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In these notes the concepts of circulants, τ and Toeplitz matrices, Hessenberg al-
gebras and displacement decompositions, spaces of class V and best least squares
fits on such spaces, are introduced and investigated. As a consequence of the re-
sults presented, the choice of matrices involved in displacement decompositions,
the choice of preconditioners in solving linear systems and the choice of Hes-
sian approximations in quasi-Newton minimization methods, become possible
in wider classes of low complexity matrix algebras.

The Fourier matrix, circulants, and fast discrete transforms

Consider the following n × n matrix

P1 =















0 1
0 1

. . .

1
1 0















.

Let ω ∈ C. Note that

P1









1
1

1









=









1
1

1









= 1









1
1

1









, P1









1
ω

ωn−1









=













ω
ω2

ωn−1

1













= ω









1
ω

ωn−1









,

where the latter identity holds if ωn = 1. More in general, if ωn = 1, we have
the following vectorial identities

P1









1
ωj

ω(n−1)j









=









ωj

ω(n−1)j

1









= ωj









1
ωj

ω(n−1)j









, j = 0, 1, . . . , n − 1,

or, equivalently, the following matrix identity

P1W = WD1ωn−1 ,

D1ωn−1 =









1
ω

ωn−1









, W =









1 1 1 1
1 ω ωj ωn−1

1 ωn−1 ω(n−1)j ω(n−1)(n−1)









.

Proposition. If ωn = 1 and if ωj 6= 1 for 0 < j < n, then W ∗W = nI .

proof: since |ω| = 1, ω = ω−1, we have

[W ∗W ]ij = [WW ]ij =
∑n

k=1[W ]ik[W ]kj =
∑n

k=1 ω(i−1)(k−1)ω(k−1)(j−1)

=
∑n

k=1 ω(k−1)(j−i) =
∑n

k=1(ω
j−i)k−1.
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Thus [W ∗W ]ij = n if i = j, and [W ∗W ]ij = 1−(ωj−i)n

1−ωj−i = 0 if i 6= j (note that

the assumption ωj 6= 1 for 0 < j < n is essential in order to make 1−ωj−i 6= 0).

By the result of the above Proposition, we can say that the following (sym-
metric) Fourier matrix

F =
1√
n

W

is unitary, i.e. F ∗F = I .

Exercise. Prove that F 2 = JP1 where J is the permutation matrix Jek =
en+1−k, k = 1, . . . , n (J is usually called anti-identity).

The matrix identity satisfied by P1 and W can be of course rewritten in
terms of F , P1F = FD1ωn−1 , thus we obtain the equality

P1 = FD1ωn−1F ∗

which states that the Fourier matrix diagonalizes the matrix P1, or, more
precisely, that the columns of the Fourier matrix form a system of n unitar-
ily orthonormal eigenvectors for the matrix P1 with corresponding eigenvalues
1, ω, . . . , ωn−1.

But if F diagonalizes P1, then it diagonalizes all polynomials in P1:

P k−1
1 = FDk−1

1ωn−1F
∗,

∑n
k=1 akP k−1

1 = F
∑n

k=1 akDk−1
1ωn−1F

∗

= F









∑n
k=1 ak

∑n
k=1 akωk−1

∑n
k=1 akω(n−1)(k−1)









F ∗

= Fd(Wa)F ∗ =
√

nFd(Fa)F ∗

where by d(z) we mean the diagonal matrix whose diagonal entries are z1, z2, . . . , zn.
Let us investigate the matrices P k−1

1 , k = 1, . . . , n, and the matrix
∑n

k=1 akP k−1
1

in the case n = 4:

P 0
1 = I, P 1

1 =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









, P 2
1 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, P 3
1 =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









,

P 4
1 = P 3

1 P1 = P T
1 P1 = I = P 0

1 ,

4
∑

k=1

akP k−1
1 =









a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1









=
√

4Fd(Fa)F ∗, F =
1√
4









1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9









,

ω4 = 1, ωj 6= 1, 0 < j < 4 (ω = e±i2π/4).

Note that, for n generic, we have the identities eT
1 P k−1

1 = eT
k , k = 1, . . . , n,

and P n
1 = I (prove them!). So, the set C = {p(P1)} of all polynomials in P1
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is spanned by the matrices Jk = P k−1
1 ; the particular polynomial

∑n
k=1 akJk is

simply denoted by C(a). Note that C(a) is the matrix of C with first row aT :

C(a) =

n
∑

k=1

akJk =













a1 a2 an−1 an

an a1 an−1

a3 a2

a2 a3 an a1













= Fd(F T a)d(F T e1)
−1F−1.

C is known as the space of circulant matrices.

Exercise. (i) Repeat all, starting from the n × n matrix

P−1 =















0 1
0 1

. . .

1
−1 0















and arriving to the (−1)-circulant matrix whose first row is aT , a ∈ Cn:

C−1(a) =













a1 a2 an−1 an

−an a1 an−1

−a3 a2

−a2 −a3 −an a1













.

(ii) Let T be a Toeplitz n × n matrix, i.e. T = (ti−j)
n
i,j=1, for some tk ∈ C.

Show that T can be written as the sum of a circulant and of a (−1)-circulant,
that is, T = C(a) + C−1(b), a,b ∈ Cn.

Why circulant matrices can be interesting in the applications of linear alge-
bra? The main reason is in the fact that the matrix-vector product C(a)z can
be computed in at most O(n log2 n) arithmetic operations (whereas, usually, a
matrix-vector product requires n2 multiplications).

Proposition FFT. Given z ∈ Cn, the complexity of the matrix-vector product
Fz is at most O(n log2 n). Such operation is called discrete Fourier transform
(DFT) of z. As a consequence, the matrix-vector product C(a)z is computable
by two DFTs (after the preprocessing DFT Fa).

proof: since ω(i−1)(k−1) is the (i, k) entry of W and zk is the k entry of z ∈ Cn,
we have

(Wz)i =
∑n

k=1 ω(i−1)(k−1)zk =
∑n/2

j=1 ω(i−1)(2j−2)z2j−1 +
∑n/2

j=1 ω(i−1)(2j−1)z2j

=
∑n/2

j=1(ω
2)(i−1)(j−1)z2j−1 +

∑n/2
j=1 ω(i−1)(2(j−1)+1)z2j

=
∑n/2

j=1(ω
2)(i−1)(j−1)z2j−1 + ωi−1

∑n/2
j=1(ω

2)(i−1)(j−1)z2j .

Note that ω is in fact a function of n, i.e. the right notation for ω should be
ωn. Then ω2 = ω2

n is such that (ω2
n)n/2 = 1 and (ω2

n)i 6= 1 0 < i < n/2; in other
words ω2

n = ωn/2. So, we have the identities

(Wnz)i =

n/2
∑

j=1

ω
(i−1)(j−1)
n/2 z2j−1 + ωi−1

n

n/2
∑

j=1

ω
(i−1)(j−1)
n/2 z2j , i = 1, 2, . . . , n. (?)
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It follows that, for i = 1, . . . , n
2 ,

(Wnz)i = (Wn/2









z1

z3

zn−1









)i + ωi−1
n (Wn/2









z2

z4

zn









)i.

Moreover, by setting i = n
2 + k, k = 1, . . . , n

2 , in (?), we obtain

(Wnz)n
2
+k =

∑n/2
j=1 ω

n
2
(j−1)

n/2 ω
(k−1)(j−1)
n/2 z2j−1 + ω

n
2
n ωk−1

n

∑n/2
j=1 ω

n
2
(j−1)

n/2 ω
(k−1)(j−1)
n/2 z2j

=
∑n/2

j=1 ω
(k−1)(j−1)
n/2 z2j−1 − ωk−1

n

∑n/2
j=1 ω

(k−1)(j−1)
n/2 z2j

= (Wn/2









z1

z3

zn−1









)k − ωk−1
n (Wn/2









z2

z4

zn









)k, k = 1, . . . , n
2 .

(ω
n
2
n = −1; think ω = e±i2π/n). Thus

Wnz =

[

I D
1ω

n
2
−1

n

I −D
1ω

n
2
−1

n

]

[

Wn/2 0
0 Wn/2

]

Qz,

D
1ω

n
2
−1

n

=









1
ωn

ω
n
2
−1

n









, Q =

























1
0 0 1

1 0
0 1
0 0 0 1

0 1

























.

(??)

If cn denotes the complexity of the matrix-vector product Fnz, then, by the
previous formula,

cn ≤ 2cn/2 + rn, r constant.

But this implies cn = O(n log2 n). The proof of the last assertion is left to the
reader.

Of course, any time a n × n matrix U , well defined for all n, satisfies for n
even an identity of the type

Un =
[

sparse matrix
]

[

Un/2 0
0 Un/2

]

[

permutation matrix
]

,

the matrix-vector product Unz can be computed in at most O(n log2 n) arith-
metic operations. The above identity is verified for at least 10 matrices U , the
Fourier transform and its (−1) version, and the eight Hartley-type transforms.
Note, however, that there are also other 16 discrete transforms of complexity
O(n log2 n), sine-type and the cosine-type transforms. See [],[].

Exercise G. Prove that the n × n matrix G = Gn defined by

Gij =
1√
n

(cos
(2i + 1)(2j + 1)π

2n
+ sin

(2i + 1)(2j + 1)π

2n
), i, j = 0, . . . , n − 1,
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is symmetric, persymmetric, real, unitary, and satisfies the identity:

Gn =
1√
2

[

R+ R−
−R−J R+J

][

Gn/2 0
0 Gn/2

]

Q, R± = Dc ± DsJ,

(J n
2 × n

2 anti-identity) for some suitable n
2 × n

2 diagonal matrices Dc, Ds. Prove,
moreover, that each row of Gn has at least a zero entry when n = 2 + 4s (this
is like to say, we will see, that the space {Gd(z)G : z ∈ Cn} is not a h-space for
such values of n); and that, instead, for all other n, [Gn]1k 6= 0 ∀ k (i.e., for all
other n, the space {Gd(z)G : z ∈ Cn} is a 1-space).

Exercise. Prove that the space CS
−1 + JCSK

−1 , CS
−1 symmetric n × n (−1)-

circulants, CSK
−1 skewsymmetric (−1)-circulants, is a commutative matrix alge-

bra (a matrix A is skewsymmetric if AT = −A).

The sine matrix and the (commutative) algebra of τ matrices

Consider the n × n matrix

P0 + P T
0 =













0 1
1 0 1
0 1 0

1
1 0













,

and set J1 = I , and J2 = P0+P T
0 . Note that eT

1 J1 = eT
1 , eT

1 J2 = eT
2 . Moreover,

since

(P0 + P T
0 )2 =





















1 0 1
0 2 0 1
1 0 2

1
1

2 0
0 1





















=





















0 0 1
0 1 0 1
1 0 1

1
1

1 0
1 0 0





















+ I,

we have eT
1 ((P0 + P T

0 )2 − I) = [0 0 1 0 · · · 0] = eT
3 . Set J3 = (P0 + P T

0 )2 − I =
J2(P0 + P T

0 ) − J1; then eT
1 J3 = eT

3 .
More in general, set Ji+1 = Ji(P0+P T

0 )−Ji−1, i = 2, 3, . . . , n−1. The matrix
Ji+1 is a polynomial in P0 + P T

0 of degree i with the property eT
1 Ji+1 = eT

i+1.

proof: assume eT
1 Jj = eT

j , j = 1, . . . , i; then

eT
1 Ji+1 = eT

1 (Ji(P0+P T
0 )−Ji−1) = (eT

i (P0+P T
0 ))−eT

i−1 = (eT
i−1+eT

i+1)−eT
i−1 = eT

i+1.

Since J1, J2, . . . , Jn are linearly independent, we can say that they span the
set {p(P0 + P T

0 )} of all polynomials in the matrix P0 + P T
0 (use the Cailey-

Hamilton theorem). We call such set τ . Note that the matrices of τ are deter-
mined once their first row is known; with the symbol τ(a) we denote the matrix
of τ whose first row is aT , i.e. the matrix

∑

k akJk.

Let us find a useful representation of τ and, in particular, of τ(a). First
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observe that the following vectorial equalities hold:













1
1 0 1

1
1

1





















sin jπ
n+1

sin 2jπ
n+1

sin njπ
n+1









= 2 cos
jπ

n + 1









sin jπ
n+1

sin 2jπ
n+1

sin njπ
n+1









, j = 1, . . . , n.

Such n equalities can be rewritten as a simple matrix identity (P0+P T
0 )S = SD

where S is the matrix

Sij =

√

2

n + 1
sin

ijπ

n + 1
, i, j = 1, . . . , n,

and D is the diagonal matrix with diagonal entries Djj = 2 cos jπ
n+1 . Note that

the matrix S, called sine matrix, is real, symmetric and unitary (prove it!).

Remark. Let F2(n+1) be the Fourier matrix of order 2(n + 1). Then the sine
matrix S satisfies the following relation:

i
(

I − F 2
2(n+1)

)

F2(n+1) =









0 0T 0 0T

0 S 0 −SJ
0 0T 0 0T

0 −JS 0 JSJ









(note that F 2
2(n+1) is a permutation matrix). As a consequence, a sine transform

can be computed by performing a discrete Fourier transform.

So, the columns of the sine matrix S form a system of unitarily orthonormal
eigenvectors for the matrix P0 + P T

0 . In other words, the unitary matrix S
diagonalizes P0 + P T

0 and, of course, diagonalizes any polynomial in P0 + P T
0 ,

i.e. any τ matrix:

P0 + P T
0 = SDS, (P0 + P T

0 )k = SDkS,
τ = {p(P0 + P T

0 )} = {∑n
k=1 ak(P0 + P T

0 )k−1 : ak ∈ C} = {Sd(z)S : z ∈ Cn}.

In particular, it is clear that the matrix of τ with first row aT is

τ(a) =
n

∑

k=1

akJk = Sd(ST a)d(ST e1)
−1S−1.

The latter formula states that matrix-vector products involving τ matrices have
complexity at most O(n log2 n).

Proposition PC. Given X ∈ Cn×n generic, we have

{p(X)} ⊂ {A ∈ Cn×n : AX = XA},
dim({p(X)}) ≤ n ≤ dim{A ∈ C

n×n : AX = XA}

and if one equality holds then the other equality holds too. So, X is non
derogatory if and only if dim({p(X)}) = n = dim{A ∈ Cn×n : AX = XA}.

