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How Chebycev polynomials arise

Set y(x) = xn − pott
n−1(x) where pott

n−1 is the unique polynomial of degree at
most n − 1 solving the minimum problem

min
p∈Pn−1

max
[−1,1]

|xn − p(x)|

where Pn−1 is the set of all polynomials of degree less than or equal to n − 1.
Moreover, set µ = max[−1,1] |y(x)|.

Graphical considerations let us find such pott
n−1, for n = 1, 2, 3:

For n = 1 the given problem minp∈P0 max[−1,1] |x − p(x)| has the obvious
solution pott

0 (x) = 0. Moreover, observe that y(xi) = (−1)iµ, µ = 1, x1 = −1,
x0 = 1.

For n = 2 the problem minp∈P1 max[−1,1] |x2 −p(x)| is solved by pott
1 (x) = 1

2 .

Moreover, y(xi) = (−1)iµ, µ = 1
2 , x2 = −1, x1 = 0, x0 = 1.

For n = 3 the solution pott
2 of the problem minp∈P2 max[−1,1] |x3−p(x)| must

be a straight line with positive slope which intersects x3 in three distinct points
whose abscissas are ξ2 ∈ (−1, 0), ξ1 = 0, ξ0 = −ξ2 ∈ (0, 1), i.e. pott

2 = αx
with 0 < α < 1. Consider the function g(x) = x3 − αx in the interval [−1, 1]
and notice that g′(x) = 3x2 − α and thus g′(±

√

α
3 ) = 0, g(±

√

α
3 ) = ±α

3

√

α
3 −

α(±
√

α
3 ) = ∓ 2

3α
√

α
3 . Moreover, g(±1) = ±1 − α(±1). So, we have to choose

α ∈ (0, 1) so that max{1 − α, 2
3α

√

α
3 } is minimum, i.e. α ∈ (0, 1) such that

1 − α =
2

3
√

3
α
√

α ⇒ α =
3

4
.

Thus, pott
2 (x) = 3

4x. Moreover, observe that y(xi) = (−1)iµ, µ = 1
4 , x3 = −1,

x2 = − 1
2 , x1 = 1

2 , x0 = 1.
In general, Chebycev-Tonelli theory states that y(x) = xn − pott

n−1(x) must
assume the values µ and −µ alternately in n + 1 points xj of [−1, 1], −1 ≤
xn < xn−1 < . . . < x2 < x1 < x0 ≤ 1: y(xj) = (−1)jµ. Obviously y′(xi) = 0,
i = 1, . . . , n − 1, whereas y′(x0)y

′(xn) 6= 0 since y′(x) is a polynomial of degree
n − 1. Thus xn = −1, x0 = 1. Consider now the function y(x)2 − µ2. It is
zero in all the xi and its derivative, 2y(x)y′(x), is zero in x1, x2, . . . , xn−1. It
follows that y(x)2 − µ2 = c(x2 − 1)y′(x)2 for some real constant c. Noting that
the coefficient of x2n is on the left 1 and on the right cn2, we conclude that

n2

1 − x2
=

y′(x)2

µ2 − y(x)2
,

n√
1 − x2

= ± y′(x)
√

µ2 − y(x)2
.

The latter equality is solved by y(x) = µ cos(n arccosx + c), c ∈ R. Then the
identity y(1) = µ implies c = 2kπ, and thus

y(x) = xn − pott
n−1(x) = µ cos(n arccosx), 1 − x2 ≥ 0.
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Finally, observe that

cos(0 arccosx) = 1|[−1,1] =: T0(x)|[−1,1],
cos(arccosx) = x|[−1,1] =: T1(x)|[−1,1],
cos(2 arccosx) = 2 cos(arccosx) cos(arccosx) − cos(0 arccosx)

= 2x2 − 1|[−1,1] =: T2(x)|[−1,1],
cos((j + 1) arccosx) = 2 cos(arccosx) cos(j arccosx) − cos((j − 1) arccosx)

= 2xTj(x) − Tj−1(x)|[−1,1] =: Tj+1(x)|[−1,1].

