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How Chebycev polynomials arise

Set y(x) = a™ — p2, (x) where p2, is the unique polynomial of degree at

most n — 1 solvmg the minimum problem

3 n __
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where IP,,_1 is the set of all polynomials of degree less than or equal to n — 1.
Moreover, set 1 = max(_q 1] |y(x)|.

Graphical considerations let us find such po* |, for n =1,2,3:

For n = 1 the given problem minyep, max(_; 1) |z — p(z)| has the obvious
solution pg(x) = 0. Moreover, observe that y(z;) = (=1)iu, p =1, 21 = —1,

zo = 1.

For n = 2 the problem min,cp, max(_1 1 |22 — p(z)]| is solved by p$¥(z) = 1.
Moreover, y(z;) = (—=1)ip, p= 3, 22 = —1, 21 = 0, 2o = 1.

For n = 3 the solution p$" of the problem min,ep, max|_; 1) |z* — p(z)| must
be a straight line with positive slope which intersects 3 in three distinct points

whose abscissas are & € (—1,0), & =0, & = —& € (0,1), i.e. p§tt = ax

with 0 < @ < 1. Consider the function g(z) = 2® — az in the interval [—1,1]

and notice that ¢'(z) = 32% — « and thus ¢'(£,/%) = 0, g(£,/5) = £% \/— -
a(£./5) = F3a/5. Moreover, g(+1) = £1 — a(£1). So, we have to choose
a € (0,1) so that max{l — a, %a\/g} is minimum, i.e. « € (0, 1) such that
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l-a=—ava = a=-.
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Thus, p"“( ) = 3x. Moreover, observe that y(z;) = (—1)'p, p = 1, z3 = —1,
T2 = 2, Tr1 = %, o = 1.

In general, Chebycev-Tonelli theory states that y(z) = 2™ — p°™,(z) must
assume the values p and —p alternately in n 4 1 points x; of [-1,1], -1 <
T < Tp—1 < ...< T2 <z <z < 18 ylay) = (—1)7 . Obviously ' (z;) = 0,
i=1,...,n—1, whereas y'(x0)y'(z,) # 0 since y'(z) is a polynomial of degree
n —1. Thus z, = —1, zp = 1. Consider now the function y(z)? — p?. It is
zero in all the z; and its derivative, 2y(z)y’(z), is zero in z1,22,...,2p—1. It
follows that y(z)? — u? = c(z? — 1)y (x)? for some real constant c. Noting that
the coefficient of 22" is on the left 1 and on the right cn?, we conclude that
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= T2 —y@? V-2 iyl

The latter equality is solved by y(z) = pcos(narccosz + ¢), ¢ € R. Then the
identity y(1) = p implies ¢ = 2k, and thus

y(x) = 2™ — p°* | (z) = pcos(narccosz), 1—z2>0.



Finally, observe that

cos(0arccosx) = 1|11} =: To(®)|[=1,1]

cos(arccos x) = x|(—1,1] =: T1(x)|[=1,1],

cos(2 arccos ) = 2 cos(arccos x) cos(arccos z) — cos(0 arccos z)
=227 — 110 = To(2)| 11,

cos((j + 1) arccosz) = 2 cos(arccos ) cos(j arccos x) — cos((j — 1) arccos x)
=22T;(x) — Tj-1() |11, = Tj1(@)|[-1,1)-

Thus, g = 5=t because Ty,(z) = 2" 12" + ---. So, we have the important
result:
1
y(x) = 2" — p2t () = Fcos(narccosa:) = —Tu(z), 1- 2 > 0.