The above Proposition suggests the following further representation of the
space τ :

τ = {A ∈ C
n×n : A(P0 + P T

0 ) = (P0 + P T
0 )A}.
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The fact that any matrix of τ must commute with P0 + P T
0 is equivalent to

require that the following n2 cross-sum conditions hold:

ai,j−1 + ai,j+1 = ai−1,j + ai+1,j , i, j = 1, . . . , n

where we have set a0,j = an+1,j = ai,0 = ai,n+1 = 0, i, j = 1, . . . , n. We can use
such conditions in order to write down the generic τ matrix whose first row is
[a1 a2 · · · an]. For example, for n = 4, we can say that

τ(a) =









a1 a2 a3 a4

a2 a1 + a3 a2 + a4 a3

a3 a2 + a4 a1 + a3 a2

a4 a3 a2 a1









, J1 = I, J2 =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









,

J3 =









0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0









, J4 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, J2−J4 =









0 1 0 −1
1 0 0 0
0 0 0 1
−1 0 1 0









,

and so on.

Exercise. Prove that for n even the matrix J2 is invertible, and, if possible,
compute the inverse.

solution: We know that if J2 is invertible, then J−1
2 ∈ τ (from the fact that

J2 commutes with P0 + P T
0 it follows that also J−1

2 commutes with P0 + P T
0 !).

Thus J−1
2 = τ(z) for some z ∈ Cn. Note that the matrix identity τ(z)J2 = I is

equivalent to the vectorial identity zT J2 = eT
1 . So, for example, for n = 4 we

have the condition

[z1 z2 z3 z4]









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









= [1 0 0 0],

which yields z1 = 0, z2 = 1, z3 = 0, z4 = −1, and thus

J−1
2 =









0 1 0 −1
1 0 0 0
0 0 0 1
−1 0 1 0









= J3 − J4.

The proof for n = 6, 8, . . . is left to the reader.

Exercise Ttau. Let T be a symmetric Toeplitz n×n matrix, i.e. T = (t|i−j|)
n
i,j=1,

for some tk ∈ C. Show that T = A + B where A is a τ matrix of order n and

B =





0 0 0
0 R 0
0 0 0



 , R ∈ τ, R ∈ C
(n−2)×(n−2).

Exercise. Write down rank one τ matrices (try first n = 2, n = 3, n = 4, n = 5,
n = 6, . . .)

Hessenberg algebras
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Let X be a lower Hessenberg 3 × 3 matrix

X =





a11 b1 0
a21 a22 b2

a31 a32 a33



 .

We now show that the space of all polynomials in X is spanned by three matrices
J1, J2, J3 such that eT

1 Jk = eT
k , k = 1, 2, 3, provided that Xii+1 6= 0, i = 1, 2.

As J1 we take the identity, J1 = X0 = I . Let us define J2:

X − a11I =





0 b1 0
a21 a22 − a11 b2

a31 a32 a33 − a11



 ,

b1 6= 0 ⇒

J2 =
1

b1
(X − a11I) =





0 1 0
a21/b1 (a22 − a11)/b1 b2/b1

a31/b1 a32/b1 (a33 − a11)/b1



 .

Note that eT
1 J2 = eT

2 . Then, let us define J3:

J2
2 =





a22/b1 (a22 − a11)/b1 b2/b1



 ,

b2 6= 0 ⇒
J3 =

b1

b2
(J2

2 − a22

b1
I − a22 − a11

b1
J2).

Note that eT
1 J3 = eT

3 . Finally, Cailey-Hamilton theorem yields the thesis,
{p(X)} = Span {J1, J2, J3}.

The following Proposition generalizes to a generic n the above remarks. For
a detailed proof see [].

Proposition. Let X be a lower Hessenberg n×n matrix. Then the space HX of
all polynomials in X

HX = {
n

∑

k=1

αkXk−1 : αk ∈ C}

is spanned by n matrices J1, . . . , Jn such that eT
1 Jk = eT

k , k = 1, . . . , n, provided
that Xii+1 6= 0, i = 1, . . . , n − 1; in such case HX is called Hessenberg algebra,
and for any a ∈ C

n there is a unique matrix in HX with first row aT which is
denoted by HX(a), i.e. HX(a) =

∑

k akJk.

Of course, by Proposition PC, any Hessenberg algebra HX admits also the
following representation

HX = {A ∈ C
n×n : AX = XA}.

Until now we have seen two examples of Hessenberg algebras, ξ-circulants
ξ 6= 0 (X = Pξ) and tau matrices (X = P0 + P T

0 ). Both can be simultaneously
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diagonalized by a suitable matrix. An example of Hessenberg algebra whose
matrices cannot be simultaneously diagonalized is HP0

, the space of all upper
triangular Toeplitz matrices. The matrix HP0

(a) is displayed here below

HP0
(a) =

















a1 a2 an

a1 a2

. . .
. . .

. . . a2

a1

















.

Even the matrix P0, i.e. the matrix generating the space, is not diagonalizable.
(We shall see, however, that HP0

can be embedded in the space of 2n × 2n
circulants, which are diagonalizable).

Note that when X = P0 or, more in general, when X = Pξ, the matrices Jk

are simply the powers of X , i.e. Jk = Xk−1. For example, for n = 3

J1 = I, J2 = X =





0 1 0
0 0 1
ξ 0 0



 , J3 = X2 =





0 0 1
ξ 0 0
0 ξ 0



 .

Hessenberg algebras make up a subclass of commutative matrix algebras of
the class of 1-spaces defined here below

Definition. L ⊂ Cn×n is said to be a 1-space if L = Span {J1, . . . , n} with Jk

such that eT
1 Jk = eT

k , k = 1, . . . , n.

An example of 1-space L which is not a Hessenberg algebra is the following

L = {
[

A JB
JB A

]

: A, B
n

2
× n

2
circulants}.

One can easily prove that L is a non commutative matrix algebra. An example
of 1-space which is not a matrix algebra is the set of all n×n symmetric Toeplitz
matrices (see the next section).

Toeplitz linear systems and displacement decompositions

A n×n Toeplitz matrix is a matrix of the form T = (ti−j)
n
i,j=1. In applications

often one has to solve Toeplitz linear systems Tx = b.
For example, here below is a 3 × 3 Toeplitz matrix:

T =





t0 t−1 t−2

t1 t0 t−1

t2 t1 t0



 .

An example of Toeplitz matrix T is the coefficient matrix of the linear system
arising when solving, by finite differences or by finite elements, the boundary
value differential problem −u” = f , u(a) = α, u(b) = β. In such case T is
symmetric and its first row is [2 − 1 0 · · · 0]. Another example, important is
applied probability, is T = (t|i−j|)n

i,j=1 with |t| (t ∈ C) less than 1.

Exercise. The vector space of all n×n symmetric Toeplitz matrices is a 1-space,
being (t|i−j|)

n
i,j=1 equal to the sum

∑n
k=1 tk−1Jk where the Jk are the symmetric
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Toeplitz matrices with first row eT
k . Prove that such 1-space is not a matrix

algebra.

In the framework of displacement theory it is possible to obtain some de-
compositions of T−1 involving matrices from Hessenberg algebras (or from more
general commutative h-spaces) of the type

T−1 =

α
∑

k=1

MkNk, 2 ≤ α ≤ 4.

Usually, the matrices Mk and Nk, appearing in such formulas, can be multi-
plied by a vector in O(n log2 n) arithmetic operations; thus fast direct solvers of
Toeplitz linear system naturally arise. Here below there is one example of such
formulas:

T−1 = L1U1 + L2U2. (GS)

The Lj and Uj are suitable lower and upper triangular Toeplitz matrices, i.e.
elements or transposed of elements from the Hessenberg algebra HP0

.

Remark. By the Gohberg-Semencul formula (GS), if the Lj and Uj are known (a
way to obtain them is indicated in []), then the matrix-vector product T−1b can
be computed in at most O(n log2 n) arithmetic operations. That is, assuming
preprocessing on T , the complexity of the problem of solving any Toeplitz system
Tx = b is at most O(n log2 n).

proof: it is enough to prove that any Toeplitz matrix (in particular the triangular
ones) can be multiplied by a vector by means of a finite number of discrete
Fourier transforms. The latter result is immediate if we observe that any n× n
Toeplitx matrix can be embedded into a (2n + k) × (2n + k), k ≥ 0, circulant
matrix; for example, if n = 3 we have

T =





t0 t−1 t−2

t1 t0 t−1

t2 t1 t0



 , C =

















t0 t−1 t−2 t2 t1
t1 t0 t−1 t−2 t2
t2 t1 t0 t−1 t−2

t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0

















(k = 0). It is clear that the vector T · z is the first part of the vector C

[

z

0

]

.

The above representation (GS) for the inverse of a Toeplitz matrix, which
can be very useful in order to solve Toeplitz linear systems efficiently [], follows
from the displacement decomposition formula stated in the following theorem

Theorem DD. Let X be a lower Hessenberg n × n matrix. Assume that Xij =
Xi+1,j+1, i, j = 1, . . . , n−1 (X has Toeplitz structure), and that b = Xii+1 6= 0,
and consider the (commutative) Hessenberg algebra HX generated by X (note
that HX is a 1-space).

Assume that A ∈ Cn×n is such that AX − XA =
∑α

m=1 xmyT
m. Then

bA = −
α

∑

m=1

HP0
(x̃m)T HX(ym) + bHX(AT e1) (DD)
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where, for z ∈ Cn, HP0
(z) is the upper triangular Toeplitz matrix with first

row zT , HX(z) is the matrix of HX with first row zT , and z̃ is the vector
[0 z1 · · · zn−1]

T .

Note: Besides DD several other displacement decompositions hold, which can
be general like DD, i.e. representing generic matrices A, or specialized for
centrosymmetric A (see []). Such decompositions yield formulas for the inverses
of Toeplitz, Toeplitz plus Hankel, and Toeplitz plus Hankel-like matrices useful
in order to solve Toeplitz plus Hankel-like linear systems. Recall that a Hankel
matrix is nothing else a matrix of the form JT where T is Toeplitz (the well
known Hilbert matrix is an example of Hankel matrix).

In order to prove Theorem DD, the following Lemma is fundamental.

Lemma []. Let L be a commutative 1-space of n × n matrices, i.e. L =
{
∑

k αkJk : αk ∈ C}, with Jk ∈ C
n×n such that eT

1 Jk = eT
k , JkJs = JsJk. Let

X be an element of L, and assume that A ∈ Cn×n is such that AX−XA = xyT .
Then xTL(y)T = 0T .

proof: note that the equality JkJs = JsJk implies eT
1 JkJs = eT

1 JsJk, eT
k Js =

eT
s Jk ∀ s, k, thus

xTL(y)T er = xT (
∑

k ykJk)T er = xT
∑

k ykJT
k er

= xT
∑

k ykJT
r ek = xT JT

r

∑

k ykek

= xT JT
r y =

∑

i,j xiyj [J
T
r ]ij

=
∑

i,j xiyj [Jr]ji =
∑

i,j [AX − XA]ij [Jr]ji

=
∑

i[(AX − XA)Jr]ii =
∑

i[(AJr)X − X(AJr)]ii
= tr ((AJr)X) − tr (X(AJr)) = 0

(recall that the two matrices MN and NM , M, N ∈ Cn×n, have the same
characteristic polynomial, even if (in case det(M) = det(N) = 0) MN and NM
might be not similar each other).

We now report a draft of the proof of Theorem DD (for a more detailed
proof see []). In order to obtain the equality (DD), which is of the type

bA = E + bHX(AT e1),

it is enough to prove that

EX − XE = (bA)X − X(bA), (∗ ∗ ∗)

and to observe that the first row of E is null. In fact, the above equality implies
(bA−E)X −X(bA−E) = 0, and thus bA−E ∈ HX . The Lemma, applied for
L = HX , is fundamental in proving (***).

A matrix algebra which is not a 1-space: the class of spaces in V

Remember that a matrix A is said symmetric if AT = A (aji = aij), skewsym-
metric if AT = −A (aji = −aij) and persymmetric if AT = JAJ (aji =
an+1−i,n+1−j).

11



Consider a 6 × 6 symmetric (−1)-circulant matrix A ∈ CS
−1,

A =

















a0 a1 a2 0 −a2 −a1

a1 a0 a1 a2 0 −a2

a2 a1 a0 a1 a2 0
0 a2 a1 a0 a1 a2

−a2 0 a2 a1 a0 a1

−a1 −a2 0 a2 a1 a0

















,

a 6 × 6 skewsymmetric (−1)-circulant matrix B ∈ CSK
−1 , and the matrix JB,

B =

















0 b1 b2 b3 b2 b1

−b1 0 b1 b2 b3 b2

−b2 −b1 0 b1 b2 b3

−b3 −b2 −b1 0 b1 b2

−b2 −b3 −b2 −b1 0 b1

−b1 −b2 −b3 −b2 −b1 0

















, JB =

















−b1 −b2 −b3 −b2 −b1 0
−b2 −b3 −b2 −b1 0 b1

−b3 −b2 −b1 0 b1 b2

−b2 −b1 0 b1 b2 b3

−b1 0 b1 b2 b3 b2

0 b1 b2 b3 b2 b1

















.

The vector space γ of all matrices of the type A + JB has dimension equal to
6 (recall that dim(A + JB) = dim(A) + dim(JB) − dim(A ∩ JB)).

We now show that there is not a basis {Jk} for γ such that eT
1 Jk = eT

k ,
k = 1, 2, 3, 4, 5, 6, i.e. γ is not a 1-space. Note that

eT
1 (A + JB) = [(a0 − b1)(a1 − b2)(a2 − b3)(−b2)(−a2 − b1)(−a1)],

so, the equality eT
1 (A + JB) = eT

2 is satisfied if and only if

a0 − b1 = 0, a1 − b2 = 1, a2 − b3 = 0, −b2 = 0, −a2 − b1 = 0, −a1 = 0.

Since we have both the conditions b2 = 0 and b2 = −1, a matrix J2 ∈ γ such
that eT

1 J2 = eT
2 cannot exist.

However, there exists a basis {Jk} of γ satisfying the equalities (e1+e6)
T Jk =

eT
k , k = 1, 2, 3, 4, 5, 6. For example, a matrix J2 ∈ γ with the property (e1 +

e6)
T J2 = eT

2 is obtained as follows. Note that

eT
6 (A + JB) = [(−a1)(−a2 + b1)(b2)(a2 + b3)(a1 + b2)(a0 + b1)],

so, for the sum of the first and of the sixth rows of A + JB, we obtain the
formula

(e1 + e6)
T (A + JB)

= [(a0 − b1 − a1)(a1 − b2 − a2 + b1)(a2 − b3 + b2)(−b2 + a2 + b3)(−a2 − b1 + a1 + b2)(−a1 + a0 + b1)].