Thus, µ = 1
2n−1 because Tn(x) = 2n−1xn + · · ·. So, we have the important

result:

y(x) = xn − pott
n−1(x) =

1

2n−1
cos(n arccosx) =

1

2n−1
Tn(x), 1− x2 ≥ 0.

Let us see two examples. The already studied specific case n = 3 is now imme-
diately obtained:

y(x) = x3 − pott
2 (x) = 1

4 cos(3 arccosx) = 1
4 (4x3 − 3x) = x3 − 3

4x,
y(xj) = (−1)j 1

4 , pott
2 (x) = x3 − (x3 − 3

4x) = 3
4x.

The cases n > 3 are analogously easily solved. In particular, for n = 4 we have

y(x) = x4 − pott
3 (x) = 1

8 cos(4 arccosx) = 1
8 (8x4 − 8x2 + 1) = x4 − x2 + 1

8 ,
y(xj) = (−1)j 1

8 , pott
3 (x) = x4 − (x4 − x2 + 1

8 ) = x2 − 1
8 .

Deflation

Le A be a n×n matrix. Denote by λi, i = 1, . . . , n, the eigenvalues of A and
by yi the corresponding eigenvectors. So, we have Ayi = λiyi, i = 1, . . . , n.

Assume that λ1,y1 are given and that λ1 6= 0. Choose w ∈ Cn such that
w∗y1 6= 0 (given y1 choose w not orthogonal to y1) and set

W = A − λ1

w∗y1
y1w

∗.

It is known that the eigenvalues of W are

0, λ2, . . . , λj , . . . , λn

i.e. they are the same of A except λ1 which is replaced with 0. Let us prove
this fact. Consider a matrix S whose first column is y1 and whose remaining
columns x2, . . . ,xn are chosen such that S is non singular. Observe that

S−1AS = S−1[Ay1 Ax2 · · · Axn] = [λ1e1 S−1Ax2 · · ·S−1Axn].

So, if we call B the (n − 1) × (n − 1) lower right submatrix of S−1AS, then
pA(λ) = (λ − λ1)pB(λ). But we also have

S−1WS = S−1AS − S−1 λ1

w∗y1
y1w

∗S

=

[

λ1 cT

0 B

]

− λ1

w∗y1
e1[w

∗y1 w∗x2 · · ·w∗xn]

=

[

λ1 cT

0 B

]

−
[

λ1 dT

0 O

]

=

[

0 cT − dT

0 B

]

,
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and thus the identity pW (λ) = λpB(λ), from which the thesis.
Let w1, w2, . . ., wj , . . ., wn be the corresponding eigenvectors (Ww1 = 0,

Wwj = λjwj j = 2, . . . , n). Is it possible to obtain the wj from the yj ?
First observe that

Ay1 = λ1y1 ⇒ Wy1 = 0 : w1 = y1. (a)

Then, for j = 2, . . . , n,

Wyj = Ayj −
λ1

w∗y1
y1w

∗yj = λjyj − λ1
w∗yj

w∗y1
y1. (1)

If we impose yj = wj + cy1, j = 2, . . . , n, then (1) becomes,

Wwj + cWy1 = λjwj + cλjy1 − λ1
w∗wj

w∗y1
y1 − cλ1y1

= λjwj + y1[cλj − λ1
w∗wj

w∗y1
− λ1c]

So, if λj 6= λ1 and

wj = yj −
λ1

λj − λ1

w∗wj

w∗y1
y1, (2)

then Wwj = λjwj . If, moreover, λj 6= 0, then w∗yj = w∗wj + λ1

λj−λ1
w∗wj ⇒

w∗yj = w∗wj
λj

λj−λ1
⇒ w∗wj =

λj−λ1

λj
w∗yj . So, by (2),

for all j ∈ {2 . . . n} | λj 6= λ1, 0 :
Ayj = λjyj ⇒
W (yj − λ1

λj

w∗yj

w∗y1
y1) = λj(yj − λ1

λj

w∗yj

w∗y1
y1) : wj = yj − λ1

λj

w∗yj

w∗y1
y1.