2n
Let us see two examples. The already studied specific case n = 3 is now imme-
diately obtained:

3 pott() 1 _ 143 _ _.3_3
y(z) = 23 1;1 (x) Ott4 cos(3 arccos?iﬂ) . 1 (4x , 3z) = x° — §u,
y(z;) = (=17, (z) = (z% = q2) = g

The cases n > 3 are analogously easily solved. In particular, for n = 4 we have

y(z) = a* —ngt(x) = 1cos (4arccosiv) _2%(8 x4 Sx + 1) —a22 41,

y(a) = (175, p§a) =a' — (@' —a® +§) =

Deflation

Le A be a n x n matrix. Denote by A;, ¢ = 1,...,n, the eigenvalues of A and
by y; the corresponding eigenvectors. So, we have Ay; = \jy;, i =1,...,n

Assume that A\1,y; are given and that A\; # 0. Choose w € C™ such that
w*y1 # 0 (given y; choose w not orthogonal to y1) and set

AL
wW*y1

W=A-

yiw®.
It is known that the eigenvalues of W are
0, Ao, ..., Aj, ooy Ap

i.e. they are the same of A except A; which is replaced with 0. Let us prove
this fact. Consider a matrix S whose first column is y; and whose remaining
columns X, ...,X, are chosen such that .S is non singular. Observe that

STLAS = ST Ay, Axy -+ Ax,] = [Mer ST Ay --- ST Ax,).

So, if we call B the (n — 1) x (n — 1) lower right submatrix of S~!AS, then
pa(A) = (A= A1)ps(A). But we also have

STIWS = S71AS - S A_y,w*S

wWry1
_ )\1 CT A1 *
— o B —wylel[w V1 W Xg o WX,
o )\1 CT . )\1 dT
o 0 B 0o O
B 0 cr'—-4ad7
- 0 B ’



and thus the identity pw () = App(A), from which the thesis.

Let w1, wa, ..., Wj, ..., W, be the corresponding eigenvectors (Ww; = 0,
Wwj; = A\jw; j=2,...,n). Is it possible to obtain the w; from the y; ?

First observe that

Ayi=My1 = Wy =0: w; =y;. (a)

Then, for 7 =2,...,n,

A1 w*y;
Wy, = Ay, — ——y 1wy, = Ly — A Ly 1
Y Y S— Yiw'y; Y 1w*y1 Y1 ( )
If we impose y; = w; +¢y1, j = 2,...,n, then (1) becomes,
WWj + Wy, = )\jo + C/\jyl /\1 Y1 — C/\1y1
— )\]WJ +¥y1 [C)\ )\ v‘;/, y'l — )\16]

So, if A\j # A1 and
)\1 W*Wj

W=y, — vi, (2)

)\'—Al W*yl
then Ww; = A\;w;. If, moreover, A\; # 0, then w*y; = w WJ—|—>\ LwWw; =

. PV
wyj—wwjA I = wWw; = Alwy] So, by (2),

forall j € {2...n} | A\j # A1,0

A »: A]ijw? A\ w*y,v A w* y (b)
W(y,]__;wyiyl):)\j(Yj_A_;w*yiyl): Wi =Y~ Sy Yl

Note that a formula for y; in terms of w; holds: see (2).
As regards the case A\; = Ay, it is simple to show that

forall j € {2...n} | A\j = A1
Ay, =y, > * * ©
W(yj — aty1) = Nj(yj — @t ¥1) 1 Wi =Y — gt Vi

Note that the vectors y; —

from (c) an expression of yj in terms of w; 7
It remains the case A; = 0: find 7 in

forall je{2...n} | \; =0:

?
ij:Aij‘ZO = W(‘?):)\j(‘?):o W =7 (d)

(Vi =W — 5y y1 = Wiy; =0) ..

Choices of w. Since yjy1 # 0 one can set w = y;. In this way, if A is
hermitian also W is hermitian. ... . If i is such that (y1); # 0 then el Ay; =
A1(y1): # 0. So one can set w* = el A = row i of A. In this way the row i of W
is null and therefore we can introduce a matrix of order n — 1 whose eigenvalues
are Az, ..., A, (the unknown eigenvalues of A).