Thus the condition (e1 + e6)
T (A + JB) = eT

2 is satisfied if and only if the
following system of equations has solution

a0 − b1 − a1 = 0, a1 − b2 − a2 + b1 = 1,
a2 − b3 + b2 = 0, −b2 + a2 + b3 = 0,
−a2 − b1 + a1 + b2 = 0, −a1 + a0 + b1 = 0,

and such system has the unique solution a0 = a1 = 1
2 , a2 = 0, b2 = b3 = − 1

2 ,
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b1 = 0. The matrix J2 ∈ γ such that (e1 +e6)
T J2 = eT

2 is displayed here below:

J2 =

















1
2 1 1

2
1
2 0 − 1

2
1 1 1 0 0 0
1
2 1 1

2
1
2 0 − 1

2
1
2 0 1

2
1
2 0 − 1

2
0 0 0 0 0 0
− 1

2 0 − 1
2 − 1

2 0 1
2

















.

Analogously, one obtains the other Jk such that (e1 + e6)
T Jk = eT

k :

J1 =

















1 1
2

1
2

1
2

1
2 0

1
2 1 1

2
1
2 0 − 1

2
1
2

1
2 1 0 − 1

2 − 1
2

1
2

1
2 0 0 − 1

2 − 1
2

1
2 0 − 1

2 − 1
2 0 − 1

2
0 − 1

2 − 1
2 − 1

2 − 1
2 0

















, J3 =

















1
2

1
2 1 0 − 1

2 − 1
2

1
2 1 1

2
1
2 0 − 1

2
1 1

2
1
2

1
2

1
2 0

0 1
2

1
2

1
2

1
2 0

− 1
2 0 1

2
1
2 0 1

2
− 1

2 − 1
2 0 0 1

2
1
2

















,

(a1 = a2 = 0, a0 = 1
2 , b2 = b3 = − 1

2 , b1 = − 1
2 ), (a0 = a1 = a2 = 1

2 , b1 = b2 = 0,
b3 = − 1

2 ),

J4 =

















1
2

1
2 0 0 − 1

2 − 1
2

1
2 0 1

2
1
2 0 − 1

2
0 1

2
1
2

1
2

1
2 0

0 1
2

1
2

1
2

1
2 1

− 1
2 0 1

2
1
2 1 1

2
− 1

2 − 1
2 0 1 1

2
1
2

















, J5 =

















1
2 0 − 1

2 − 1
2 0 − 1

2
0 0 0 0 0 0
− 1

2 0 1
2

1
2 0 1

2
− 1

2 0 1
2

1
2 1 1

2
0 0 0 1 1 1
− 1

2 0 1
2

1
2 1 1

2

















,

(a0 = a1 = a2 = 1
2 , b1 = b2 = 0, b3 = 1

2 ), (a0 = a1 = 1
2 , a2 = 0, b2 = b3 = 1

2 ,
b1 = 0),

J6 =

















0 − 1
2 − 1

2 − 1
2 − 1

2 0
− 1

2 0 − 1
2 − 1

2 0 1
2

− 1
2 − 1

2 0 0 1
2

1
2

− 1
2 − 1

2 0 1 1
2

1
2

− 1
2 0 1

2
1
2 1 1

2
0 1

2
1
2

1
2

1
2 1

















.

(a1 = a2 = 0, a0 = 1
2 , b1 = b2 = b3 = 1

2 ).
Of course γ = Span {J1, J2, J3, J4, J5, J6} (the Jk are linearly independent!).

The matrix
∑

k akJk is denoted by γ(a). Note that (e1 + e6)
T γ(a) = aT , so

γ(a) is called the matrix of γ whose (e1 + e6)-row is aT .

More in general, one can easily prove that the set γ = CS
−1 + JCSK

−1 , CS
−1

n×n symmetric (−1)-circulants, CSK
−1 n×n skewsymmetric (−1)-circulants, is a

vector space of dimension n, and is a commutative matrix algebra. Moreover, it
is a 1-space if and only if n is one of the integers {3, 4, 5, 7, 8, 9, 11, 12, 13, 15, . . .};
for the remaining values of n, i.e. for n = 2 + 4s s ∈ Z, no row of a matrix
A + JB of γ determines A + JB, that is, there is no index h for which there
exists a basis {Jk} of γ with the property eT

h Jk = eT
k . Instead, for all n the sum

of the first and of the nth row of A + JB determines A + JB, i.e. there exists
a basis {Jk} of γ with the property (e1 + en)T Jk = eT

k .
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The matrices of γ can be simultaneously diagonalized by a fast discrete
transform. More precisely, for any value of n the following equality holds:

γ = {Gd(z)G−1 : z ∈ Cn},
Gij = 1√

n

(

cos (2i−1)(2j−1)π
2n + sin (2i−1)(2j−1)π

2n

)

, i, j = 1, . . . , n

(see []). Note that the matrix G is real, symmetric, persymmetric and uni-
tary. The fact that the matrix-vector product Gz can be computed in at
most O(n log2 n) arithmetic operations follows from the representation of Gn,
Gn := G, stated in Exercise G.

Note that for n = 6 the matrix G has ten zeros among its entries, and that
these zeros are positioned as follows:

G =

















0
0 0 0

0
0

0 0 0
0

















.

Thus each of the vectors GT ek, k = 1, . . . , 6, has at least one zero entry, i.e.
the matrix d(GT ek)−1 is never well defined. The latter assertion is yet true
whenever n = 2 + 4s s ∈ Z. In other words, γ can be represented as

γ = {Gd(GT z)d(GT ek)−1G−1 : z ∈ C
n}.

if and only n 6= 2 + 4s s ∈ Z (for such n one can choose k = 1).
However, as one may guess from the above discussion (detailed, for n = 6),

it can be easily shown that [GT (e1 + en)]k 6= 0 ∀ k and ∀n. So, we have the
following representation for γ

γ = {Gd(GT z)d(GT (e1 + en))−1G−1 : z ∈ C
n}

valid for all n (also for n = 2+4s where d(GT ek) are not invertible). The latter
formula confirms the fact that the matrices of γ are uniquely defined by the
sum of their 1st and nth rows; in particular, since the sum of the first and of
the nth row of the matrix Gd(GT a)d(GT (e1 + en))−1G−1 is equal to aT , we
can say that such matrix is exactly the matrix γ(a) (already defined above for
n = 6), i.e. the matrix of γ whose (e1 + en)-row is aT .

It is now natural to introduce a class of spaces which include (besides the
1-spaces, like the Hessenberg algebras) also spaces like the algebra γ.

Definition. A subset L of Cn×n is said to be a space in V, if L = Span {J1, . . . , Jn}
with vT Jk = eT

k for some v ∈ Cn. Given z ∈ Cn, the matrix
∑

k zkJk ∈ L
is denoted by L(z). Since vTL(z) = zT , L(z) is called the matrix of L whose
v-row is zT .

Example. L = sd M = {Md(z)M−1 : z ∈ Cn} is in V since

L = Span {J1, . . . , Jn}, Jk = Md(MT ek)d(MT v)−1M−1,

for any vector v such that [MT v]i 6= 0 ∀ i, and

vT Jk = vT Md(MT ek)d(MT v)−1M−1 = eT
k Md(MT v)d(MT v)−1M−1 = eT

k .
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Note that L(z) = Md(MT z)d(MT v)−1M−1.

A matrix X ∈ Cn×n is said to be non derogatory if the condition p(X) = 0,
p polynomial, implies ∂p ≥ n. Note that by the Cailey-Hamilton theorem the
characteristic polynomial of X is null in X . So, X is non derogatory if and only
if the set {p(X)} of all polynomials in X has dimension n. In [] it is stated the
following result, which proves that V is a wide class of spaces of matrices.

Theorem ND. Let X be a n × n matrix with complex entries. Then X is non
derogatory if and only if {p(X)} := {p(X) : p polynomials} is in V.

The Proposition here below collects several properties of the spaces in V.
They will be used (in the next section) in order to prove important properties
of the best least squares fit in L of a matrix A, holding for all spaces L of a
particular subclass of V.

Proposition V (properties of spaces in V). Let L be a space in V, i.e. L =
Span {J1, . . . , Jn} with vT Jk = eT

k for some v ∈ Cn.

(1) If X ∈ L and vT X = 0T , then X = 0, thus vT X = vT Y , X, Y ∈ L,
implies X = Y

proof: 0T = vT X = vT
∑

k αkJk =
∑

k αke
T
k = [α1 · · · αn] ⇒ αk = 0 ∀ k.

(2) If JiX ∈ L, X ∈ Cn×n, then JiX =
∑

k[X ]ikJk

proof: there exist αk such that JiX =
∑

k αkJk; multiplying the latter identity
by vT we have

eT
i X = vT JiX =

∑

k

αke
T
k = [α1 · · · αn]

which implies αk = [X ]ik.

(3) Let Pk ∈ Cn be defined by eT
s Pk = eT

k Js (note that eT
k = vT Jk =

∑

i vie
T
i Jk =

∑

i vie
T
k Pi = eT

k

∑

i viPi, and thus
∑

vkPk = I). Then the follow-
ing assertions are equivalent:

(i) L is closed under matrix multiplication
(ii) JiJj =

∑

k[Jj ]ikJk ∀ i, j
(iii) PrJj = JjPr ∀ r, j
(iv) PkPr =

∑

i[Pr]kiPi

proof: The implication (i) ⇒ (ii) follows from (2) for X = Jj . The opposite
implication is obvious. The fact that conditions (ii) and (iii) are equivalent
follows by taking the (r, s) entry of the equality in (ii):

eT
i PrJjes = eT

r JiJjes =
∑

k

[Jj ]ik[Jk]rs =
∑

k

[Jj ]ik[Pr]ks = [JjPr]is.

The fact that conditions (iii) and (iv) are equivalent follows from the identities:

[PkPr]ms = [JmPr]ks = [PrJm]ks = [JkJm]rs =
∑

i

[Jk]ri[Jm]is =
∑

i

[Pr]ki[Pi]ms.

(3.5) If I ∈ L, then
∑

i viJi = I and vT Pk = eT
k , i.e. also the space

Span {P1, . . . , Pn} is in V (with the same v)
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proof: both I and
∑

i viJi have vT as v-row, and both, by assumption, are in
L, so they must be equal; moreover, we have

vT Pk =
∑

i

vie
T
i Pk =

∑

i

vie
T
k Ji = eT

k

∑

i

viJi = eT
k .

(4) If L is closed under matrix multiplication, then

L(L(z)T z′) = L(z′)L(z), ∀ z, z′ ∈ C
n

proof: since L is closed, the matrix L(z′)L(z) is in L; moreover, its v-row is

z′TL(z); the thesis follows from the fact that also L(L(z)T z′) is the matrix of

L whose v-row is z′TL(z).

(5) Assume I ∈ L and L closed under matrix multiplication. Then X ∈ L
is non singular if and only if ∃ z ∈ Cn such that zT X = vT ; in this case
X−1 = L(z)

proof: by inspecting the kth row of the matrix L(z)X , and applying properties
(3) and (3.5), we obtain the identities

eT
k L(z)X = eT

k

∑

s

zsJsX =
∑

s

zse
T
s PkX = zT PkX = zT XPk = vT Pk = eT

k ,

or, equivalently, the equality L(z)X = I , which implies that X is non singular
and X−1 = L(z).

The best least squares fit to A in L ⊂ Cn×n

Given a subspace L ⊂ Cn×n and a n × n matrix A, it is well defined LA, the
projection on L of A. In the following theorem we state some assumptions on L
(in particular we consider n-dimensional subspaces of C

n×n) which assure that
LA is hermitian whenever A is, and that the eigenvalues of LA are bounded by
those of A. Such assumptions imply that L ∈ V.

Theorem LA. Assumptions:
L ⊂ Cn×n, I ∈ L, L = Span {J1, . . . , Jn} with Jk such that

JH
i Jj =

n
∑

k=1

[Jk]ijJk, i, j = 1, . . . , n. (∗)

A ∈ Cn×n.

LA ∈ L, ‖A −LA‖F ≤ ‖A − X‖F , ∀X ∈ L (such matrix LA is well defined
since C

n×n is a Hilbert space with respect the norm ‖ · ‖F induced by the inner
product (A, B)F =

∑

ij aijbij and L is a subspace of Cn×n).

Thesis: If A = AH , then LA = LH
A and min λ(A) ≤ λ(LA) ≤ max λ(A).

Note: if A is real symmetric, then LA is in general hermitian; it is real symmetric
under the further condition that L is spanned by real matrices (prove it!).

Note: we shall see that the hypotheses of Theorem LA are satisfied by spaces of
the type {Md(z)M−1 : z ∈ Cn} if MHM is diagonal and its diagonal entries are
positive; however, the same hypotheses can be satisfied also by non commutative
spaces (we shall see an example, for others see []), so also in the latter cases we
can say that the conclusions of Theorem LA hold.
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Applications of Theorem LA. If the conditions of Theorem LA are satisfied, then
LA is positive definite (i.e. LA = LH

A and z ∈ Cn z 6= 0 ⇒ zHLAz positive)
whenever A is positive definite. So, in order to solve the linear system

Ax = b, A positive definite

we can solve the equivalent system

L−1
A Ax = L−1

A b

whose coefficient matrix has real and positive eigenvalues, often better dis-
tributed than those of A (this results, for example when solving Ax = b it-
eratively, in less iterations).

Moreover, if the conditions of Theorem LA are satisfied and L is spanned by
real matrices, then then LA is real positive definite (i.e. LA = LT

A, LA ∈ Rn×n,
and z ∈ Cn z 6= 0 ⇒ zHLAz positive) whenever A is real positive definite. That
is, the following implications hold

Bk real positive definite ⇒
LBk

real positive definite ⇒
ϕ(LBk

, sk,yk) real positive definite ⇒
Lϕ(LBk

,sk,yk) real positive definite

(provided sT
k yk is positive), and thus both the S and NS LQN search directions,

dk+1 = −ϕ(LBk
, sk,yk)−1∇f(xk+1) and dk+1 = −L−1

ϕ(LBk
,sk,yk)∇f(xk+1),

are well defined descent directions in xk+1 for the function f : Rn → R (see []
for the definitions of Bk, sk, yk, ϕ, S and NS LQN).

proof (of Theorem LA): The matrix LA =
∑

s αsJs is uniquely defined by the
following condition

(X, A −LA)F = 0, X ∈ L
or, equivalently, by the n conditions (Jk, A −

∑

s αsJs)F = 0, k = 1, . . . , n,
which can be rewritten as follows

n
∑

s=1

(Jk, Js)F αs = (Jk , A)F , k = 1, . . . , n.

