1
A= 0 0 0 |,A=|+v/2 2 +V2
-1 0 1 I VO R |

So, there are three 3 x 3 rank one 7 matrices. Note that they are orthogonal
with respect the inner product (,-)r or, equivalently, the three vectors that
define them are orthogonal.

7 matrices A of rank one for n = 5: since A is in 7, is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

1 @
a 1+0
A= B a+y LAl =140, af=a+v, ay=p5+96, ad =1.
vy B+4
b v

First observe that 6 # 0 since § = 0 would imply vy = 3 =0, a =0, 8 = —1.
So, the conditions become

a2 =0+065, aB=a+ad, >S5 =F+0, ad =~
The first and the third imply 8§ = 8§. We have two possible alternatives. For

B = 0 we have the equation o® — 1 = 0 and thus o = £1, 3 = 0, v = F1,
d = —1. For 8 # 0 we have the equation a® — 3ac = 0 and thus either o = 0,
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§=1,8=-1,y=00ra==+V3,=1,3=2,v=+/3.

1 +1
+1 1
0 0
Fl -1
-1 F1

A:

o O o oo

O OO OO

1

+v3
2

+/3
1

+V3
3

+2/3
3

+V3

2

+2/3
4

+2V/3
2

So, there are five 5 x 5 rank one 7 matrices. Note that they are orthogonal with
respect the inner product (-,-)p or, equivalently, the five vectors that define
them are orthogonal.

7 matrices A of rank one for n = 7: since A is in 7, is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

«
1+
o+ 7y
B+4
Y+o
d+p

g

, &2 =140, aff = a+7y, ay = 45, ad = v+0, ac = 5+p, ap = o.

T Q9 2w =

First observe that p # 0 since p = 0 would imply 6 =d =~v = (=0, a = 0,
B = —1. So, the conditions become

pa® =p+Pp, af=a+v, ay=F+0, ad=y+ap, &’p=5+p, ap=0

The second implies v = a(8 — 1). The first and the fifth imply § = 8p. So that
the third and the fourth become ay = B(1 + p), ap(8 — 1) = ~. It follows that
ap(B—1) =a(f —1).

We have three possible alternatives. For a = 0 we have o = 0, 8 = —1,
¥y=0,6=1,0=0p=—1. For f =1we have o = V2, f =1, v = 0,
§=—-1,0=7V2 p=—1. Forp=1wehave o> =2+ V2, f =1+ V2,
y=a(*Vv2),5=0,0=a,p=1.

(1 0 -1 0 1T [ 1 =2 1 0 T
0 0 0 0 +/2 2 +£/2 0
-1 0 1 0 1 +/2 1 0
A= 0 0 0 0 , 0 0 0 0 ,
1 0 -1 0 -1 T2 -1 0
00 0 0 V2 -2 FV2 0
| -1 0 1 0 | -1 FV2 -1 0 |
[ 1 o 14++2 a(£v2) 1
o' a? a(l++/2) a?(£v2)
1+v2 a(1+£v2) 3+£2V2  a(£V2+2)
a(£v2)  a?(+V2) a(xv2+2) 20 , a2 =242
1+v2 a(l£v2) 3+£2V2  a(+£V2+2)
a a? a(l++/2) a?(£v2)
L 1 o 14++v2 a(£V2) ]
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So, there are seven 7 x 7 rank one 7 matrices. Note that they are orthogonal
with respect the inner product (-,-)r or, equivalently, the seven vectors that
define them are orthogonal.