Ezercise on deflation



The matrix

G:

A 00| 4 [ =
|>~oo|>~w|>~

=[S

16

satisfies the identity Ge = e, e = [1 1 1]T. So, G has the eigenvalue 1 with corre-
sponding eigenvector e. Moreover, since p(G) < ||G||oo = 1, all the eigenvalues
of G have modulus less than or equal to 1.

Let 1, A2, A3 be the eigenvalues of G. It is known that the matrix

W:G—L*ew*:G ee! G =G —eel G
w*e

el'Ge

for any ¢ = 1,2,3 has 0, A2, A3 as eigenvalues. For i = 1 we obtain

0 0 0
w=| 4+ -1 3 |

A

16 16

thus the remaining eigenvalues of G are —% and —%.

Now observe that 1, Ay = —%, Ag = —% are eigenvalues also of GT. In
particular, there exists p such that GTp = p, but p has to be computed. The

following inverse power iterations

vo, [[volli =1, ar = (G" = (L +e)) "'V, Virr = ar/llagl|1, -

generate vy, convergent to p, |p|l1 = 1, with a convergence rate O( %Lf;i ).
8

One eigenvalue at a time with power iterations

Assume A diagonalizable with eigenvalues A; such that |Ai| > |Ax], & =
2,...,n. Let v # 0 be a vector. Then

k
1 Af
ke — Ak — Ny TAky — i
A¥v = E ajAx; = E ajAx;, )\kA vV =a1X1 + E aj)\kxj.
J J J#1
Thus &
1 AE
k
FZ*A v=oz"x + E ozj)\—iz*xj,
! g#1 1
k+1
1 A%
* Ak+1, * T g
)\k+1ZA V=12 X1 + E T2 X
1 iAo M
z* Aktly
— — A, k — .
z* Akv

So, if an eigenvalue dominates the other eigenvalues, then such eigenvalue can
be approximated better and better by computing the quantities:

z* Av

Z*V

z* A%v
z*Av '’

z* A3v
z* A2y’

Av,

, A%v = A(Av), Adv = A(A%v),

It is clear that each new approximation requires a multiplication Aw.




Positive definite matrices and the choice w = yj

Let A be a positive definite n X n matrix and let A;, y; be such that Ay; =
Ajy;. Assume that 0 < A\, < Ap—1 < --+ < Ay < A1. Then compute A\; via
power iterations, and y; from a weak approximation A} of \; via inverse power
iterations, both applied to A. Then the eigenvalues of

A
- mef are 0, Ap, A1, A2,

Compute Ay via power iterations, and ys from a weak approximation A5 of Ay via
inverse power iterations, both applied to A — Wylyf. Then the eigenvalues
of

A1
(A Hy1||QY1y1) ||y H2y2y2 are 0 0 >\n’ S )\3.
((A Hy1||2y1y1) ||y2H2y2y2 ) ||ynH2ynyn are 0 0 0

. _ n X]‘ K * _ 1 1 . 1
Tefollows that A =3 iy [ipysy; = QDO @ = [yt [EY2 - [yl
Note that the matrix @ is unitary (eigenvectors corresponding to distinct eigen-
values of a hermitian matrix must be orthogonal).

The QR method for 2 x 2 matrices
Set

x
A= { . i/)]’ z,y,w,z € R.

Choose a, 3 € R such that a? + 32 = 1 and [Q1 A]21 = 0, where

_|a =6
Q1_|:ﬁ o :|a
le. o= \/ﬁ, 6: \/a:;—zw Then

2 2 ry+zw
Ve +z e
O —zy+zw
VaTia®

QA=

Now define the matrix B = RQT:

2422 2422
z(zw—2zy) z(zw—2zy)
2 +22 2 +22

B =

T+ z(zy+zw) —2+ z(zy+2zw) ]

Note that B = Q. AQT, QT = Ql_l, so that B has the same eigenvalues of A.
(Moreover, B is real symmetric if A is real symmetric).