(b)

Note that a formula for yj in terms of wj holds: see (2).
As regards the case λj = λ1, it is simple to show that

for all j ∈ {2 . . . n} | λj = λ1 :
Ayj = λjyj ⇒
W (yj − w∗yj

w∗y1
y1) = λj(yj − w∗yj

w∗y1
y1) : wj = yj − w∗yj

w∗y1
y1.

(c)

Note that the vectors yj − w∗yj

w∗y1
y1 are orthogonal to w. Is it possible to find

from (c) an expression of yj in terms of wj ?
It remains the case λj = 0: find ? in

for all j ∈ {2 . . . n} | λj = 0 :
Ayj = λjyj = 0 ⇒ W (?) = λj(?) = 0 : wj =?

(d?)

(yj = wj − w∗wj

w∗y1
y1 ⇒ w∗yj = 0) . . .

Choices of w. Since y∗
1y1 6= 0 one can set w = y1. In this way, if A is

hermitian also W is hermitian. . . . . If i is such that (y1)i 6= 0 then eT
i Ay1 =

λ1(y1)i 6= 0. So one can set w∗ = eT
i A = row i of A. In this way the row i of W

is null and therefore we can introduce a matrix of order n−1 whose eigenvalues
are λ2, . . ., λn (the unknown eigenvalues of A).

Exercise on deflation
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The matrix

G =





1
4

1
4

1
2

3
4

1
8

1
8

11
16

1
4

1
16





satisfies the identity Ge = e, e = [1 1 1]T . So, G has the eigenvalue 1 with corre-
sponding eigenvector e. Moreover, since ρ(G) ≤ ‖G‖∞ = 1, all the eigenvalues
of G have modulus less than or equal to 1.

Let 1, λ2, λ3 be the eigenvalues of G. It is known that the matrix

W = G − 1

w∗e
ew∗ = G − 1

eT
i Ge

eeT
i G = G − eeT

i G

for any i = 1, 2, 3 has 0, λ2, λ3 as eigenvalues. For i = 1 we obtain

W =





0 0 0
1
2 − 1

8 − 3
8

7
16 0 − 7

16



 ,

thus the remaining eigenvalues of G are − 1
8 and − 7

16 .
Now observe that 1, λ2 = − 1

8 , λ3 = − 7
16 are eigenvalues also of GT . In

particular, there exists p such that GT p = p, but p has to be computed. The
following inverse power iterations

v0, ‖v0‖1 = 1, ak = (GT − (1 + ε)I)−1vk , vk+1 = ak/‖ak‖1, . . .

generate vk convergent to p, ‖p‖1 = 1, with a convergence rate O( 1+ε−1
1+ε+ 1

8

).

One eigenvalue at a time with power iterations

Assume A diagonalizable with eigenvalues λj such that |λ1| > |λk |, k =
2, . . . , n. Let v 6= 0 be a vector. Then

Akv =
∑

j

αjA
kxj =

∑

j

αjλ
k
j xj ,

1

λk
1

Akv = α1x1 +
∑

j 6=1

αj

λk
j

λk
1

xj .

Thus
1

λk
1

z∗Akv = α1z
∗x1 +

∑

j 6=1

αj

λk
j

λk
1

z∗xj ,

1

λk+1
1

z∗Ak+1v = α1z
∗x1 +

∑

j 6=1

αj

λk+1
j

λk+1
1

z∗xj ,

z∗Ak+1v

z∗Akv
→ λ1, k → ∞.

So, if an eigenvalue dominates the other eigenvalues, then such eigenvalue can
be approximated better and better by computing the quantities:

Av,
z∗Av

z∗v
, A2v = A(Av),

z∗A2v

z∗Av
, A3v = A(A2v),

z∗A3v

z∗A2v
, . . .