In other words we have the formula

LA =
∑

s

[B−1c]sJs, Bks = (Jk, Js)F , ck = (Jk, A)F , k, s = 1, . . . , n.

Remark. B is positive definite, i.e. B = B∗ and zHBz > 0 ∀ z ∈ C
n z 6= 0.

proof: Bks = (Jk, Js)F = (Js, Jk)F = Bsk, that is, B is a hermitian matrix.
Moreover, since 0 < (

∑

s zsJs,
∑

s zsJs)F =
∑

k,s zkzs(Jk, Js)F = zHBz when-
ever z 6= 0, the matrix B is also positive definite.

Remark. Let vk ∈ C be such that I =
∑

k vkJk (such vk exist because I ∈ L).
Then the vector v whose entries are the vk satisfies the equalities vT Jk = eT

k ,
thus L ∈ V and all results stated for spaces in V hold for our space L.
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proof: Multiply (*) by vi and sum on i:

viJ
H
i Jj =

∑

k

vi[Jk]ijJk, Jj =
∑

k

(
∑

i

vi[Jk]ij)Jk =
∑

k

(vHJkej)Jk.

This implies vHJkej = 0 if k 6= j and vHJkej = 1 if k = j, i.e. vT Jk = eT
k .

As an immediate consequence of the above two Remarks, we have that LA

is the matrix of L whose v-row is (B−1c)T ,

LA =
∑

s

[B−1c]sJs = L(B−1c),

and, moreover,

LA = L(B−1c) = L((BH )−1c) = L((B
−1

)T c).

Remark. L is closed under conjugate transposition.

proof: multiply (*) by vj and sum on j:

JH
i vjJj =

∑

k

vj [Jk]ijJk, JH
i =

∑

k

(
∑

j

vj [Jk]ij)Jk ⇒ JH
i ∈ L.

The latter Remark yields part of the thesis of Theorem LA, because it implies
that LH

A ∈ L, and this fact together with the equalities

‖A −LA‖F = ‖AH −LH
A ‖F = ‖A −LH

A ‖F

(remember that our A is hermitian!) and the unicity of the best approximation
of A, yield the identity LA = LH

A . In other words, under our conditions on L
the projection on L of a hermitian matrix is hermitian too.

Remark. L is closed under matrix multiplication (L is a matrix algebra).

proof: the set {JH
i } forms an alternative basis for L (prove it!), thus there exist

z
(s)
i ∈ C such that Js =

∑

i z
(s)
i JH

i . Multiply (*) by z
(s)
i and sum on i,

z
(s)
i JH

i Jj =
∑

k

z
(s)
i [Jk]ijJk, JsJj =

∑

k

(
∑

i

z
(s)
i [Jk]ij)Jk,

to observe that JsJj ∈ L.

Remark. B =
∑

k tr (Jk)Jk, thus B ∈ L, and, since B is non singular (it is

positive definite!), by the result V (5) also the matrix B
−1

is in L.

proof: by equality (*) we have:

Bij = (Ji, Jj)F =
∑

r,t [Ji]rt[Jj ]rt =
∑

r,t[J
H
i ]tr[Jj ]rt

=
∑

t[J
H
i Jj ]tt =

∑

t

∑

k [Jk]ij [Jk]tt =
∑

k tr (Jk)[Jk]ij .

The latter two Remarks, together with V (4), let us rewrite again LA as
follows

LA = . . . = L((B
−1

)T c) = L(c)B
−1

.

Now note that there exists a hermitian matrix M such that M 2 = B
−1

, and
that the matrices LA and ML(c)M have the same eigenvalues (by the last

18



representation of LA they are similar!). So, if λ(LA) is the generic eigenvalue of
LA, then there exists x ∈ Cn ‖x‖2 = 1 such that

λ(LA) = xHML(c)Mx = (Mx)HL(c)(Mx).

Remark. If z ∈ Cn, then zHL(c)z =
∑

k(P H
k z)HA(P H

k z).

proof: here again equality (*) is fundamental:

zHL(c)z = zH (
∑

k(Jk, A)F Jk)z

=
∑n

i,j=1 zizj

∑n
r,t=1 art

∑

k[Jk]ij [Jk]rt

=
∑n

i,j=1 zizj

∑n
r,t=1 art[JH

i Jj ]rt

=
∑n

r,t=1 art

∑n
i,j=1 zizj

∑

k [JH
i ]rk[Jj ]kt

=
∑

k

∑

r,t art(
∑

i zi[P H
k ]ri)(

∑

j zj [P
H
k ]tj)

=
∑

k

∑

r,t art(P H
k z)r(P

H
k z)t.

By the above Remark we have:

λ(LA) =
∑

k(P H
k Mx)HA(P H

k Mx) ≤ max λ(A)
∑

k(P H
k Mx)H (P H

k Mx)
= max λ(A)xHM(

∑

k PkP H
k )Mx.

But the matrix in the brackets is nothing else the matrix B:

Remark. B =
∑

k PkP H
k

proof:

Bij = (Ji, Jj)F =
∑

r,s

[Ji]rs[Jj ]rs =
∑

r,s

[Pr]is[Pr]js =
∑

r,s

[Pr]is[P
T
r ]sj =

∑

r

[PrP
T
r ]ij .

We can now conclude one of the inequalities (stated in Theorem LA) satisfied
by the eigenvalues of A and LA:

λ(LA) ≤ max λ(A)xHMM−2Mx = max λ(A)xHx = max λ(A).

Analogously, one can prove that λ(LA) ≥ min λ(A). �

Exercise DG. Prove that the dihedral group space

L = {
[

X JY
JY X

]

: X, Y
n

2
× n

2
circulants}

satisfies the hypothesis of Theorem LA, i.e. I ∈ L, L = Span {J1, . . . , Jn} with
Jk linearly independent such that

JH
i Jj =

n
∑

k=1

[Jk]ijJk, i, j = 1, . . . , n.

Thus, the projection LA on L is hermitian and such that min λ(A) ≤ λ(LA) ≤
maxλ(A) whenever A is hermitian. Note that L is not commutative.

Proposition cV(properties of commutative spaces in V) [mitia]. Let L be a space
in V, i.e. L = Span {J1, . . . , Jn} with vT Jk = eT

k for some v ∈ Cn. Assume
that L is commutative. Then
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(1) eT
i Jj = eT

j Ji, ∀ i, j, and thus Jk = Pk

proof: JiJj = JjJi ⇒ vT JiJj = vT JjJi, and the definition vT Jk = eT
k yields

the thesis.

(2) zTL(z′) = z′TL(z)

proof: by (1) we have

zTL(z′) =
∑

i

zie
T
i

∑

k

z′kJk =
∑

i

zi

∑

k

z′ke
T
k Ji =

∑

k

z′ke
T
k

∑

i

ziJi.

(3) I = L(v) ∈ L
proof: note that L(v) =

∑

viJi ∈ L and eT
k L(v) =

∑

i vie
T
i Jk = vT Jk = eT

k ,
so I = L(v) ∈ L.

(4) L is closed under matrix multiplication

proof: from (1) we have that Jk = Pk, thus PkJs = JkJs = JsJk = JsPk, which
is one of the necessary and sufficient conditions for the multiplicative closure.

Example of commutative L ∈ V. Let M be a non singular n × n matrix with
complex entries, and set L = sd M = {Md(z)M−1 : z ∈ Cn}. Note that
L ∈ V, in fact if v is any vector such that [MT v]k 6= 0, ∀ k, then the matrices
Jk = Md(MT ek)d(MT v)−1M−1 satisfy the identities vT Jk = eT

k and span L.
We have, for L, the following alternative representation:

L = {Md(MTz)d(MT v)−1M−1 : z ∈ C
n}.

It is clear that the matrix of L whose v-row is zT is

L(z) = Md(MT z)d(MT v)−1M−1.

Obviously, L is commutative.

Proposition chV (properties of commutative, closed under conjugate transposi-
tion spaces in V) [stefano]. Let L be a space in V, i.e. L = Span {J1, . . . , Jn}
with vT Jk = eT

k for some v ∈ Cn. Assume that L is commutative and closed
under conjugate transposition. Then, besides the above cV (1),(2),(3),(4), we
have

JH
i Jj =

∑

k

[Jk]ijJk, i, j = 1, . . . , n

proof: since JH
i ∈ L and L is commutative, one has JH

i Jj = JjJ
H
i ; since L is

closed under matrix multiplication and JH
i ∈ L, one has that JjJ

H
i ∈ L; by V

(2), it follows that

JH
i Jj = JjJ

H
i =

∑

k

[JH
i ]jkJk =

∑

k

[Ji]kjJk =
∑

k

[Jk]ijJk,

where in the latter identity we have used property cV(1).

Example of commutative, closed under conjugate transposition L ∈ V. Let M
be a non singular n × n matrix with complex entries, and set L = sd M =
{Md(z)M−1 : z ∈ C

n}. We already know that L is a space in V which is
commutative. We want to prove that L is closed under conjugate transposition
if and only if MHM is diagonal with positive diagonal entries. Moreover, in
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such case there is a diagonal matrix d(w) w ∈ Cn such that M̃ = Md(w) is
unitary and L = {M̃d(z)M̃−1 : z ∈ Cn}.

One implication is easy: assume MHM = D, Dii positive ∀ i, Dij = 0 i 6= j;
then

(Md(z)M−1)H = (MH)−1d(z)MH = MD−1d(z)DM−1 = Md(z)M−1 ∈ L.

Now assume that L is closed under conjugate transposition. Thus, for any
z ∈ Cn there exists w ∈ Cn such that (Md(z)M−1)H = Md(w)M−1. But this
implies

d(z)C = Cd(w), C = MHM,

or, equivalently, cijzi = cijwj . Assume the zi distinct. Then the identities
ci1zi = ci1w1, i = 1, . . . , n, imply ci1 = 0 for all i except one of them, say
i1 (otherwise, ci1 6= 0 and ck1 6= 0, i 6= k, would imply w1 = zi = zk!).
Analogously, the identities ci2zi = ci2w2, i = 1, . . . , n, imply ci2 = 0 for all i
except one of them, say i2, and such i2 must be different from i1 otherwise C
would be singular. Proceeding in this way one concludes that

C = DR, D diagonal, R permutation.

The fact that C is hermitian implies that the permutation matrix R must be
symmetric. The fact that the diagonal entries of C cannot be zero implies that
R is the identity. Finally, the fact that C is positive definite implies that Dii

are real and positive. Let us prove the last assertion. For M̃ = Md(w) we have

M̃HM̃ = d(w)MHMd(w) = d(w)Dd(w).

Choose |wi| = 1/
√

Dii; then M̃HM̃ = I and, for any z ∈ Cn, Md(z)M−1 =
Md(w)d(z)d(w)−1M−1 = M̃d(z)M̃−1 = M̃d(z)M̃H .

Question. Find an example of L satisfying the assumptions of Proposition chV

which is not of the type {Md(z)M−1 : z ∈ Cn}, MHM diagonal with positive
diagonal entries.

Remark. If L = {Ud(z)U∗ : z ∈ Cn} where U is a unitary matrix, then the
thesis of Theorem LA can be proved very simply as follows. Since ∀ z ∈ Cn

‖A − Ud(z)U∗‖F = ‖U∗AU − d(z)‖F ,

it is clear that ‖A−Ud(z)U∗‖F is minimum for zi = (U∗AU)ii. So, the following
formula for LA holds

LA = U diag ((U∗AU)ii)U
∗

from which it immediately follows the assertion: A = A∗ ⇒ LA hermitian and
min λ(A) ≤ λ(LA) ≤ max λ(A). As an application compute LxyT , x, y ∈ C

n.

Other remarks/exercises on spaces in V

Exercise. Prove that there are (besides I) infinite matrices in the algebra γ
whose first row is eT

1 .

Exercise. Consider the matrix in Exercise G. Prove that the sum of its first
and last rows is a vector with all entries nonzero (i.e. γ is a space in V with
v = e1 + en)
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proof: for j = 1, . . . , n we have

[G]1j + [G]nj = (cos (2j−1)π
2n + sin (2j−1)π

2n )

+(cos (2n−1)(2j−1)π
2n + sin (2n−1)(2j−1)π

2n )

= (cos (2j−1)π
2n + sin (2j−1)π

2n )

+(cos((2j − 1)π − (2j−1)π
2n ) + sin((2j − 1)π − (2j−1)π

2n ))

= cos (2j−1)π
2n + sin (2j−1)π

2n

− cos (2j−1)π
2n + sin (2j−1)π

2n = 2 sin (2j−1)π
2n 6= 0.

Exercise. Prove that any n-dimensional space L ⊂ Cn×n with the property
Aej = 0 ∀A ∈ L cannot be in V. (Suggestion: show that Jj ∈ L such that
vT Jj = eT

j does not exist).

Exercise. Let L be in V and closed under matrix multiplication. Prove that
(i) If the matrices in L are symmetric, then L is commutative
(ii) If the matrices in L are persymmetric, then L is commutative

proof: by the assumptions on L, we have, in the symmetric case,

JsJk = JT
s JT

k = (JkJs)
T = JkJs,

and, in the persymmetric case,

JsJk = JsJJJk = JJT
s JT

k J = J((JkJs)
T )J = J(JJkJsJ)J = JkJs.

Question. And if we start from the more general definition L ⊂ Cn×n, L =
Span {J1, . . . , Jn} with vT Jk = uk for some v,uk ∈ Cn such that uH

k us = 0
k 6= s ?

EXERCISE.

Pξ =















0 1
0 1

. . .

1
ξ 0















, ξ 6= 0

(1) If ρn = ξ and ωn = 1, then

Pξ









1
ρωj

ρn−1ω(n−1)j









= ρωj









1
ρωj

ρn−1ω(n−1)j









, j = 0, 1, . . . , n − 1.