So, by setting xg = z, yg = y, wy = w, z9g = z we can define the four
sequences

_ 2(Tpyr+zrw T (TRpYr+2pw
xk-l—l—xk"’(k:fzgk)a yk+1——2k+%ﬁ"")v
Z(Ikwk ZATIA) _ zp(Tpwr—2kYk)
Zk+1 = T ’+z y Wkl = xi—i—zi ’
k=0,1,2,...,



which satisfy (by the theory on QR method) the properties:
zk — 0, xp, wpy — eigenvaluesof A, k — +o0

provided the eigenvalues of A are distinct in modulus (try to prove this asser-
tion). For example, if z = w = 2 and y = z = —1, then 27 = %4, Y1 = —%,
wy; = g, z1 = —%, Tog = %, Yo = —%, Wy = %, Z9 = —%, .... It is clear that
x and wy tend to 3 and 1, the eigenvalues of A.

Some results on matrixz algebras

Given a n X n matrix X, set
Kx ={A: AX - XA=0}, P(X)={p(X): ppolynomials}.
Note that P(X) C Kx, and
P(X) = Kx iff dimP(X) = dimKx = n.

Let Z denote the n x n shift-forward matrix, i.e. [Z];; = 1if i = j+ 1, and
[Z];; = 0 otherwise. Note that

Kz = P(Z) = {lower triangular Toeplitz matrices},
Kyr = P(ZT) = {upper triangular Toeplitz matrices},
Kzrice,eT = P(ZT + cenel’) = {e circulant matrices},
Kyr,z;=P(ZT + Z) = {7 matrices},
{symmetric circulant matrices} = P(Z7 + Z + e el + ejel)

C Kzrizie,eT4erer = {A+ JB: A, B circulant matrices }

(el'J=e,_iy1i=1,...,n, J =counteridentity).
Set X = Z+ZT. Then the condition AX = XA, A = (aij)i =1, is equivalent
to the n? conditions:

Qi -1+ Qi j4+1 = @i—1,j + aip15, 1<4,5<n,

a0 = Gipnt1 = Go,j = Gnt1,; = 0. Thus a generic matrix of 7 has the form (in
the case n = 5):

b c d
a+c b+d c+e
b+d a+c+e b+d
c+e b+d a+c

d c b

DO QL0 o
Q T 0 QD

Since XS = SD, S;; = ,/%Hsin :lfl (S? =1), D = diag (2 cos nj—j:l), and ma-
T

trices from 7 are determined from their first row z* , we have the representation:

7(z) = Sd(Sz)d(Se;)™ 'S

(7(z) = matrix of 7 whose first row is z7).
Given a generic non singular matrix M, we have the representation

{Md(z)M ™" : z € C"} = {Md(z)d(MTv)"'M~': z € C"}

for any vector v such that (MTv); # 0,V j (note that v Md(z)d(MTv) 1 M~! =
zT). For M =Fourier, sine matrices, one can choose v = e; (so circulants and



7 matrices are determined by their first row). But there are significant matrices
M (associated to fast discrete transforms) for which v cannot be chosen equal
to e; (i.e. matrices diagonalized by M are not determined by their first row).

An example of matrix algebra which is not commutative is £L = {A+ JB :
A, B circulants}. The best approximation (in the Frobenius norm) in £ of a
given matrix A, call it £4, is well defined. It is known that £, is hermitian
any time A is hermitian. But it is not known if (in case A hermitian) z*Az > 0
Vz # 0 implies z* L4z > 0 Vz # 0.