Another important remark. If A € 7 is such that el A = ael A, then Vi
there exist & such that el A = el A. In other words, in order to make a T
matrix of rank one it is sufficient to impose that its second row (column) is a
multiple of its first row (column).
proof: Let z” be the first row of A. Then A = 7(z). The proof is by induction
on i:
elAd = el'r(z) =2"77(e;)) =27 (1(ei_1)7(e2) — 7(e;_2))

-
1
= ez'T—17'(Z)T(e2) - e?_gT(Z) =& 27T e) — oz

= 162" — &0zt = (G160 — &-0)2T.
So,&1=1, =0, =8 16— &2,i=3,...,n.

n even:
n =2
Assume that A € C2*2 is in 7. Then, since it is symmetric, is persymmetric,

and its second column is a multiple of its first column, it must be (unless a
multiplier) of the type

a 1
w:a=|] ]
a—1=0
(1) Az[_ll ‘11],
a+1=0

So, there are two 2 x 2 rank one 7 matrices. Note that they are orthogonal with
respect the inner product (-,-)r or, equivalently, the two vectors that define
them are orthogonal.

n=4:

Assume that A € C**% is in 7. Then, since it is symmetric, is persymmetric,
and its second column is a multiple of its first column, it must be (unless a
multiplier) of the type

1 «Q
A= g ;ig , o’ =140, af=a+y, ay=0.
Yy B

Observe that v # 0 since v = 0 would imply « = =0, § = —1. So, the
conditions become va? = v+ av?, a?y = a+, ay = 3. They imply ay? = a,
and thus (since a # 0) 42 = 1.

33



So, we have necessarily either y =1, 3 =a or v = —1, 8 = —«. Such cases
will be referred respectively (1) and (—1):

(1) : A=

= 9 O K

ala) =1+ a, or

gi@)=ala—1)—1=a>—a—-1=0, a= 155

(a(r) must be equal to 14« by the cross-sum condition applied for (i, 5) = (2,1))

1
a
(_1) . A= —a )
-1
ala)=1—aor

g (@) =ala+1)—1=a?+a—1=0, a = =L/

(o(r) must be equal to 1+ (—a) by the cross-sum condition applied for (i,7) =
(2,1)).

Note that the zeros of g, are the opposite of the zeros of gj .

So, there are four 4 x 4 rank one 7 matrices. Note that they are orthogonal
with respect the inner product (-,-)r or, equivalently, the four vectors that
define them are orthogonal.

n = 6:

o N -
a 140
B oaty

A:
vy B+06 ’
6 v+o
_J 6 -

a?=1+p,af=a+vy, ay=6+6, ad =7v+0, ac =6.

The above conditions imply necessarily either c =1, 6 = a, vy = or o0 = —1,

d = —a, v = —. Such cases will be referred respectively (1) and (—1):

1
o

ale®—1)=a+(a®—-1) or
gi(@)=al@®?—a-1)—(a—1)=a’*-a?-2a+1=0

(a(a? — 1) must be equal to o+ (a? — 1) by the cross-sum condition applied for
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(lvj) = (3’ 1))

a?—1
(@2 - 1) !
—a
-1
ale®—1)=a—(a?—1) or
g (@)=al@®+a—-1)—(a+1)=a3+a?>-2a-1=0

(a(a? — 1) must be equal to a+ (—(a? — 1)) by the cross-sum condition applied
for (i,7) = (3,1)).

Note that the zeros of g3 are the opposite of the zeros of g3. Note, moreover,
that the zeros of g5 (g5 ) are distinct.

So, there are six linearly independent 6 x 6 rank one 7 matrices. Computer
says that if af, k =1,2,3, are the zeros of ggi, then

L+ ajay + ((ap)* = 1)((e3)? = 1) =0,

i.e. the vector [1 af (aif)?2—1 +((af)? —1) +ai +1]7 is orthogonal to the
vector [1 af (af)? —1 £ ((aF)? —1) £ aFf +1]7. Tt follows that such six
6 x 6 rank one 7 matrices are orthogonal with respect the inner product (-,-)p

(because the six vectors that define them are orthogonal).