It is clear that each new approximation requires a multiplication Aw.
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Positive definite matrices and the choice w = y∗
1

Let A be a positive definite n× n matrix and let λj , yj be such that Ayj =
λjyj . Assume that 0 < λn < λn−1 < · · · < λ2 < λ1. Then compute λ1 via
power iterations, and y1 from a weak approximation λ∗

1 of λ1 via inverse power
iterations, both applied to A. Then the eigenvalues of

A − λ1

‖y1‖2
y1y

∗
1 are 0, λn, λn−1, · · · , λ2.

Compute λ2 via power iterations, and y2 from a weak approximation λ∗
2 of λ2 via

inverse power iterations, both applied to A − λ1

‖y1‖2 y1y
∗
1 . Then the eigenvalues

of

(A − λ1

‖y1‖2
y1y

∗
1) −

λ2

‖y2‖2
y2y

∗
2 are 0, 0, λn, · · · , λ3.

. . .

(· · · (A − λ1

‖y1‖2
y1y

∗
1) −

λ2

‖y2‖2
y2y

∗
2 · · ·) −

λn

‖yn‖2
yny∗

n are 0, 0, . . . , 0.

It follows that A =
∑n

j=1
λj

‖yj‖2 yjy
∗
j = QDQ∗, Q = [ 1

‖y1‖2
y1

1
‖y2‖2

y2 · · · 1
‖yn‖2

yn].

Note that the matrix Q is unitary (eigenvectors corresponding to distinct eigen-
values of a hermitian matrix must be orthogonal).

The QR method for 2 × 2 matrices

Set

A =

[

x y
z w

]

, x, y, w, z ∈ R.

Choose α, β ∈ R such that α2 + β2 = 1 and [Q1A]21 = 0, where

Q1 =

[

α −β
β α

]

,

i.e. α = x√
x2+z2

, β = −z√
x2+z2

. Then

Q1A =

[ √
x2 + z2 xy+zw√

x2+z2

0 −zy+xw√
x2+z2

]

=: R.

Now define the matrix B = RQT
1 :

B =

[

x + z(xy+zw)
x2+z2 −z + x(xy+zw)

x2+z2

z(xw−zy)
x2+z2

x(xw−zy)
x2+z2

]

.

Note that B = Q1AQT
1 , QT

1 = Q−1
1 , so that B has the same eigenvalues of A.

(Moreover, B is real symmetric if A is real symmetric).
So, by setting x0 = x, y0 = y, w0 = w, z0 = z we can define the four

sequences

xk+1 = xk + z(xkyk+zkwk)
x2

k
+z2

k

, yk+1 = −zk + xk(xkyk+zkwk)
x2

k
+z2

k

,

zk+1 = z(xkwk−zkyk)
x2

k
+z2

k

, wk+1 = xk(xkwk−zkyk)
x2

k
+z2

k

,

k = 0, 1, 2, . . . ,
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which satisfy (by the theory on QR method) the properties:

zk → 0, xk, wk → eigenvalues of A, k → +∞

provided the eigenvalues of A are distinct in modulus (try to prove this asser-
tion). For example, if x = w = 2 and y = z = −1, then x1 = 14

5 , y1 = − 3
5 ,

w1 = 6
5 , z1 = − 3

5 , x2 = 122
41 , y2 = − 9

41 , w2 = 42
41 , z2 = − 9

41 , . . .. It is clear that
xk and wk tend to 3 and 1, the eigenvalues of A.

Some results on matrix algebras

Given a n × n matrix X , set

KX = {A : AX − XA = 0}, P(X) = {p(X) : p polynomials}.

Note that P(X) ⊂ KX , and

P(X) = KX iff dimP(X) = dim KX = n.