Assume {t;}/ 29, tx € R, such that

+oo

> Jtkl < +o0. (1)
k=0
Set t(0) = S t15/€*, tmin = min¢(), tmax = maxt(f). Then the eigenval-
ues of T(") = (tji—j))} j=1 are in the interval [tmin, tmax| for all n (proof omitted).
Let Cp) be the best circulant approximation of T (") Since

n

1 i .
Crey = Fdiag (F*T™ F)u)F*, Fj = Tw“—l)(ﬂ—l), wp = e 127/
n

we have
tmin < min /\(T(")) < min A(Cpe) ), max A(Crpm ) < max )\(T(”)) < tmax-
In particular, if
tmin > 0, (2)
then the T and the Cp) are positive definite, and w2(Cremy) < ug(T(")) <
?:1&:’ moreover, if B, El = Cpu), and ag-") and ﬁ;n') are the eigenvalues, respec-
tively, of I — E;'T™E-T and Cpxy — T in nondecreasing order, then
1
< ——m—
~ min AM(Cpey)

1 n n n
— 5 < 18571 < lag”)|

S — m) < L gm

max max )\(CT(W)) |ﬁ] | o tmin |6j |
(2.5)

(apply the Courant-Fisher minimax characterization of the eigenvalues of a real

symmetric matrix to [ — E; ' T E-T).

Theorem. If (1) holds, then the eigenvalues of Cpmy — T are clustered
around 0. If (1) and (2) hold, then the eigenvalues of T — C;(ln)T(”) are clustered
around 0.

Proof. For the sake of simplicity, set 7 = T . Fix a number N, n > 2N,
and let W) and E(N) be the n x n matrices defined by

vy _ J [Cr =Tl i,j<n—-N
W { 0 otherwise

and
Cr—T=EN 4w, (3)
Note that [Cr]1; = (R —j + 1)tj—1 + (j — D)tn—j+1)/n, j =1,...,n, and thus,

fori,j=1,...,n, we have

8ji—j)l1 — Jl
[CT—T]ij:_ il P Sk =tk — tn—k-



Now observe that the rank of E®) is less than or equal to 2N, so E®) has at
least n — 2N null eigenvalues. Also observe that Cp — 7', EY) and W) are
all real symmetric matrices. In the following we prove that, for any fixed € > 0,
there exist N, and v, > 2N, such that

(W), <e Vn> .. (4)

As a consequence of this fact and of the identity (3) for N = N., we shall
have that for all n > v, at least n — 2N, eigenvalues of Cr — T are in (—¢,¢).
Moreover, if tmin > 0, then, by (2.5), we shall also obtain the clustering around
0 of the eigenvalues of I — C'. .

So, let us prove (4). First we have

n—N-—1

n—1 N
) , 2 .
W< = 3 sl <2 Y Il Y ltl (5)
j=1 j=N+1 j=1

Then, for any € > 0 choose N, such that 2 ;rgv€+1 tj| < § and set N = N.

in (5) and in the previous arguments. If v., v. > 2N, is such that, Vn > v,
%Z?f;ljﬁﬂ < 5 (the sequence %Z;leﬂtﬂ tends to 0 if (1) holds), then by
(5) we have the thesis (4).

Stai usando il seguente algoritmo (il primo a p.18 dell’articolo) che calcola
direttamente una successione di e vettori xj; convergente a x tale che p =
mx ? Se non lo stai usando, allora leggilo attentamente ed implementalo
accuratamente, rispondendomi alle domande che troverai.

X1 = X, + F(I — ay/nd(Fe)) ' F* (v — ATxy,)
1

—1)(j—1 . —i2
Fsj = ﬁwﬁf DU s =1, n, wy = e BTN
21
Z2
d(z) =
Zn

c=lcpecy - cn,l]T, co=50/mn=0, ¢;=(8 +5_pnti)/n, i=1,...,n—1

n—1 n—1

s1= Y [Plisi, s-1= Y [Plit1s- -

i=1 i=1

Quindi, ogni volta che n e’ una potenza di 2: calcolo dei ¢, j =0,...,n —1

(co = 0); calcolo di F'c; calcolo dei E (il vettore coniugato di F'c); calcolo della
matrice diagonale D = (I — a/nd(Fc))~t. Poi, per ogni k = 0,1,..., calcolo di

Xpp1 = Xp + FDF*(v — (I — aPT)xy,)

(scegliendo xg = v = [1/n --- 1/n]T).