Thus, if W = (ωij)n−1
i,j=0 and D1ρn−1 = diag (ρi, i = 0, . . . , n − 1), then

Pξ(D1ρn−1W ) = (D1ρn−1W )ρD1ωn−1 , D1ωn−1 = diag (ωj , j = 0, . . . , n − 1).

(2) If, moreover, |ξ| = 1 and ωi 6= 1 0 < i < n, then U = 1√
n
D1ρn−1W is unitary

and

Cξ := HPξ
= {∑n

k=1 zkP k−1
ξ : zk ∈ C}

= {Ud(z)U∗ : z ∈ Cn} = {Ud(UT z)d(UT e1)
−1U−1 : z ∈ Cn}.
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The matrix Cξ(a) :=
∑n

k=1 akP k−1
ξ = Ud(UT a)d(UT e1)

−1U−1 is the ξ-circulant

matrix whose first row is aT :

Cξ(a) =













a1 a2 an−1 an

ξan a1 an−1

ξa3 a2

ξa2 ξa3 ξan a1













.

EXERCISE.
Set X = P1 + P T

1 .
1) Find a convenient representation for the set CS of all polynomials in X ,

and deduce the dimension of CS .
2) Prove that any matrix of the form C1 + JC2, C1, C2 circulants, J anti-

identity, belongs to the space {A ∈ Cn×n : AX = XA}. Deduce a lower bound
for the dimension of {A ∈ Cn×n : AX = XA}.

Repeat the exercise for X = P−1 + P T
−1.

EXERCISE
1) Write precisely an algorithm that computes the matrix-vector product

T · z, T = (ti−j)
n
i,j=1, in O(n log2 n) arithmetic operations.

2) Write an algorithm that computes the matrix-vector product (T−1) · z in
O(n log2 n) arithmetic operations (after preprocessing on T ).

EXERCISE
Do exercise DG

EXERCISE Prove Theorem DD

EXERCISE Let T be a n × n Toeplitz matrix
1) Prove that TP0−P0T has rank at most 2, and write the Gohberg-Semencul

formula for T−1

2) Let H be a Hankel matrix, i.e. H = (hi+j−2)
n
i,j=1, and show that (T +

H)(P0 + P T
0 ) − (P0 + P T

0 )(T + H) has rank at most 4
3) Write the matrix of the algebra τ whose first row is [2 − 1 0 0 · · · 0],

and observe that it is a Toeplitz matrix. Call A such matrix and compute A−1

explicitly by using the fact that A−1 ∈ τ (so, it is sufficient to compute its first
row). Is A−1 a Toeplitz matrix ?

4) Do exercise Ttau

EXERCISE Under the assumptions of Theorem LA

1) prove the last of the following identities

LA = L(B−1c) = L(c)B
−1

= B
−1L(c)

(hint: find an expression of B in terms of the matrices Pk , eT
s Pk = eT

k Js ∀ s, k)
2) prove that B is positive definite (besides hermitian)

EXERCISE (0) Let L ∈ Cn×n, L = Span {J1, . . . , Jn} with vT Jk = eT
k for some

vector v (that is, L ∈ V). Assume that L is closed under matrix multiplication,
that I ∈ L, and that JH

i = αiJti
, |αi| = 1 ∀ i, for some ti ∈ {1, 2, . . . , n}.

(1) Prove that JH
i Jj =

∑

k [Jk]ijJk, ∀ i, j.
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(2) Assume that {1, 2, . . . , n} is a group with identity element 1. Prove that
the space

L = {A ∈ Cn×n : aij = asi,sj , ∀ i, j, s ∈ {1, . . . , n}}
= {A ∈ Cn×n : aij = a1,i−1j , ∀ i, j ∈ {1, . . . , n}}

satisfies the assumptions (0). (Any space L of this type is usually called group
matrix algebra; for example, circulants and the L in Exercise DG are group
matrix algebras).

(3) Prove that the space L spanned by the matrices J1 = I ,

J2 =









1
1

i

−i









, J3 =









1
−i

1
i









, J4 =









1
i

−i

1









,

satisfies the assumptions (0). Prove that L is not commutative.

EXERCISE Let T be a symmetric Toeplitz matrix.
(1) Compute the first row of CT where C is the space of circulant matrices
(2) Compute the first row of τT where τ is the space of tau matrices
(3) Compute the first row of LT where L is the space in the point (3) of the

previous exercise (so, n = 4)
(4) Compute the vector (e1 +e6)

T γT where γ is the space of all 6×6 gamma
matrices (i.e. assume n = 6).

REFERENCES

Linear Algebra Appl. 229 (1995), 49-99

Five rows of SIAM J. Matrix Anal. Appl. 21 (2000), 646-667

Linear Algebra Appl. 335 (2001), 1-54

For Hartley-type transforms and algebras (as G and γ) Linear Algebra Appl.
366 (2003), 65-85

For an intersection with prof. Ikramov research interests Computational
Math. and Mathematical Physics 38 (1998), 1026-1035

Acknowledgements To all the participants, Grazie! Prof

Solving EXERCISES:

CS
−1 + JCSK

−1 is a commutative matrix algebra. Assume Ai ∈ CS
−1, Bi ∈ CSK

−1 .
Note that Ai and Bi are also persymmetric. Then

(A0 + JB0)(A1 + JB1) = A0A1 + A0JB1 + JB0A1 + JB0JB1

= A0A1 + JA0B1 + JB0A1 + BT
0 B1.

Since A0A1 is (−1)-circulant and (A0A1)
T = AT

1 AT
0 = A1A0 = A0A1, A0B1

is (−1)-circulant and (A0B1)
T = BT

1 AT
0 = −B1A0 = −A0B1 (C−1 is closed

under matrix multiplication and is commutative), we have A0A1 ∈ CS
−1 and

A0B1 ∈ CSK
−1 .

Since BT
0 B1 is (−1)-circulant and (BT

0 B1)
T = BT

1 B0 = −B1B0 = −B1(−BT
0 ) =

B1B
T
0 = BT

0 B1, B0A1 is (−1)-circulant and (B0A1)
T = AT

1 BT
0 = −A1B0 =
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−B0A1 (C−1 is closed under transposition and matrix multiplication, and com-
mutative), we have BT

0 B1 ∈ CS
−1 and B0A1 ∈ CSK

−1 .

Proof of Theorem DD.

[
∑

HP0
(xm)T HX(ym)

]

X − X
[
∑

HP0
(xm)T HX(ym)

]

=
∑

[

HP0
(xm)T X − XHP0

(xm)T
]

HX(ym)
= b

∑
[

HP0
()T P0 − P0HP0

()T
]

HX(ym)

= b
∑

[









0
(xm)1

0 (xm)n−1 (xm)1









−









(xm)1

(xm)n−1 (xm)1
0 0









]

HX(ym)

= b
∑









−(xm)1

−(xm)n−1

0 (xm)n−1 (xm)1









HX(ym)

= b
∑

(−xmeT
1 + enxT

mJ)HX(ym)
= b

∑

(−xmyT
m + enxT

mHX(ym)T J) = . . .

Compute the first row of CT . Let Jk ∈ Cn×n be the circulant matrices with first
row eT

k , k = 1, . . . , n. Let us compute (B−1c)T with respect to such basis (i.e.
the first row of CA) when A is a symmetric Toeplitz matrix. So, we have

A = T =









t0 t1 tn−1

t1 t0
t1

tn−1 t1 t0









,

(J1, A)F = nt0, (J2, A)F = (n − 1)t1 + tn−1, (J3, A)F = (n − 2)t2 + 2tn−2,
(J4, A)F = (n − 3)t3 + 3tn−3, . . . (Jn, A)F = tn−1 + (n − 1)t1,

and thus

(Jk, A)F = (n − k + 1)tk−1 + (k − 1)tn−k+1, k = 1, . . . , n.

Since B = nI , we have B−1 = 1
nI , and

[B−1c]k =
1

n
((n − k + 1)tk−1 + (k − 1)tn−k+1), k = 1, . . . , n.

Compute the first row of τT . Let Jk ∈ C
n×n be the τ matrices with first row

eT
k , k = 1, . . . , n. Let us compute (B−1c)T with respect to such basis (i.e. the

first row of τA) when A is a symmetric Toeplitz matrix. So, we have

(J1, A)F = nt0, (J2, A)F = 2(n − 1)t1, (J3, A)F = (n − 2)t0 + 2(n − 2)t2,
(J4, A)F = 2(n − 3)t1 + 2(n − 3)t3, (J5, A)F = (n − 4)t0 + 2(n − 4)t2 + 2(n − 4)t4.

One can guess that

(Jk , A)F = (n − k + 1)[δk,ot0 + 2

[k/2]
∑

j=1

tk−2j+1], k = 1, . . . , n,
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where δk,o = 1 if k is odd and δk,o = 0 if k is even. Since B−1 = 1
2n+2 (3J1 −J3)

(prove such formula!), we have

(B−1c)1 = 1
2n+2 (3(J1, A)F − (J3, A)F ), (B−1c)2 = 1

2n+2 (2(J2, A)F − (J4, A)F ),

(B−1c)k = 1
2n+2 (−(Jk−2, A)F + 2(Jk, A)F − (Jk+2, A)F ),

(B−1c)n−1 = 1
2n+2 (−(Jn−3, A)F + 2(Jn−1, A)F ), (B−1c)n = 1

2n+2 (−(Jn−2, A)F + 3(Jn, A)F ).

It is not difficult to conclude that

(B−1c)1 = 1
n+1 ((n + 1)t0 − (n − 2)t2),

(B−1c)k = 1
n+1 ((n − k + 3)tk−1 − (n − k − 1)tk+1), k = 2, . . . , n − 1,

(B−1c)n = 1
n+1 (3tn−1).

Compute the sum of the first row and of the last row of γT . We know that

γT =
∑6

k=1[B
−1c]kJk = Gd(GT B−1c)d(GT (e1 + e6))

−1G−1,
(e1 + e6)

T γT = (B−1c)T , Bij = (Ji, Jj)F , ci = (Ji, T )F ,

where the Jk are the matrices in γ with the property (e1 + e6)
T Jk = eT

k ,
k = 1, . . . , 6 (they have been written explicitely above). So, we have to compute
the vector B−1c. Recall that we expect (from theory) that B, B−1 are matrices
in γ:

B = 3

















1 2 1 0 −1 −2
2 1 2 1 0 −1
1 2 1 2 1 0
0 1 2 1 2 1
−1 0 1 2 1 2
−2 −1 0 1 2 1

















, B−1 = 1
12

















−2 1 1 0 −1 −1
1 −2 1 1 0 −1
1 1 −2 1 1 0
0 1 1 −2 1 1
−1 0 1 1 −2 1
−1 −1 0 1 1 −2

















,

c =

















3t0
3t0 + 5t1 − t5

3t0 + 5t1 + 4t2 − 2t4 − t5
3t0 + 5t1 + 4t2 − 2t4 − t5

3t0 + 5t1 − t5
3t0

















.

Note that B, B−1 are symmetric (−1)-circulant matrices, which is a stronger
condition than the expected B, B−1 ∈ γ. Moreover, note that the vector c

is centrosymmetric; thus, since B−1 is centrosymmetric, i.e. JB−1 = B−1J
(it is both symmetric and persymmetric!), the vector B−1c is expected to be
centrosymmetric. In fact, we have

γT (e1 + e6) = B−1c =
1

12

















−6t0 + 5t1 + 4t2 − 2t4 − t5
8t2 − 4t4

6t0 + 5t1 − 4t2 + 2t4 − t5
6t0 + 5t1 − 4t2 + 2t4 − t5

8t2 − 4t4
−6t0 + 5t1 + 4t2 − 2t4 − t5

















.

Note that a γ matrix A + JB with (e1 + e6)
T (A + JB) centrosymmetric must

be in CS
−1; more precisely, the following implication holds:

(e1 + e6)
T (A + JB) = [z1 z2 z3 z3 z2 z1]

⇒ a2 = z3, a1 = z2 + z3, a0 = z1 + z2 + z3, bi = 0 ∀ i.
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In our case:

a2 =
1

12
(6t0+5t1−4t2+2t4−t5), a1 =

1

12
(6t0+5t1+4t2−2t4−t5), a0 =

1

12
(10t1+8t2−4t4−2t5)

But γT should coincide with the T.Chan (C1)T ! . . . is there something wrong
?

An alternative preconditioner for Toeplitz systems?
Consider the n − 2 × n − 2 τ matrix with first row [a1 a2 · · · an−2] and call it
τa1an−2

. For example

n = 5 : τa1a3
=





a1 a2 a3

a2 a1 + a3 a2

a3 a2 a1



 , n = 6 : τa1a4
=









a1 a2 a3 a4

a2 a1 + a3 a2 + a4 a3

a3 a2 + a4 a1 + a3 a2

a4 a3 a2 a1









, . . . .

Consider the n × n matrix

Aa1an−2
=





0 0T 0
0 τa1an−2

0

0 0T 0



 .

For example,

n = 5 : Aa1a3
=













0 0 0 0 0
0 a1 a2 a3 0
0 a2 a1 + a3 a2 0
0 a3 a2 a1 0
0 0 0 0 0













, n = 6 : Aa1a4
=

















0 0 0 0 0 0
0 a1 a2 a3 a4 0
0 a2 a1 + a3 a2 + a4 a3 0
0 a3 a2 + a4 a1 + a3 a2 0
0 a4 a3 a2 a1 0
0 0 0 0 0 0

















, . . . .

We want to find τAa1an−2
, i.e. the n × n τ matrix defined by the following

minimization property

‖τAa1an−2
− Aa1an−2

‖F = min{‖X − Aa1an−2
‖F : X ∈ τ, X n × n}.

Let Jk be the n×n τ matrices defined by the conditions eT
1 Jk = eT

k , k = 1, . . . , n,
and set τAa1an−2

= τ(z) :=
∑

k zkJk. We want to find z. We know that if

Bij = (Ji, Jj)F , ci = (Ji, Aa1an−2
)F , then z = B−1c.

For example for n = 5:

B =













5 0 3 0 1
0 8 0 4 0
3 0 9 0 3
0 4 0 8 0
1 0 3 0 5













, c =













3a1 + a3

4a2

3a1 + 3a3

4a2

3a3 + a1













, B−1 =
1

12













3 0 −1 0 0
0 2 0 −1 0
−1 0 2 0 −1
0 −1 0 2 0
0 0 −1 0 3













.