Question:

ad—a?-2a+1=0 2 2
? Answer: since the roots are: 1.802, —1.25, 0.445 (Tommaso 18/11/2010), it
seems yes

n=2~8:

@
1+
a4y
B+
Y+o
d+p
o+x
L p J
a?=1+8, af=a+v, ay=p+6, ad=~v+0, ac =6+p, ap=0+x, ax = p.

b
Il
BT 9 92 O~

The above conditions imply necessarily either x =1, p =, 0 = 3, § = vy or
x=-1,p=—a, 0 =—0,5=—v. Such cases will be referred respectively (1)
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and (—1):

ala? —2a) = (a2 — 1) + (a® — 2a) or
gi (@) =ale®—-a?—-2a+1)—(a?—a—-1)=a* —a®-3a® +2a+1
=(a—-1)(a®-3a—-1)=0

(a(a?® — 2a) must be equal to (a? — 1) + (a® — 2a) by the cross-sum condition
applied for (¢,7) = (4,1))

_( 3—2&) )
(- 1)
—
-1
ala® —2a) = (a? — 1) — (a® — 2a) or
gi(@)=a(@®*+a?-2a—-1)— (a®’+a—-1)=a*+a®-3a% - 2a+1
=(a+1)(a®-3a+1)=0

(a(a® —2a) must be equal to (a? — 1)+ (—(a® —2a)) by the cross-sum condition
applied for (i,7) = (4,1)).

Note that the zeros of g; are the opposite of the zeros of gf. ??? FROM
HERE Note, moreover, that the zeros of g5 (g ) are distinct.

So, there are eight linearly independent 8 x 8 rank one 7 matrices. Computer
says that if af, k=1,2,3,4, are the zeros of gff, then

L+ ajaq + ((0p)* = 1)((e2)? = 1) + ((a)* = 20¢)((a7)* — 207) = 0,

i.e. the vector [1 aff (a)? —1 (o) =207 + () —2aF) £ ((aF)?—1) +
aif +£1]7 is orthogonal to the vector [1 af (af)? —1 (af)® —2aF +((aF)? —

20F) + ((af)? —1) £af +1]7. Tt follows that such six 8 x 8 rank one 7
matrices are orthogonal with respect the inner product (-, -)r (because the eight

vectors that define them are orthogonal). TO HERE I HAVE TO CHECK ?77?

Set po(a) = 1, pi(@) = e, pir1(a) = api(a) —pi—1(a), 1 = 1,2,... (pi(a) is
the characteristic polynomial of the i x i upper-left submatrix of Py + PI). We
observe, in general, that for n even generic we have the following n rank one 7
matrices:

N PO(O%
R e B B e I PSR
pr-1(ay)

af zeri di apz_1(a) = pz_1(@) + pz_2(a)
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If the polynomial

9% (a) = apy_1(a) —py-1(a) — py—2(a)
has distinct real zeros (I have to check if this is true), then the vectors u; are
linearly independent. (Such polynomial should coincide with the polynomial
obtained in the particular cases (1) n = 2,4,6,38).

po(ay)
Ny - _ X, _ pi(a; n
s o)™ u = [ e o= | PO e
pa-1(ay)
oy, zeri di apn_q(a) = —pz_1(a) +pz_2(a)

If the polynomial
9z (@) = apz1(a) +pz1(a) — pz—2(a)

has distinct real zeros (I have to check if this is true), then the vectors u, are
linearly independent. (Such polynomial should coincide with the polynomial
obtained in the particular cases (—1) n = 2,4,6,38).

Note that the zeros of glg are the opposite of the zeros of gz (I have to check
if this is true).

Note that (u)7(u;) = 0Vk, s. So, if the "distinct condition” on the zeros is
satisfied, then {(u;)(uj)7, (u; )(u; )T : k=1,..., %2} is aset of n linearly inde-
pendent rank one 7 matrices, and 7 = Span {(u})(u; )T} + Span {(u; )(u; )T}
with Span {(u})(u; )T} orthogonal to Span {(u, )(u; )T}

For n = 4 it also happens that (u] )T (uf) = 0= (u;)?(u3). So, for n = 4
we have 4 orthogonal rank one T matrices.

Is for n = 6 yet true that (u)(uf) =0=(u,)T(u;)s#ksk=1,...,3
? In other words, is for n = 6 the basis {(u)(w))T, (u;)(u;)T : k =1,2,3}
of 7 an orthogonal basis 7 SOLVED with Computer with ”yes” (see above).