Nota che esiste una matrice di permutazione @ tale che F* = QF, F = QF*,
hai usato questo fatto per calcolare x;+1 7 Quindi F*z €’ semplicemente una
permutazione di F'z (e viceversa); la FFT che hai tu calcola F'z o F*z ?



I vettori x;, dovrebbero convergere a un vettore x che una volta normalizzato
dovrebbe coincidere con il vettore page-rank p, cioe’ p = Wx.
Mi scrivi dettagliatamente i tre criteri di arresto che usi? Quello per potenze

dovrebbe differire da quelli usati per RE e RE precondizionato perche’ i vettori
generati dal metodo delle potenze sono gia’ normalizzati.

!/ _ 1 — —
y'(t) = oL y(0) =1 (y(t) =v1-1)

DN

1. .1
VIi=iffi=1-

Integrate in [0,1 — %] the Cauchy problem to obtain an approximation of —=

7
p = 3: Eulero for h = %, two steps; for h = %, four steps.

n(ei + h) = n(z:) + hi (e, () = n(a) — he—

21(;)
1 1 1 1 5
—) = _—_—— = ]_ —_—_ = —
n(0+3)=n0) -5 57(0) il
1 1 1 1 1 5 1 19
13 =) 55,0 T8 5 T w0
Idem, implicit Euler: h = % not ok; h = % ok?.

1
n(@i +h)” = (@i + hn(w:) + hg =0

s+ h) = 3 (nfar) + v/nwn)? — 20)

0% 02 - 3 = a1 - 3 = 3 LI
NG +3) =5 0() £\ (52 - 2)

The given matrix is non negative and stochastic by columns

N | =

not real!

Mol -a—-b)—-M—a=AN-1DXN+(a+bX+a)
Eigenvalues:
_a+b n (a+b)? —4a
2 2

We know that their absolute value is less than or equal to 1. Question: when is
it equal to 17

Assume they are real. Then question becomes:

L,

_a+b+ (a+b)2—4a
2 2 B




a+b (a+b)2 —4a
2 2
Assume they are not real. Then they can be rewritten as follows:

da — 2
_a+bii\/ a—(a+b)

2 2

=-1

Thus, question becomes:

(a+b)?  4da—(a+0b)?
=1
4 + 4

equality which is satisfied iff a = 1

An equivalent definition of Bernoulli polynomials

The degree n Bernoulli polynomial B, (z) is uniquely determined by the
conditions

Bu(x +1)— B, (z) = na"" 1, /0 B, (z)dx = 0. (1)

Note that the first condition in (1) implies:

t4+1 t+1 ezt
/ B, (x4 1)dz — / B, (x)dz =n [—] ,
¢ ¢

noqy

42 41
/ B, (y)dy — B,(x)dx = (t+ 1)" —t".
41 ¢
By writing the latter identity for ¢ = 0,1,...,z — 1, taking into account the
second condition in (1), and summing, we obtain:

x+1
/ By, (y)dy = 2™, Vo € R. (2)

So, (1) implies (2). Of course, (2) implies the second condition in (1) (choose
2 = 0). It can be shown that (2) implies also that B, must be a polynomial of
degree at least n and must satisfy the first condition in (1).

Assume that we know that (2) implies that B,, must be a polynomial. Let us
show that then its degree is at least n. If, on the contrary, B, (y) = aoy™ ' +...

then f;“ Bn(y)dy = [y +.. ]2 = 9 [(z+1)" —z"] +... is a degree n — 1
polynomial, and thus cannot be equal to z™.
Finally, the fact that (2) implies the first condition in (1) can be shown by

deriving (2) with respect to x, and remembering the rule:

9(z) 9

d g(z)
— h(z,y)dy = h(z, g(x))g (z) — h(z, f(2))f (= —h(z,y) dy.
i L, My = hG o) @) e SN+ [y

10