Then

z = B−1c =
1

6













3a1

2a2

a1 + a3

2a2

3a3
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n = 6:
Since Bij = (Ji, Jj) and B ∈ τ , one can easily obtain the first row of B and

write down B:

B =

















6 0 4 0 2 0
0 10 0 6 0 2
4 0 12 0 6 0
0 6 0 12 0 4
2 0 6 0 10 0
0 2 0 4 0 6

















, c =

















4a2 + 2a3

6a2 + 2a4

6a3 + 4a1

6a2 + 4a4

6a3 + 2a1

4a4 + 2a2

















, B−1 =
1

2 · 6 + 2

















3 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 0 −1 0
0 −1 0 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 3

















.

Then

z = B−1c =
1

7

















4a1

3a2

a1 + 2a3

2a2 + a4

3a3

4a4

















Exercise. Prove that

B−1 =
1

2n + 2
(3J1 − J3)

(first find B and w such that wT B = eT
1 , then B−1 = τ(w)).

By observing the z obtained for n = 5, n = 6 (see above), and in the cases
n = 7 and n = 8,

zT = 1
8 [5a1 4a2 a1 + 3a3 2a2 + 2a4 3a3 + a5 4a4 5a5],

zT = 1
9 [6a1 5a2 a1 + 4a3 2a2 + 3a4 3a3 + 2a5 4a4 + a6 5a5 6a6],

one can conjecture a formula for z in case n is generic:
Exercise. Prove that τAa1an−2

= τ(z) with

zT = 1
n+1

[

[0 0 a1 2a2 · · · (n − 4)an−4 (n − 3)an−3 (n − 2)an−2]

+ [(n − 2)a1 (n − 3)a2 (n − 4)a3 · · · 2an−3 an−2 0 0]
]

.
(∗∗)

APPLICATION. Let T = (t|i−j|)
n
i,j=1 be a symmetric Toeplitz matrix. It is

easy to realize that

T = τt0tn−1
− At2tn−1

, At2tn−1
=





0 0T 0
0 τt2tn−1

0

0 0T 0



 .

From the equality

T = τt0tn−1
− τAt2tn−1

+ τAt2tn−1
− At2tn−1

follows the inequality:

‖T − τT ‖F ≤ ‖τAt2tn−1
− At2tn−1

‖F = ‖T − (τt0tn−1
− τAt2tn−1

)‖F .
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However, the τ matrix τt0tn−1
− τAt2tn−1

could be for some reasons (. . .) a

preconditioner for T better than τT . Note that τAt2tn−1
= τ(z) where zT is

like in (**) but with ai replaced by ti+1, i = 1, . . . , n − 2.

Displacement decompositions.
Let L be in V, and X a matrix in L. Assume that L is commutative.

Denote by L(z) the matrix of L whose v-row is zT , and assume that L(z)T Q =
Q̃L(z), ∀ z ∈ Cn. (For example, the latter condition is satisfied with Q = Q̃ = I
if L is symmetric, or with Q = Q̃ = J if L is persymmetric).

Assume AX − XA =
∑

m xmyT
m. Then

∑

m

xT
mL(ym)T = 0T

(
∑

m xT
mL(ym)T ek = . . . = 0), and thus

AX − XA =
∑

m xmyT
m

=
∑

m xmvTL(ym)
=

∑

m xmwTL(w)−1L(ym)
=

∑

m xmwTL(ym)L(w)−1

=
∑

m xmwTL(ym)L(w)−1 − b
∑

m xT
mL(ym)T QL(w)−1

=
∑

m xmwTL(ym)L(w)−1 − b
∑

m xT
mQ̃L(ym)L(w)−1

=
∑

m(xmwT − bxT
mQ̃)L(ym)L(w)−1

=
∑

m(xmwT − bxT
mQ̃)L(L(w)T −1

ym)

(w must be chosen such that L(w) is non singular; it can be simply chosen
equal to v so that L(w) = I).

We want to find Zm (Zm = Rm + Em) such that

ZmX − XZm = xmwT − bxT
mQ̃ (∗)

so that A −
∑

m ZmL(L(w)T −1
ym) must be a matrix commuting with X . . . .

Note that the left hand side in (*) has zero trace. Thus, if L is symmetric,
since Q̃ = I , then b must be chosen equal to w (otherwise the right hand side
may have nonzero trace). If L is persymmetric, since Q̃ = J , then b must be
chosen equal to Jw (for the same reason).

Symmetric case:

ZmX − XZm = xmwT −wxT
m.

. . .
Persymmetric case:

ZmX − XZm = xmwT − JwxT
mJ.

. . .

NOTE: Assume moreover L both symmetric and persymmetric. Then we
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have also

JAJX − XJAJ = JAXJ − JXAJ = J(AX − XA)J
=

∑

m JxmyT
mJ

=
∑

m JxmvTL(ym)J
=

∑

m JxmwTL(w)−1L(ym)J
=

∑

m JxmwT JL(ym)L(w)−1

=
∑

m JxmwT JL(ym)L(w)−1 − c
∑

m xT
mL(ym)SL(w)−1

=
∑

m JxmwT JL(ym)L(w)−1 − c
∑

m xT
mS̃L(ym)L(w)−1

=
∑

m(JxmwT J − cxT
mS̃)L(ym)L(w)−1

=
∑

m(JxmwT J − cxT
mS̃)L(L(w)

−1
ym)

By summing this result with the previous one, we obtain

(A+JAJ)X−X(A+JAJ) =
∑

m

(xmwT +JxmwT J−bxT
mQ̃−cxT

mS̃)L(L(w)
−1

ym)

(w must be chosen such that L(w) is non singular; it can be simply chosen
equal to v so that L(w) = I).

We want to find Zm (Zm = Rm + Em) such that

ZmX − XZm = xmwT + JxmwT J − bxT
mQ̃ − cxT

mS̃ (∗′)

(see page 209 of DiF,Zell, LAA 268 (1998) for a matrix Zm satisfying (*’)) so

that A+JAJ−∑

m ZmL(L(w)−1
ym) must be a matrix commuting with X . . . .

Note that if A is centrosymmetric, i.e. A=JAJ, (as in the case of A =symmetric

Toeplitz matrix), then one can conclude that 2A− ∑

m ZmL(L(w)−1
ym) must

be a matrix commuting with X , from which we have a representation for A . . .
Note that the left hand side in (*) has zero trace. Thus, if S = S̃ = I then

c = w and Q = Q̃ can be chosen either equal to I (in such case b = w) or
equal to J (in such case b = Jw). If S = S̃ = J then c = Jw and Q = Q̃ can
be chosen either equal to I (in such case b = w) or equal to J (in such case
b = Jw). Compare with page 209 of DiF,Zell, LAA 268 (1998).

Displacement decompositions involving spaces in V

1) Look for τ = τ1(z) matrices of rank one.

2) Verify if there exist v such that τv(AT v) = τ1(A
T v)τ1(v)−1 = τ1(z) with

z as in 1), and such that τ1(v) is non singular (or equivalently that τ is a in V

for such v).

3) Find a displacement decomposition of the type

A = � + τv(AT v), vT
� = 0T

where v is as in 2) (so that τv(AT v) has rank 1 !). Attempt:

vT
α

∑

m=1

ZmLm =

α
∑

m=1

(vT Zm)Lm =

α
∑

m=1

(vT









1
v1

[. . .1m]
1
v2

[. . .2m]

1
vn

[. . .nm]









)Lm

[. . .1m] + [. . .2m] + . . . + [. . .nm] = xT
m
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τ matrices of rank 1

First observe that the entry (1, 1) of a non null τ matrix A of rank 1 must be
nonzero. In fact, if A11 = 0, then also A12 = 0 because A12 6= 0 would imply
A21 6= 0 (A is symmetric!) and so A would have rank at least 2. Thus A11 = 0
implies A12 = 0 and, by symmetry, A21 = 0. But then also A13 must be zero
because A13 6= 0 would imply A31 6= 0 and so A would have rank at least 2.
Going on one proves that the first row and column of A must be null, so A itself
must be the null matrix.

A faster proof is the following: if A ∈ τ , A = uvT and A11 = 0, then
u1v1 = 0, and thus either u1 or v1 must be zero; but u1 = 0 (v1=0) implies
eT
1 A = 0T (Ae1 = 0), that is, A = 0 since A ∈ τ .

n odd:

τ matrices A of rank one for n = 3: since A is in τ , is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

A =





1 α
α 1 + β
β α



 , α2 = 1 + β, αβ = α.

We have two possible alternatives, α = 0, β = −1, and β = 1, α = ±
√

2
(α2 − 2 = 0):

A =





1 0 −1
0 0 0
−1 0 1



 , A =





1 ±
√

2 1

±
√

2 2 ±
√

2

1 ±
√

2 1



 .

So, there are three 3 × 3 rank one τ matrices. Note that they are orthogonal
with respect the inner product (·, ·)F or, equivalently, the three vectors that
define them are orthogonal.

τ matrices A of rank one for n = 5: since A is in τ , is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

A =













1 α
α 1 + β
β α + γ
γ β + δ
δ γ













, α2 = 1 + β, αβ = α + γ, αγ = β + δ, αδ = γ.

First observe that δ 6= 0 since δ = 0 would imply γ = β = 0, α = 0, β = −1.
So, the conditions become

δα2 = δ + βδ, αβ = α + αδ, α2δ = β + δ, αδ = γ

The first and the third imply β = βδ. We have two possible alternatives. For
β = 0 we have the equation α2 − 1 = 0 and thus α = ±1, β = 0, γ = ∓1,
δ = −1. For β 6= 0 we have the equation α3 − 3α = 0 and thus either α = 0,
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δ = 1, β = −1, γ = 0 or α = ±
√

3, δ = 1, β = 2, γ = ±
√

3.

A =













1 ±1 0
±1 1 0
0 0 0
∓1 −1 0
−1 ∓1 0













,













1 0 −1
0 0 0
−1 0 1
0 0 0
1 0 −1













,













1 ±
√

3 2

±
√

3 3 ±2
√

3

2 ±2
√

3 4

±
√

3 3 ±2
√

3

1 ±
√

3 2













.

So, there are five 5×5 rank one τ matrices. Note that they are orthogonal with
respect the inner product (·, ·)F or, equivalently, the five vectors that define
them are orthogonal.

τ matrices A of rank one for n = 7: since A is in τ , is symmetric, is per-
symmetric, and its second column is a multiple of its first column, it must be
(unless a multiplier) of the type

A =





















1 α
α 1 + β
β α + γ
γ β + δ
δ γ + σ
σ δ + ρ
ρ σ





















, α2 = 1+β, αβ = α+γ, αγ = β+δ, αδ = γ+σ, ασ = δ+ρ, αρ = σ.

First observe that ρ 6= 0 since ρ = 0 would imply σ = δ = γ = β = 0, α = 0,
β = −1. So, the conditions become

ρα2 = ρ + βρ, αβ = α + γ, αγ = β + δ, αδ = γ + αρ, α2ρ = δ + ρ, αρ = σ

The second implies γ = α(β − 1). The first and the fifth imply δ = βρ. So that
the third and the fourth become αγ = β(1 + ρ), αρ(β − 1) = γ. It follows that
αρ(β − 1) = α(β − 1).

We have three possible alternatives. For α = 0 we have α = 0, β = −1,
γ = 0, δ = 1, σ = 0, ρ = −1. For β = 1 we have α = ±

√
2, β = 1, γ = 0,

δ = −1, σ = ∓
√

2, ρ = −1. For ρ = 1 we have α2 = 2 ±
√

2, β = 1 ±
√

2,
γ = α(±

√
2), δ = β, σ = α, ρ = 1.

A =





















1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0
−1 0 1 0





















,





















1 ±
√

2 1 0

±
√

2 2 ±
√

2 0

1 ±
√

2 1 0
0 0 0 0

−1 ∓
√

2 −1 0

∓
√

2 −2 ∓
√

2 0

−1 ∓
√

2 −1 0





















,





















1 α 1 ±
√

2 α(±
√

2)

α α2 α(1 ±
√

2) α2(±
√

2)

1 ±
√

2 α(1 ±
√

2) 3 ± 2
√

2 α(±
√

2 + 2)

α(±
√

2) α2(±
√

2) α(±
√

2 + 2) 2α2

1 ±
√

2 α(1 ±
√

2) 3 ± 2
√

2 α(±
√

2 + 2)

α α2 α(1 ±
√

2) α2(±
√

2)

1 α 1 ±
√

2 α(±
√

2)





















, α2 = 2 ±
√

2.
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So, there are seven 7 × 7 rank one τ matrices. Note that they are orthogonal
with respect the inner product (·, ·)F or, equivalently, the seven vectors that
define them are orthogonal.

Another important remark. If A ∈ τ is such that eT
2 A = αeT

1 A, then ∀ i
there exist ξi such that eT

i A = ξie
T
1 A. In other words, in order to make a τ

matrix of rank one it is sufficient to impose that its second row (column) is a
multiple of its first row (column).
proof: Let zT be the first row of A. Then A = τ(z). The proof is by induction
on i:

eT
i A = eT

i τ(z) = zT τ(ei) = zT (τ(ei−1)τ(e2) − τ(ei−2))
= eT

i−1τ(z)τ(e2) − eT
i−2τ(z) = ξi−1z

T τ(e2) − ξi−2z
T

= ξi−1ξ2z
T − ξi−2z

T = (ξi−1ξ2 − ξi−2)z
T .

So, ξ1 = 1, ξ2 = α, ξi = ξi−1ξ2 − ξi−2, i = 3, . . . , n.

n even:

n = 2:
Assume that A ∈ C2×2 is in τ . Then, since it is symmetric, is persymmetric,

and its second column is a multiple of its first column, it must be (unless a
multiplier) of the type

A =

[

1 α
α 1

]

, α2 = 1.

(1) : A =

[

1 1
1 1

]

,

α − 1 = 0

(−1) : A =

[

1 −1
−1 1

]

,

α + 1 = 0

So, there are two 2×2 rank one τ matrices. Note that they are orthogonal with
respect the inner product (·, ·)F or, equivalently, the two vectors that define
them are orthogonal.

n = 4:
Assume that A ∈ C4×4 is in τ . Then, since it is symmetric, is persymmetric,

and its second column is a multiple of its first column, it must be (unless a
multiplier) of the type

A =









1 α
α 1 + β
β α + γ
γ β









, α2 = 1 + β, αβ = α + γ, αγ = β.