Let Z denote the n × n shift-forward matrix, i.e. [Z]ij = 1 if i = j + 1, and
[Z]ij = 0 otherwise. Note that

KZ = P(Z) = {lower triangular Toeplitz matrices},
KZT = P(ZT ) = {upper triangular Toeplitz matrices},
KZT +εeneT

1
= P(ZT + εeneT

1 ) = {ε circulant matrices},
KZT +Z = P(ZT + Z) = {τ matrices},
{symmetric circulant matrices} = P(ZT + Z + eneT

1 + e1e
T
n )

⊂ KZT +Z+eneT
1 +e1eT

n
= {A + JB : A, B circulant matrices }

(eT
i J = en−i+1 i = 1, . . . , n, J =counteridentity).
Set X = Z+ZT . Then the condition AX = XA, A = (aij)

n
i,j=1, is equivalent

to the n2 conditions:

ai,j−1 + ai,j+1 = ai−1,j + ai+1,j , 1 ≤ i, j ≤ n,

ai,0 = ai,n+1 = a0,j = an+1,j = 0. Thus a generic matrix of τ has the form (in
the case n = 5):













a b c d e
b a + c b + d c + e d
c b + d a + c + e b + d c
d c + e b + d a + c b
e d c b a













.

Since XS = SD, Sij =
√

2
n+1 sin ijπ

n+1 (S2 = I), D = diag (2 cos jπ
n+1 ), and ma-

trices from τ are determined from their first row zT , we have the representation:

τ(z) = Sd(Sz)d(Se1)
−1S

(τ(z) = matrix of τ whose first row is zT ).
Given a generic non singular matrix M , we have the representation

{Md(z)M−1 : z ∈ C
n} = {Md(z)d(MT v)−1M−1 : z ∈ C

n}

for any vector v such that (MT v)j 6= 0, ∀ j (note that vT Md(z)d(MT v)−1M−1 =
zT ). For M =Fourier, sine matrices, one can choose v = e1 (so circulants and
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τ matrices are determined by their first row). But there are significant matrices
M (associated to fast discrete transforms) for which v cannot be chosen equal
to e1 (i.e. matrices diagonalized by M are not determined by their first row).

An example of matrix algebra which is not commutative is L = {A + JB :
A, B circulants}. The best approximation (in the Frobenius norm) in L of a
given matrix A, call it LA, is well defined. It is known that LA is hermitian
any time A is hermitian. But it is not known if (in case A hermitian) z∗Az > 0
∀ z 6= 0 implies z∗LAz > 0 ∀ z 6= 0.

Assume {tk}+∞
k=0, tk ∈ R, such that

+∞
∑

k=0

|tk| < +∞. (1)

Set t(θ) =
∑+∞

k=−∞ t|k|e
ikθ, tmin = min t(θ), tmax = max t(θ). Then the eigenval-

ues of T (n) = (t|i−j|)
n
j,j=1 are in the interval [tmin, tmax] for all n (proof omitted).

Let CT (n) be the best circulant approximation of T (n). Since

CT (n) = F diag ((F ∗T (n)F )ii)F
∗, Fij =

1√
n

ω(i−1)(j−1)
n , ωn = e−i2π/n,

we have

tmin ≤ min λ(T (n)) ≤ min λ(CT (n) ), maxλ(CT (n) ) ≤ maxλ(T (n)) ≤ tmax.

In particular, if
tmin > 0, (2)

then the T (n) and the CT (n) are positive definite, and µ2(CT (n) ) ≤ µ2(T
(n)) ≤

tmax

tmin
; moreover, if EnET

n = CT (n) , and α
(n)
j and β

(n)
j are the eigenvalues, respec-

tively, of I − E−1
n T (n)E−T

n and CT (n) − T (n) in nondecreasing order, then

1

tmax
|β(n)

j | ≤ 1

max λ(CT (n) )
|β(n)

j | ≤ |α(n)
j | ≤ 1

min λ(CT (n) )
|β(n)

j | ≤ 1

tmin
|β(n)

j |
(2.5)

(apply the Courant-Fisher minimax characterization of the eigenvalues of a real
symmetric matrix to I − E−1

n T (n)E−T
n ).

Theorem. If (1) holds, then the eigenvalues of CT (n) − T (n) are clustered
around 0. If (1) and (2) hold, then the eigenvalues of I−C−1

T (n)T
(n) are clustered

around 0.