For n = 87

Call ug, kK = 1,...,n, the above (orthogonal) vectors ug and u; . Let v be
such that 71 (v) = Sd(STv)d(STe;)~1S~! is invertible (d(STv) non singular),
so that the matrix 7y (z) is well defined. Note that v, # 0 Vk ... (this fact
is assured by the the assumption d(S7v) non singular, since, we shall see, the
uy, are nothing else, unless a multiplier, the columns of S).

Since the uguf form an (orthogonal) basis for 7, there exist ¢ such that
~(z)=> 1, ckukug. We want to give a formula for such c.

Sd(STz)d(STv)"ISTH = 3opy ekSd(ST (wruy )v)d(STv) TS
= Yo ck(uiv)Sd(STug)d(STv) 1S

if and only if

n
z= Z cr(ui v)uy,.

k=1

Note that the ul v must be all non zero; in fact, if one of them is zero, we would
have that any vector z (with n entries) can be written as a linear combination
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of only n — 1 vectors. For the ¢ in the latter equality we can obtain an explicit
formula; in fact, by the orthogonality of the uyg,

ulz = Z cr(uiviulu, = cs(ulv)ulu,.

Thus

So

Question: ufuy =?

Question: is

1 ..T
wTa; M1
T -1 L
vi=[11 Hlw  uw, | =011 1]
uTlu, ug
which is such that vTu; = 1 V&) such that 7 (v) is invertible ? ... yes since
( y
in such case
1 1 1
STv]; = [T " i #0, Vi
57Vl = I8 [grgrun -+ grwd | L0, Vi

and the ug, we shall see, are nothing else, unless a multiplier, the columns of S.

I think I have simply found again the sine transform S, that is the matrix
sin(ijm/(n + 1)).

More precisely, the vectors u; e u; that define my n rank one orthogonal
7 matrices ((u))(ui)T e (u;)(u;)7, k = 1,...,n/2) are nothing else, unless a
multiplier, the columns of the sine matrix. I have observed this for small values
of n.

Thus, it is obvious that the (uf)(wi)T, (uy)(u;)?, k = 1,..,n/2, are a
basis, orthogonal with respect to (-,)r, of 7.
proof: if A € 7, then A = SDST =", D;;(column i of S)(column i of S)T.

Even the fact that such n matrices (u})(uf)?, (uy)(u;)?, k= 1,..,n/2,
are 7 matrices, is not a novelty.
proof: since for any diagonal D the matrix SDS” belongs 7, it is sufficient to
choose D = e;e! in order to prove that the matrices (column i of S)(columniof S
are in 7.

Moreover, rank of A € 7 is 1 if and only if rank of D in A = SDS is 1 if and
only if D = e;e! unless a multiplier.

Consider the unitary sine matrix S. Note that the columns ¢; (j =1,...,n)
of the matrix

S/ + 1) /2 diag (1/sin—2"—): j=1,....n)

n+1
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are orthogonal and their first entries are (c;)1 =1, (c;)2 = 2 cos J” . Note that
the (c;)2 coincide with the zeros of the two polynomials

g4 (a) = apy_1(a) — py-1(a) — py—2(a),

gz (@) = apy —1(a) + py-1(a) — pya(a).

The (c;)2 are also the eigenvalues of Py + P, i.e. the zeros of the polynomial
pn(a) defined by the sequence

po(@) =1, pi(e) = o, piy1(a) = api(@) —pi-1(a), i=1,...,n— 1.