Observe that γ 6= 0 since γ = 0 would imply α = β = 0, β = −1. So, the
conditions become γα2 = γ + αγ2, α2γ = α + γ, αγ = β. They imply αγ2 = α,
and thus (since α 6= 0) γ2 = 1.
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So, we have necessarily either γ = 1, β = α or γ = −1, β = −α. Such cases
will be referred respectively (1) and (−1):

(1) : A =









1
α
α
1









,

α(α) = 1 + α, or

g+
2 (α) = α(α − 1) − 1 = α2 − α − 1 = 0, α = 1±

√
5

2

(α(α) must be equal to 1+α by the cross-sum condition applied for (i, j) = (2, 1))

(−1) : A =









1
α
−α
−1









,

α(α) = 1 − α or

g−2 (α) = α(α + 1) − 1 = α2 + α − 1 = 0, α = −1±
√

5
2

(α(α) must be equal to 1 + (−α) by the cross-sum condition applied for (i, j) =
(2, 1)).

Note that the zeros of g−
2 are the opposite of the zeros of g+

2 .
So, there are four 4× 4 rank one τ matrices. Note that they are orthogonal

with respect the inner product (·, ·)F or, equivalently, the four vectors that
define them are orthogonal.

n = 6:

A =

















1 α
α 1 + β
β α + γ
γ β + δ
δ γ + σ
σ δ

















,

α2 = 1 + β, αβ = α + γ, αγ = β + δ, αδ = γ + σ, ασ = δ.

The above conditions imply necessarily either σ = 1, δ = α, γ = β or σ = −1,
δ = −α, γ = −β. Such cases will be referred respectively (1) and (−1):

(1) : A =

















1
α

α2 − 1
α2 − 1

α
1

















,

α(α2 − 1) = α + (α2 − 1) or
g+
3 (α) = α(α2 − α − 1) − (α − 1) = α3 − α2 − 2α + 1 = 0

(α(α2 − 1) must be equal to α +(α2 − 1) by the cross-sum condition applied for
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(i, j) = (3, 1))

(−1) : A =

















1
α

α2 − 1
−(α2 − 1)

−α
−1

















,

α(α2 − 1) = α − (α2 − 1) or
g−3 (α) = α(α2 + α − 1) − (α + 1) = α3 + α2 − 2α − 1 = 0

(α(α2 − 1) must be equal to α+(−(α2 − 1)) by the cross-sum condition applied
for (i, j) = (3, 1)).

Note that the zeros of g−
3 are the opposite of the zeros of g+

3 . Note, moreover,
that the zeros of g+

3 (g−3 ) are distinct.
So, there are six linearly independent 6× 6 rank one τ matrices. Computer

says that if α±
k , k = 1, 2, 3, are the zeros of g±

3 , then

1 + α±
k α±

s + ((α±
k )2 − 1)((α±

s )2 − 1) = 0,

i.e. the vector [1 α±
k (α±

k )2 − 1 ± ((α±
k )2 − 1) ± α±

k ± 1]T is orthogonal to the
vector [1 α±

s (α±
s )2 − 1 ± ((α±

s )2 − 1) ± α±
s ± 1]T . It follows that such six

6 × 6 rank one τ matrices are orthogonal with respect the inner product (·, ·)F

(because the six vectors that define them are orthogonal).

Question:

α3 − α2 − 2α + 1 = 0
β3 − β2 − 2β + 1 = 0

}

⇒ 1 + αβ + (α2 − 1)(β2 − 1) = 0

? Answer: since the roots are: 1.802, −1.25, 0.445 (Tommaso 18/11/2010), it
seems yes

n = 8:

A =

























1 α
α 1 + β
β α + γ
γ β + δ
δ γ + σ
σ δ + ρ
ρ σ + x
x ρ

























,

α2 = 1 + β, αβ = α + γ, αγ = β + δ, αδ = γ + σ, ασ = δ + ρ, αρ = σ + x, αx = ρ.

The above conditions imply necessarily either x = 1, ρ = α, σ = β, δ = γ or
x = −1, ρ = −α, σ = −β, δ = −γ. Such cases will be referred respectively (1)
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and (−1):

(1) : A =

























1
α

α2 − 1
α3 − 2α
α3 − 2α
α2 − 1

α
1

























,

α(α3 − 2α) = (α2 − 1) + (α3 − 2α) or
g+
4 (α) = α(α3 − α2 − 2α + 1) − (α2 − α − 1) = α4 − α3 − 3α2 + 2α + 1

= (α − 1)(α3 − 3α − 1) = 0

(α(α3 − 2α) must be equal to (α2 − 1) + (α3 − 2α) by the cross-sum condition
applied for (i, j) = (4, 1))

(−1) : A =

























1
α

α2 − 1
α3 − 2α

−(α3 − 2α)
−(α2 − 1)

−α
−1

























,

α(α3 − 2α) = (α2 − 1) − (α3 − 2α) or
g−4 (α) = α(α3 + α2 − 2α − 1) − (α2 + α − 1) = α4 + α3 − 3α2 − 2α + 1

= (α + 1)(α3 − 3α + 1) = 0

(α(α3−2α) must be equal to (α2−1)+(−(α3−2α)) by the cross-sum condition
applied for (i, j) = (4, 1)).

Note that the zeros of g−
4 are the opposite of the zeros of g+

4 . ??? FROM
HERE Note, moreover, that the zeros of g+

4 (g−4 ) are distinct.
So, there are eight linearly independent 8×8 rank one τ matrices. Computer

says that if α±
k , k = 1, 2, 3, 4, are the zeros of g±

4 , then

1 + α±
k α±

s + ((α±
k )2 − 1)((α±

s )2 − 1) + ((α±
k )3 − 2α±

k )((α±
s )3 − 2α±

s ) = 0,

i.e. the vector [1 α±
k (α±

k )2 − 1 (α±
k )3 − 2α±

k ± ((α±
k )3 − 2α±

k ) ± ((α±
k )2 − 1) ±

α±
k ± 1]T is orthogonal to the vector [1 α±

s (α±
s )2 − 1 (α±

s )3 − 2α±
s ± ((α±

s )3 −
2α±

s ) ± ((α±
s )2 − 1) ± α±

s ± 1]T . It follows that such six 8 × 8 rank one τ
matrices are orthogonal with respect the inner product (·, ·)F (because the eight
vectors that define them are orthogonal).TO HERE I HAVE TO CHECK ???

Set p0(α) = 1, p1(α) = α, pi+1(α) = αpi(α) − pi−1(α), i = 1, 2, . . . (pi(α) is
the characteristic polynomial of the i× i upper-left submatrix of P0 + P T

0 ). We
observe, in general, that for n even generic we have the following n rank one τ
matrices:

(1) : (u+
k )(u+

k )T , u+
k =

[

x+
k

Jx+
k

]

, x+
k =









p0(α
+
k )

p1(α
+
k )

pn
2
−1(α

+
k )









, k = 1, . . . , n
2 ,

α+
k zeri di αpn

2
−1(α) = pn

2
−1(α) + pn

2
−2(α)
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If the polynomial

g+
n
2

(α) = αpn
2
−1(α) − pn

2
−1(α) − pn

2
−2(α)

has distinct real zeros (I have to check if this is true), then the vectors u+
k are

linearly independent. (Such polynomial should coincide with the polynomial
obtained in the particular cases (1) n = 2, 4, 6, 8).

(−1) : (u−
k )(u−

k )T , u−
k =

[

x−
k

−Jx−
k

]

, x−
k =









p0(α
−
k )

p1(α
−
k )

pn
2
−1(α

−
k )









, k = 1, . . . , n
2 ,

α−
k zeri di αpn

2
−1(α) = −pn

2
−1(α) + pn

2
−2(α)

If the polynomial

g−n
2

(α) = αpn
2
−1(α) + pn

2
−1(α) − pn

2
−2(α)

has distinct real zeros (I have to check if this is true), then the vectors u−
k are

linearly independent. (Such polynomial should coincide with the polynomial
obtained in the particular cases (−1) n = 2, 4, 6, 8).

Note that the zeros of g+
n
2

are the opposite of the zeros of g−
n
2

(I have to check

if this is true).
Note that (u+

k )T (u−
s ) = 0 ∀ k, s. So, if the ”distinct condition” on the zeros is

satisfied, then {(u+
k )(u+

k )T , (u−
k )(u−

k )T : k = 1, . . . , n
2 } is a set of n linearly inde-

pendent rank one τ matrices, and τ = Span {(u+
k )(u+

k )T }+ Span {(u−
k )(u−

k )T }
with Span {(u+

k )(u+
k )T } orthogonal to Span {(u−

k )(u−
k )T }.

For n = 4 it also happens that (u+
1 )T (u+

2 ) = 0 = (u−
1 )T (u−

2 ). So, for n = 4
we have 4 orthogonal rank one τ matrices.

Is for n = 6 yet true that (u+
k )T (u+

s ) = 0 = (u−
k )T (u−

s ) s 6= k s, k = 1, . . . , 3
? In other words, is for n = 6 the basis {(u+

k )(u+
k )T , (u−

k )(u−
k )T : k = 1, 2, 3}

of τ an orthogonal basis ? SOLVED with Computer with ”yes” (see above).
For n = 8?

Call uk, k = 1, . . . , n, the above (orthogonal) vectors u+
k and u−

k . Let v be
such that τ1(v) = Sd(ST v)d(ST e1)

−1S−1 is invertible (d(ST v) non singular),
so that the matrix τv(z) is well defined. Note that vT uk 6= 0 ∀ k . . . (this fact
is assured by the the assumption d(ST v) non singular, since, we shall see, the
uk are nothing else, unless a multiplier, the columns of S).

Since the uku
T
k form an (orthogonal) basis for τ , there exist ck such that

τv(z) =
∑n

k=1 ckuku
T
k . We want to give a formula for such ck.

Sd(ST z)d(ST v)−1S−1 =
∑n

k=1 ckSd(ST (uku
T
k )v)d(ST v)−1S−1

=
∑n

k=1 ck(uT
k v)Sd(ST uk)d(ST v)−1S−1

if and only if

z =

n
∑

k=1

ck(uT
k v)uk .

Note that the uT
k v must be all non zero; in fact, if one of them is zero, we would

have that any vector z (with n entries) can be written as a linear combination
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of only n− 1 vectors. For the ck in the latter equality we can obtain an explicit
formula; in fact, by the orthogonality of the uk,

uT
s z =

∑

k

ck(uT
k v)uT

s uk = cs(u
T
s v)uT

s us.

Thus

cs =
uT

s z

(uT
s v)(uT

s us)
.

So

τv(z) =

n
∑

k=1

uT
k z

(uT
k v)(uT

k uk)
uku

T
k

Question: uT
k uk =?

Question: is

vT = [1 1 · · · 1]
[

u1 un

]−1
= [1 1 · · · 1]







1
uT

1
u1

uT
1

1
uT

nun
uT

n







(which is such that vT uk = 1 ∀ k) such that τ1(v) is invertible ? . . . yes since
in such case

[ST v]i = [ST [
1

uT
1 u1

u1 · · · 1

uT
nun

un]





1

1



]i 6= 0, ∀ i

and the uk, we shall see, are nothing else, unless a multiplier, the columns of S.

I think I have simply found again the sine transform S, that is the matrix
sin(ijπ/(n + 1)).

More precisely, the vectors u+
k e u−

k that define my n rank one orthogonal
τ matrices ((u+

k )(u+
k )T e (u−

k )(u−
k )T , k = 1, ..., n/2) are nothing else, unless a

multiplier, the columns of the sine matrix. I have observed this for small values
of n.

Thus, it is obvious that the (u+
k )(u+

k )T , (u−
k )(u−

k )T , k = 1, ..., n/2, are a
basis, orthogonal with respect to (·, ·)F , of τ .
proof: if A ∈ τ , then A = SDST =

∑

i Dii(column i of S)(column i of S)T .
Even the fact that such n matrices (u+

k )(u+
k )T , (u−

k )(u−
k )T , k = 1, ..., n/2,

are τ matrices, is not a novelty.
proof: since for any diagonal D the matrix SDST belongs τ , it is sufficient to
choose D = eie

T
i in order to prove that the matrices (column i of S)(column i of S)T

are in τ .
Moreover, rank of A ∈ τ is 1 if and only if rank of D in A = SDS is 1 if and

only if D = eie
T
i unless a multiplier.

Consider the unitary sine matrix S. Note that the columns cj (j = 1, . . . , n)
of the matrix

S
√

(n + 1)/2diag ((1/ sin
jπ

n + 1
) : j = 1, . . . , n)
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are orthogonal and their first entries are (cj)1 = 1, (cj)2 = 2 cos jπ
n+1 . Note that

the (cj)2 coincide with the zeros of the two polynomials

g+
n
2

(α) = αpn
2
−1(α) − pn

2
−1(α) − pn

2
−2(α),

g−n
2

(α) = αpn
2
−1(α) + pn

2
−1(α) − pn

2
−2(α).

The (cj)2 are also the eigenvalues of P0 + P T
0 , i.e. the zeros of the polynomial

pn(α) defined by the sequence

p0(α) = 1, p1(α) = α, pi+1(α) = αpi(α) − pi−1(α), i = 1, . . . , n − 1.

Moreover, they are twice the stationary points of the chebycev polynomial
Tn+1(α). More precisely, if T ′

n+1(α) =
∑n

s=0 asα
s, then the (cj)2 are the ze-

ros of the polynomial qn(α) =
∑n

s=0
1
2s asα

s. For example, since T0(α) = 1,
T1(α) = α, T2(α) = 2αT1(α) − T0(α) = 2α2 − 1, T3(α) = 2αT2(α) − T1(α) =
4α3 − 3α, T4(α) = 8α4 − 8α2 + 1, T5(α) = 16α5 − 20α3 + 5α, we have
T ′

3(α) = 12α2 − 3, T ′
5(α) = 5(16α4 − 12α2 + 1), so q2(α) = 3α2 − 3 = 3(α2 − 1),

q4(α) = 5(α4 − 3α2 + 1).
Verify that 2 cos jπ

7 , j = 1, . . . , 6, are the zeros of

g+
3 (α) = α(α2 − α − 1) − (α − 1) = α3 − α2 − 2α + 1 = 0 Tommaso

g−3 (α) = α(α2 + α − 1) − (α + 1) = α3 + α2 − 2α − 1 = 0

Verify that 2 cos jπ
9 , j = 1, . . . , 8, are the zeros of

g+
4 (α) = α(α3 − α2 − 2α + 1) − (α2 − α − 1) = α4 − α3 − 3α2 + 2α + 1 = (α − 1)(α3 − 3α − 1)

g−4 (α) = α(α3 + α2 − 2α − 1) − (α2 + α − 1) = α4 + α3 − 3α2 − 2α + 1 = (α + 1)(α3 − 3α + 1)

Set p−1(α) = 0, and

p0(α) = 1, g±
1 (α) = (α ∓ 1)p0(α) − p−1(α),

p1(α) = α, g±2 (α) = (α ∓ 1)p1(α) − p0(α),
pi(α) = αpi−1(α) − pi−2(α), g±i+1(α) = (α ∓ 1)pi(α) − pi−1(α), i = 1, . . .