Proof. For the sake of simplicity, set T = T (n). Fix a number N , n > 2N ,
and let W (N) and E(N) be the n × n matrices defined by

[W (N)]ij =

{

[CT − T ]ij i, j ≤ n − N
0 otherwise

and
CT − T = E(N) + W (N). (3)

Note that [CT ]1j = ((n− j + 1)tj−1 + (j − 1)tn−j+1)/n, j = 1, . . . , n, and thus,
for i, j = 1, . . . , n, we have

[CT − T ]ij = −s|i−j||i − j|
n

, sk = tk − tn−k.
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Now observe that the rank of E(N) is less than or equal to 2N , so E(N) has at
least n − 2N null eigenvalues. Also observe that CT − T , E(N) and W (N) are
all real symmetric matrices. In the following we prove that, for any fixed ε > 0,
there exist Nε and νε ≥ 2Nε such that

‖W (Nε)‖1 < ε ∀n > νε. (4)

As a consequence of this fact and of the identity (3) for N = Nε, we shall
have that for all n > νε at least n − 2Nε eigenvalues of CT − T are in (−ε, ε).
Moreover, if tmin > 0, then, by (2.5), we shall also obtain the clustering around
0 of the eigenvalues of I − C−1

T T .
So, let us prove (4). First we have

‖W (N)‖1 ≤ 2

n

n−N−1
∑

j=1

j|sj | ≤ 2

n−1
∑

j=N+1

|tj | +
2

n

N
∑

j=1

j|tj |. (5)

Then, for any ε > 0 choose Nε such that 2
∑+∞

j=Nε+1 |tj | < ε
2 and set N = Nε

in (5) and in the previous arguments. If νε, νε ≥ 2Nε, is such that, ∀n > νε,
2
n

∑Nε

j=1 j|tj | < ε
2 (the sequence 1

n

∑n−1
j=1 j|tj | tends to 0 if (1) holds), then by

(5) we have the thesis (4).

Stai usando il seguente algoritmo (il primo a p.18 dell’articolo) che calcola
direttamente una successione di e vettori xk convergente a x tale che p =

1
‖x‖1

x ? Se non lo stai usando, allora leggilo attentamente ed implementalo

accuratamente, rispondendomi alle domande che troverai.

xk+1 = xk + F (I − α
√

nd(Fc))−1F ∗(v − AT xk)

Fs,j =
1√
n

ω(s−1)(j−1)
n , s, j = 1, . . . , n, ωn = e−i2π/n

d(z) =











z1

z2

. . .

zn











c = [c0 c1 · · · cn−1]
T , c0 = s0/n = 0, ci = (si + s−n+i)/n, i = 1, . . . , n − 1

s1 =

n−1
∑

i=1

[P ]i,i+1, s−1 =

n−1
∑

i=1

[P ]i+1,i, . . .

Quindi, ogni volta che n e’ una potenza di 2: calcolo dei cj , j = 0, . . . , n − 1
(c0 = 0); calcolo di Fc; calcolo dei Fc (il vettore coniugato di Fc); calcolo della
matrice diagonale D = (I −α

√
nd(Fc))−1. Poi, per ogni k = 0, 1, . . ., calcolo di

xk+1 = xk + FDF ∗(v − (I − αP T )xk)

(scegliendo x0 = v = [1/n · · · 1/n]T ).
Nota che esiste una matrice di permutazione Q tale che F ∗ = QF , F = QF ∗,

hai usato questo fatto per calcolare xk+1 ? Quindi F ∗z e’ semplicemente una
permutazione di Fz (e viceversa); la FFT che hai tu calcola Fz o F ∗z ?
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I vettori xk dovrebbero convergere a un vettore x che una volta normalizzato
dovrebbe coincidere con il vettore page-rank p, cioe’ p = 1

‖x‖1
x.