Moreover, they are twice the stationary points of the chebycev polynomial
Tp+1(c). More precisely, if T}, (o) = Y o_, asa®, then the (c;)2 are the ze-
ros of the polynomial ¢, (o) = >0 215 asa®. For example, since Tp(a) = 1,
Ti(a) = a, Ta(a) = 2aTi(a) — To(a) = 202 — 1, Tz(a) = 2aTs(a) — Ti(a) =
3 —3a, Ty(a) = 8a* — 8a% + 1, Ts(a) = 16a° — 200 + 5a, we have
Ti(a) = 12a2 -3, TS’(oz) = 5(16a* — 1202 + 1), s0 g2(a) = 3a? —3 = 3(a® - 1),
qa(a) = 5(a 3a +1).
Verify that 2cos &, j =1,...,6, are the zeros of

g3(a):a(az—a—l)—(a—l):a3—a2—2a+1:0T0mmaso
g (@)=a(e®*+a—-1)—(a+1)=a*+a?>-2a-1=0

Verify that 2 cos ” ,7=1,...,8, are the zeros of

gi(@)=a(a®—a?-2a+1)—(a®> —a—1)=a* —a® -3a® +2a+ 1= (a—1)(a® — 3a — 1)
gi(@)=a(@®*+a®-2a-1)—(a®+a-1)=a*+a®-3a%?-2a+1=(a+1)(a® - 3a+1)

Set p_1(a) =0, and

(
po(a) =1, gi (@) = (@ F po(a) = p-1(a),
pi(a) = a, gy (@) = (@ F Dpi(a) = po(a),

pz( ) = api—1(a) — pi—2(a), giiﬂ(a) = (aF pi(a) = pi—1(a), i=1,...
Note that p;(«) is the characteristic polynomial of the i x ¢ upper-left submatrix
of Py + POT

Introduce also the polynomials:

(@) =1, [H(@) =aF 1, [F(e) =aff (@) = [Ea(0), i=2,....
Note that f;"(a) (f; («)) is the characteristic polynomlal of the i x i upper-left

submatrix of Py + PJ +ejel (Py + Pl —ejel). Then gt = f.
proof: for i = 0,7 =1 it is true:
gi(@=(@F)I-0=aF1= fi(a),
gG@)=(aFa-1=alaF1)—1= ff(a).
Assume the thesis true, and let us show that gﬁ_l = ij-[H:
giiﬂ(a) = (aF pi(a) = pi-1(a) = (@ F 1)(api-1(a) — pi—2(a)) — pi—1(@)
= Oé(Oéi:F Dpi-1(a) — api—2(a) £ pi—a(a) — pi—1()
= Oégii( a) £ pi—2(a) — api—2(a) + pi-3(a)
— ag(a) - (pi-2(0)(a F 1)~ pi-s(a)
= ag;(a) =g, (a) = aff(a) = 2, (a)
= Ih 1(@)
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For the characteristic polynomial pa; of the 2i X 2i matriz Py + PE we have

p2i(a) = f7(a)f(a) (prove it!). So, the 2i zeros 2 cos g1 J = 1,...,2i, of

pa2i are the zeros of f;7 and of f; .

proof: the proof is by induction. The basis of the induction is true:
pol@) =1 = fg () f5 (), fo (@) =1, fo(a) =1,
pa(@) =a® = 1= ff(a)f (a), fif(@)=a~1, fi(a)=a+1,
pa(a) =o' =30® +1 = fi(a)fy (@), ff(a)=a®—a—1, fy(a)=a’+a—1.
Assume poj(a) = f;r(a)f;(a), j=0,1,...,i—1. Then
p2i(a) = apzi—1(a) — pai—2(a) = (042 — Dpai—2(a) — apzi—3(a) = *
(use the identity: po;—1 = apai—2 — p2;—3). Since the identities
p2i—a(@) = apzi—s5(a) — pai—6(), apzi—3(a) = 042]921'—4(04) — ap2i—s(a)

imply poi_a(a) + apai_3(a) = apai_s(a) — p2i_e(a), we have the equality
pi—s(a) = 2((a® = 1)p2i—a(@) — p2i—6(cr)). So, * becomes:

* = (042—1)1721'72(04)—((042—1)292%4(04)—1721'76(04)) = (OZQ—1)(Pzifz(04)—1721'74(04))‘#1?22'76(a)-