Note that pi(α) is the characteristic polynomial of the i× i upper-left submatrix
of P0 + P T

0 .
Introduce also the polynomials:

f±
0 (α) = 1, f±

1 (α) = α ∓ 1, f±
i (α) = αf±

i−1(α) − f±
i−2(α), i = 2, . . . .

Note that f+
i (α) (f−

i (α)) is the characteristic polynomial of the i× i upper-left
submatrix of P0 + P T

0 + e1e
T
1 (P0 + P T

0 − e1e
T
1 ). Then g±i = f±

i .

proof: for i = 0, i = 1 it is true:

g±1 (α) = (α ∓ 1)1− 0 = α ∓ 1 = f±
1 (α),

g±2 (α) = (α ∓ 1)α − 1 = α(α ∓ 1) − 1 = f±
2 (α).

Assume the thesis true, and let us show that g±
i+1 = f±

i+1:

g±i+1(α) = (α ∓ 1)pi(α) − pi−1(α) = (α ∓ 1)(αpi−1(α) − pi−2(α)) − pi−1(α)
= α(α ∓ 1)pi−1(α) − αpi−2(α) ± pi−2(α) − pi−1(α)
= αg±i (α) ± pi−2(α) − αpi−2(α) + pi−3(α)
= αg±i (α) − (pi−2(α)(α ∓ 1) − pi−3(α))
= αg±i (α) − g±i−1(α) = αf±

i (α) − f±
i−1(α)

= f±
i+1(α)
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For the characteristic polynomial p2i of the 2i × 2i matrix P0 + P T
0 we have

p2i(α) = f−
i (α)f+

i (α) (prove it!). So, the 2i zeros 2 cos jπ
2i+1 , j = 1, . . . , 2i, of

p2i are the zeros of f+
i and of f−

i .

proof: the proof is by induction. The basis of the induction is true:

p0(α) = 1 = f+
0 (α)f−

0 (α), f+
0 (α) = 1, f−

0 (α) = 1,

p2(α) = α2 − 1 = f+
1 (α)f−

1 (α), f+
1 (α) = α − 1, f−

1 (α) = α + 1,

p4(α) = α4 − 3α2 +1 = f+
2 (α)f−

2 (α), f+
2 (α) = α2 −α− 1, f−

2 (α) = α2 +α− 1.

Assume p2j(α) = f+
j (α)f−

j (α), j = 0, 1, . . . , i − 1. Then

p2i(α) = αp2i−1(α) − p2i−2(α) = (α2 − 1)p2i−2(α) − αp2i−3(α) = ∗

(use the identity: p2i−1 = αp2i−2 − p2i−3). Since the identities

p2i−4(α) = αp2i−5(α) − p2i−6(α), αp2i−3(α) = α2p2i−4(α) − αp2i−5(α)

imply p2i−4(α) + αp2i−3(α) = α2p2i−4(α) − p2i−6(α), we have the equality
p2i−3(α) = 1

α ((α2 − 1)p2i−4(α) − p2i−6(α)). So, ∗ becomes:

∗ = (α2−1)p2i−2(α)−((α2−1)p2i−4(α)−p2i−6(α)) = (α2−1)(p2i−2(α)−p2i−4(α))+p2i−6(α).

Now, by the inductive hypothesis,

p2i(α) = (α2 − 1)(f+
i−1(α)f−

i−1(α) − f+
i−2(α)f−

i−2(α)) + f+
i−3(α)f−

i−3(α)
= α2f+

i−1(α)f−
i−1(α) + f+

i−2(α)f−
i−2(α) − α2f+

i−2(α)f−
i−2(α)

−f+
i−1(α)f−

i−1(α) + f+
i−3(α)f−

i−3(α)
= α2f+

i−1(α)f−
i−1(α) + f+

i−2(α)f−
i−2(α) − α2f+

i−2(α)f−
i−2(α)

−f+
i−1(α)f−

i−1(α) + (αf+
i−2(α) − f+

i−1(α))(αf−
i−2(α) − f−

i−1(α))
= α2f+

i−1(α)f−
i−1(α) + f+

i−2(α)f−
i−2(α) − α(f+

i−2(α)f−
i−1(α) + f+

i−1(α)f−
i−2(α))

= (αf+
i−1(α) − f+

i−2(α))(αf−
i−1(α) − f−

i−2(α))
= f+

i (α)f−
i (α)

Exercise. In n is even, then the eigenvalues of the n×n matrix P0 +P T
0 are the

eigenvalues of the following two n
2 × n

2 matrices:













1 1

1 0
. . .

. . . 1
1 0













,













−1 1

1 0
. . .

. . . 1
1 0













.

Let us come back to the odd case. Recall:
n = 3

A =





1
0
−1



 ,





1

±
√

2
1





Note on the second entries: 0 is eigenvalue of [0]; ±
√

2 are eigenvalues of
[

0 2
1 0

]

.
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n = 5












1
±1
0
∓1
−1













,













1
0
−1
0
1













,













1

±
√

3
2

±
√

3
1













Note on the second entries: ±1 are eigenvalues of

[

0 1
1 0

]

; 0 and ±
√

3 are

eigenvalues of





0 2 0
1 0 1
0 1 0



.

n = 7




















1
0
−1
0
1
0
−1





















,





















1

±
√

2
1
0
−1

∓
√

2
−1





















,





















1
α

α2 − 1
α3 − 2α
α2 − 1

α
1





















, α = ±
√

2 −
√

2, α = ±
√

2 +
√

2

Note on the second entries: 0 and ±
√

2 are eigenvalues of





0 1 0
1 0 1
0 1 0



; ±
√

2 −
√

2,

±
√

2 +
√

2 are eigenvalues of









0 2 0 0
1 0 1 0
0 1 0 1
0 0 1 0









.

For n odd generic we have

A =







































1
α

α2 − 1

pn−3

2

(α)

pn−1

2

(α)

ρpn−3

2

(α)

ρ(α2 − 1)
ρα
ρ







































and necessarily ρ = ±1. If ρ = 1 we have the further condition αp n−1

2

(α) =

2pn−3

2

(α), or 0 = g n+1

2

(α) := αpn−1

2

(α) − 2pn−3

2

(α). If ρ = −1, we have

the further conditions p n−1

2

(α) + pn−5

2

(α) = αpn−3

2

(α), pn−1

2

(α) − pn−5

2

(α) =

−αpn−3

2

(α) which imply p n−1

2

(α) = 0. Viceversa, such conditions (0 = g n+1

2

(α),

in case ρ = 1, and p n−1

2

(α) = 0, in case ρ = −1) imply that the second column

of A is α times the first one.
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So, we have the following Rank one τ matrices.

(u+
k )(u+

k )T , u+
k =





x+
k

pn−1

2

(α+
k )

Jx+
k



 , x+
k =













1
α+

k

(α+
k )2 − 1

pn−3

2

(α+
k )













, k = 1, . . . , n+1
2 ,

α+
k roots of g n+1

2

(α) = αpn−1

2

(α) − 2pn−3

2

(α).

Prove that g n+1

2

(α) is the characteristic polynomial of the n+1
2 × n+1

2 matrix









0 2 0
1 0 1
0 1









.

(u−
k )(u−

k )T , u−
k =





x−
k

0
−Jx−

k



 , x−
k =













1
α−

k

(α−
k )2 − 1

pn−3

2

(α−
k )













, k = 1, . . . , n−1
2 ,

α−
k roots of p n−1

2

(α)

Exercise. Prove that n odd ⇒ pn(α) = pn−1

2

(α)gn+1

2

(α).

Set f0(α) = 1, f1(α) = α, f2(α) = α2 − 2, fi+1(α) = αfi(α) − fi−1(α),
i = 2, 3, . . .. Note that fi(λ) is the characteristic polynomial of the upper-left
i × i submatrix of P0 + e1e

T
2 .

Set g0(α) = 1, gi+1(α) = αpi(α) − 2pi−1(α), i = 0, 1, . . .. Then gi(α) =
fi(α), i = 0, 1, . . .. So the roots of gi(α) are those of fi(α): ±

√
2 (i = 2),

0,±
√

3 (i = 3), ±
√

2 −
√

2,±
√

2 +
√

2 (i = 4), . . . or, more in general, 2 cos jπ
2i ,

j = 1, 3, . . . , 2i − 1.

proof: the proof is by induction. g1(α) = αp0(α) − 2p−1(α) = α = f1(α),
g2(α) = αp1(α) − 2p0(α) = α2 − 2 = f2(α),

gi+1(α) = αpi(α) − 2pi−1(α)
= α(αpi−1(α) − pi−2(α)) − 2(αpi−2(α) − pi−3(α))
= α(αpi−1(α) − 2pi−2(α)) − αpi−2(α) + 2pi−3(α)
= αgi(α) − gi−1(α)
= αfi(α) − fi−1(α)
= fi+1(α).

p2i+1(α) = pi(α)fi+1(α), i = 0, 1, . . . .

proof: the proof is by induction. The basis of the induction is true:

p1(α) = α = p0(α)f1(α), p3(α) = α3 − 2α = α(α2 − 2) = p1(α)f2(α),
p5(α) = α5 − 4α3 + 3α = (α2 − 1)(α3 − 3α) = p2(α)f3(α).

Assume p2j+1(α) = pj(α)fj+1(α), j = 0, 1, . . . , i − 1. Then

p2i+1 = αp2i − p2i−1 = (α2 − 1)p2i−1 −αp2i−2 = (α2 − 1)(p2i−1 − p2i−3) + p2i−5
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(note that p2i+1 = αp2i − p2i−1 and αp2i+2 = α2p2i+1 − αp2i imply p2i+1 +
αp2i+2 = α2p2i+1 − p2i−1, and thus p2i+2 = 1

α ((α2 − 1)p2i+1 − p2i)). By the
inductive assumption:

p2i+1 = (α2 − 1)(pi−1fi − pi−2fi−1) + pi−3fi−2

= α2pi−1fi + pi−2fi−1 − α2pi−2fi−1

−pi−1fi + pi−3fi−2

= α2pi−1fi + pi−2fi−1 − α2pi−2fi−1

−pi−1fi + (αpi−2 − pi−1)
(αfi−1 − fi)

= α2pi−1fi + pi−2fi−1

−αpi−2fi − αpi−1fi−1

= (αpi−1 − pi−2)(αfi − fi−1)
= pifi+1.

First row of the two tridiagonal matrices whose eigenvalues, collected together,
give the eigenvalues of the n× n matrix P0 + P T

0 (the ith row, i ≥ 2, is like the
ith row, i ≥ 2, of P0 + P T

0 ):

n even:
n/2× n/2 1 1 (+ or 1 in the bottom),
n/2× n/2 −1 1 (− or −1 in the bottom)

n odd:
(n − 1)/2× (n − 1)/2 0 1 (− or −1 in the bottom),
(n + 1)/2× (n + 1)/2 0 2 (+ or 1 in the bottom)

If we assume α+
k and α−

k both ordered in decreasing order (. . . ≤ α+
2 ≤ α+

1 ,

i.e. α+
k = 2 cos (2k−1)π

n+1 , . . . ≤ α−
2 ≤ α−

1 , i.e. α−
k = 2 cos (2k)π

n+1 ), then, taking the

first, the [n+3
2 ]th, the second, the [n+5

2 ]th, . . ., columns of the following matrix

[u+
1 · · · u+

[ n+1

2
]
u−

1 · · · u−
[ n
2
]]

one obtains the sine matrix normalized so that the entries on its first row are
all equal to 1.

proof:
sin 2jπ

n+1/ sin jπ
n+1 = 2 cos jπ

n+1

sin 3jπ
n+1/ sin jπ

n+1 = (2 cos jπ
n+1 )2 − 1

· · ·

Conclusion. Assume n odd. If A ∈ τ is of rank one then there are α and x such
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that

Ae1 =







































1
α

α2 − 1

pn−3

2

(α)

pn−1

2

(α) = xpn−1

2

(α)

xpn−3

2

(α)

x(α2 − 1)
xα
x







































.

Moreover, the following two conditions must be satisfied

(x − 1)pn−1

2

(α) = 0, αpn−1

2

(α) = (x + 1)p n−3

2

(α).

Note that x = 1 and p n−1

2

(α) = 0 cannot be simultaneously verified (otherwise

we would have p n−3

2

(α) = 0 and roots of p n−1

2

are different from those of p n−3

2

!).

So, either
x = 1, 0 = f n+1

2

:= αpn−1

2

(α) − 2pn−3

2

(α)

or
x = −1, pn−1

2

(α) = 0.

Assume n even. If A ∈ τ is of rank one then there are α and x such that

Ae1 =









































1
α

α2 − 1

pn
2
−2(α)

pn
2
−1(α)

xpn
2
−1(α)

xpn
2
−2(α)

x(α2 − 1)
xα
x









































.

Moreover, the following two conditions must be satisfied

αpn
2
−1(α) = pn

2
−2(α) + xpn

2
−1(α), αxpn

2
−1(α) = pn

2
−1(α) + xpn

2
−2(α)

which become (since x 6= 0)

αxpn
2
−1(α) = xpn

2
−2(α) + x2pn

2
−1(α), αxpn

2
−1(α) = pn

2
−1(α) + xpn

2
−2(α)

and thus imply (x2−1)pn
2
−1(α) = 0; but p n

2
−1(α) = 0 would imply p n

2
−2(α) = 0

(not possible! see above), so either

x = 1, f+
n
2

(α) := (α − 1)p n
2
−1(α) − pn

2
−2(α) = 0

or
x = −1, f−

n
2

(α) := (α + 1)p n
2
−1(α) − pn

2
−2(α) = 0.
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