Mi scrivi dettagliatamente i tre criteri di arresto che usi? Quello per potenze
dovrebbe differire da quelli usati per RE e RE precondizionato perche’ i vettori
generati dal metodo delle potenze sono gia’ normalizzati.

y′(t) = − 1

2y(t)
, y(0) = 1 (y(t) =

√
1 − t)

√
1 − t =

1√
p

iff t = 1 − 1

p

Integrate in [0, 1 − 1
p ] the Cauchy problem to obtain an approximation of 1√

p .

p = 3: Eulero for h = 1
3 , two steps; for h = 1

6 , four steps.

η(xi + h) = η(xi) + hf(xi, η(xi)) = η(xi) − h
1

2η(xi)

η(0 +
1

3
) = η(0) − 1

3

1

2η(0)
= 1 − 1

6
=

5

6

η(
1

3
+

1

3
) = η(

1

3
) − 1

3

1

2η( 1
3 )

=
5

6
− 1

5
=

19

30

Idem, implicit Euler: h = 1
3 not ok; h = 1

6 ok?.

η(xi + h) = η(xi) + hf(xi + h, η(xi + h)) = η(xi) − h
1

2η(xi + h)

η(xi + h)2 − η(xi + h)η(xi) + h
1

2
= 0

η(xi + h) =
1

2
(η(xi) ±

√

η(xi)2 − 2h)

η(0 +
1

3
) =

1

2
(η(0) ±

√

η(0)2 − 2

3
) =

1

2
(1 ±

√

1 − 2

3
) =

1

2
± 1

2

1√
3

√
3 + 1

2
√

3

η(
1

3
+

1

3
) =

1

2
(η(

1

3
) ±

√

η(
1

3
)2 − 2

3
)

not real!
The given matrix is non negative and stochastic by columns

λ3 − λ2(1 − a − b) − λb − a = (λ − 1)(λ2 + (a + b)λ + a)

Eigenvalues:

1, −a + b

2
±

√

(a + b)2 − 4a

2

We know that their absolute value is less than or equal to 1. Question: when is
it equal to 1?

Assume they are real. Then question becomes:

−a + b

2
+

√

(a + b)2 − 4a

2
= 1
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−a + b

2
−

√

(a + b)2 − 4a

2
= −1

Assume they are not real. Then they can be rewritten as follows:

−a + b

2
± i

√

4a− (a + b)2

2

Thus, question becomes:

(a + b)2

4
+

4a − (a + b)2

4
= 1

equality which is satisfied iff a = 1

An equivalent definition of Bernoulli polynomials

The degree n Bernoulli polynomial Bn(x) is uniquely determined by the
conditions

Bn(x + 1) − Bn(x) = nxn−1,

∫ 1

0

Bn(x) dx = 0. (1)

Note that the first condition in (1) implies:

∫ t+1

t

Bn(x + 1)dx −
∫ t+1

t

Bn(x)dx = n

[

xn

n

]t+1

t

,

∫ t+2

t+1

Bn(y)dy −
∫ t+1

t

Bn(x)dx = (t + 1)n − tn.

By writing the latter identity for t = 0, 1, . . . , x − 1, taking into account the
second condition in (1), and summing, we obtain:

∫ x+1

x

Bn(y)dy = xn, ∀x ∈ R. (2)

So, (1) implies (2). Of course, (2) implies the second condition in (1) (choose
x = 0). It can be shown that (2) implies also that Bn must be a polynomial of
degree at least n and must satisfy the first condition in (1).

Assume that we know that (2) implies that Bn must be a polynomial. Let us
show that then its degree is at least n. If, on the contrary, Bn(y) = a0y

n−1 + . . .

then
∫ x+1

x Bn(y)dy = [a0

n yn + . . .]x+1
x = a0

n [(x + 1)n −xn] + . . . is a degree n− 1
polynomial, and thus cannot be equal to xn.

Finally, the fact that (2) implies the first condition in (1) can be shown by
deriving (2) with respect to x, and remembering the rule:

d

dx

∫ g(x)

f(x)

h(x, y)dy = h(x, g(x))g′(x) − h(x, f(x))f ′(x) +

∫ g(x)

f(x)

∂

∂x
h(x, y) dy.
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