Now, by the inductive hypothesis,

p2i(a) = (o® = D(f; (@) fiZ1(a) = filo(a) fila()) + fil5(e) fiZ5(e)
= 2fz+1(04)f7 (a) + z+2(04) fie 2(04)—042f+ (@) f;i_a(e)
—fiti(@)fZ (@) + fif 3(a) i—3(@)
= a2 z+1(a)f ( )+fz 2(&) i— 2(0{) i— 2(&)']272(0[)
—fia(a) fiZ 1( )+ (Oéf+ (@) = fif (@ ))(Oéf 2(@) = fiZ1(a))
= o’ f (@) fii(a) + ( )fia(a) —a(fit (Oé)fzf (@) + fif1 (@) fiZa(a))
= (aJEJr) (a)( )ffz( ))( —1(@) = [ (@)

Ezercise. In n is even, then the eigenvalues of the n x n matrix Py + Pl are the

eigenvalues of the following two § X & matrices:

Let us come back to the odd case. Recall:

[ 3

Note on the second entries: 0 is eigenvalue of [0]; ++/2 are eigenvalues of

]
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1 1 1

_ o =
o = O

;£

}; 0 and ++/3 are

2 — /2,

+1 0 +v3
o |, -1]1, 2
¥l 0 +3
-1 1 1
. . 0 1
Note on the second entries: £1 are eigenvalues of 10
[0 2 0
eigenvaluesof | 1 0 1
10 1 0
n="7
1 [ 1 I 1 i
0 +/2 «
-1 1 a? -1
0 , 0 , | @ —2a ,az:ﬁ:\/2—x/§,a=:ﬁ:\/2+\/§
1 -1 a? -1
0 V2 o
| -1 ] | -1 ] | 1 }
0
Note on the second entries: 0 and ++/2 are eigenvaluesof | 1
0
0 2 00
. 101 0
+1/2 + /2 are eigenvalues of 010 1
0 010
For n odd generic we have
_ ) -
@
a? -1
prs(a)
A= | pna (a)
ppns ()
pla? —1)
pa
p

and necessarily p = £1. If p = 1 we have the further condition ap not (a) =

QPWT—3(04), or 0 = QWT“(Q) =
the further conditions pnT_l(a) + Ppos (o) = apnT—s(a), Pus
)

apnT_l(a) - 2pnT_3(a). If p = —1, we have
(@) -~ pas(a) =

—Qpn_s («) which imply Pns () = 0. Viceversa, such conditions (0 = gns1 (),
in case p =1, and Prt () =0, in case p = —1) imply that the second column

of A is « times the first one.
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So, we have the following Rank one T matrices.

1
Xz + +Oé;g 1
(uz)(uz)Tv uz = pngl (fk) ) Xz = (ak -1 ) k= ]-7 9 nTa
Jx; .
pr=s (o)
o roots of gnpr () = apn_s (o) — 2pr_s ().
Prove that g g1 (a) is the characteristic polynomial of the 241 x 2+ matrix
0 2 0
1 0 1
0 1
1
X _oz,;
() (u)?, v, = 0_ yxp = | (ag)* =1 1|, k:17...,"§1,
—Jx; ~
Dn_s (ay)

oy, roots of panl(oz)
Ezercise. Prove that n odd = p,(a) = P (Oé)gnTH ().

Set fo(a) = 1, fi(a) = @, f2la) = a® = 2, fir1(a) = afi(@) = fimi(a),
1 =2,3,.... Note that f;(\) is the characteristic polynomial of the upper-left
i x i submatrix of Py + ejel.

Set go(a) = 1, gir1(a) = api(a) — 2p;—1(a), i = 0,1,.... Then g;(a) =
fila), i = 0,1,.... So the roots of g;(a) are those of fi(a): +£v2 (i = 2),
0,43 (i = 3), 2 - V2, £V/2+12 (i =4), ... or, more in general, 2 cos %,
j=1,3,...,2 — 1.
proof: the proof is by induction. gi(a) = apo(a) — 2p_1(a) = a = fi(«a),
g2(@) = ap1(a) — 2po(a) = a® — 2 = fo(a),

giv1(a) = api(a) —2pi-1(a)
= a(api—1(a) = pi—2(®)) — 2(api—2(a) — pi—3(a))
= a(api—1(a) = 2pi—2()) — api—2() + 2p;—3()
= agi(a) —gi-1(a)
= afila) = fi-1(a)
= fit1(a).

p2it1(a) = pi(@) fiy1(a), i=0,1,....
proof: the proof is by induction. The basis of the induction is true:

pi(a) = a = po(a)fi(a), ps(a) = o’ —2a = a(a® - 2) = pi(a) f2(a),
ps(a) = a® —4a3 + 3a = (a? — 1)(a® — 3a) = pa(a) f3(a).

Assume pojii1(a) =pj(a)fjt1(a), j=0,1,...,4—1. Then

P2i+1 = QP2 — P2i—1 = (042 - 1)]?21'—1 —Qp2;—2 = (042 - 1)(]7271—1 —p2¢—3) + p2i—5
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(note that poit1 = apa; — p2i—1 and apaiio
apaite = &*paiy1 — poi—1, and thus pojio =
inductive assumption:

a®poiy1 — apo; imply poit1 +
( a2 — 1)p27;+1 —pgi)). By the

1
et

poiv1 = (& = 1) (pi—1fi — pi—2fi—1) + pi—sfi—2

= a®pi—1fi +picafic1 — &®pi—afia
—pi—1fi + Pi—3fi—2

= a®pi—1fi +picafic1 — &®pi—afia
—pi—1fi + (api—2 — pi—1)
(afir = fi)

= a’pi1fi +pi—afio1
—api—2fi —api—1 fi—1

= (api—l - pi—Q)(afi - fi—l)

= pifit1-

First row of the two tridiagonal matrices whose eigenvalues, collected together,
give the eigenvalues of the n x n matrix Py + P (the ith row, i > 2, is like the
ith row, i > 2, of Py + P{):

n even:

n/2xn/2 1 1 (4 or1 in the bottom),

n/2xn/2 —1 1 (— or —1 in the bottom)

n odd:

(n—1)/2x(n—=1)/2 0 1 (- or —1 in the bottom),

(n+1)/2x(n+1)/2 0 2 (+ or1 in the bottom)

If we assume az and o, both ordered in decreasing order (...< a; < af,

ie. af =2cos (2]:;11)”, . <ay <o, e ap =2cos (Zi)l”), then, taking the
first, the [2£2]th, the second, the [2£3]th, ..., columns of the following matrix

one obtains the sine matrix normalized so that the entries on its first row are
all equal to 1.

proof:
s 29T : JjT Jm
sin —g+1/sm 7o = 2cos g
G BIT e T T 2 _
sin 45 /sin 715 = (2cos )7 — 1

Conclusion. Assume n odd. If A € 7 is of rank one then there are o and x such
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that

Ae; = | proa(a) =apai(a)

Moreover, the following two conditions must be satisfied
(z = 1)paa(a) =0, apai(@) = (2 + 1)pa_s(a).

Note that = =1 and pn_s (o) = 0 cannot be simultaneously verified (otherwise
we would have pn_s (o) = 0 and roots OfpnT—l are different from those OfpnT—fi D.
So, either

or
x=-1, pnT—l(O[) =0.

Assume n even. If A € 7 is of rank one then there are o« and x such that

A81 =

Moreover, the following two conditions must be satisfied
apz—1(a) = py—2(a) +zpy1(@), azpy_1(a) =pz_1(a)+apy_2(a)
which become (since = # 0)
azpy_1(a) = zpz_a(a) +a’pz_1(a), azpgz_i(a) =pz_i(a) + zpz_2(a)

and thus imply (2°—1)p= _1(a) = 0; but px 1 (a) = 0 would imply p» _s(a) =0
(not possible! see above), so either

r =1, f%r(a) = (= 1)pz_1(a) —pzp_2(x) =0

or
z=-1, fy(a):=(a+1pz1(a) —pz2(a) =0.
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