CG and GMRES iterations
From Southwell to Conjugate Gradient iterations

Let eg be the error at step k of an iterative method in approximating the
solution x of a linear system Ax = b, i.e. ey = x —x3. Choose a vector dg # 0
and set epy1 = e — wdg. Let H be a positive definite matrix and consider
the inner product (u,v)y = u” Hv. Then the value of w for which |exi 1| is
minimum is

o=y = (ex, di)m
Ikl
(llex+1 113 = llex||* — 2w(ek, di) g +w?||dk||%). So, we have the iterative scheme
d
X9 € R", Xk+1:xk+wdk7 k=0,1,2,.... (it)
Idell%

Note that each of the three conditions:

1) [|ek+1 )|z minimum,

2) (ext1,di)m =0,

3) F(xg + wdy) minimum, F(y) = 3y"Hy — y"HA™'b
yields the value w = wg, i.e. such conditions are equivalent. (Note that, since
F(y+z) = F(y) +z"H(y — A™'b) + 32" Hz, the vector A~'b is the global
minimum for F, and the contours of F are neighborhoods of A~!b in the metric

induced by the norm || - || ). Moreover, for w = wy we have
4) llers1lI7r = llexlFr — llwedr|IZ,
5) limy, |lexl|n = l{a,y,u 2> 0,
6) limkHJroo HwkdkHH = 0,
Tletvi#0,i=1,...,r if dp = v, 04,41 then limg_ 4o W =0.

Suitable choice of H and {dj} make I{q,} z = 0, i.e. make (it) convergent to
x = A~ 'b. In the following, r; denotes the vector b — Ax;, = Aey,.

Choice H = AT A

I‘TAd]C
X9 € R™, Xkp+1 = X + kfdk, k=0,1,2,....
[ Ady |3
Choose dy, equal to the sith canonical basis vector (s € {1,...,n}). For the

sake of simplicity, call AU) the jth column of A, j =1,...,n. Then we obtain
the algorithm:

compute ||[AD |y, j=1,...,n;

xg € R", rg =b — Axg. For Kk =0,1,2...
compute rgA

choose s, € {1,2,...,n}

(Xk41)j = (X)j5 J 7 ok o
(Xkt1)s, = (X)si + %

_ (I{A)Sk (sk)
Thtl =Tk~ amops AT




Note that, both the choices s such that

ek A)si| o [ A);]
[ACR] 2~ [|AD)ly "

A&

(Southwell) and s = kmodn + 1 (Gauss-Seidel) yield |Hr§(’?)(i>2‘ — 0,V (use 6)

and 7), respectively), i.e. the residuals ry converge to the null vector, since the
columns of A are linearly independent.

Thus the Southwell and Gauss-Seidel variants of the above algorithm can
solve any linear system Ax = b, by requiring for each step only the computation
of rf .

Choose di = ri. Then we have the variable-step Richardson-Euler method

rl Ary,
X0 €ER", Xpy1 =% + —rp, k=0,1,2,.... (RE)
(| Arg |3

whose convergence is assured if the symmetric part of A is positive definite (by
. Ieell?g

6), in fact, TALEE 0).

Choose dj, = ATrj,. Then we obtain an algorithm always convergent

T A AT
r, AA'ry

= bt 8 AT k=0,1,2,...
Xk+1 X + ||AATI']¢||§ Tk, 0; ) Ay ) (G)

X0 € Rn,

T
since the result 6), in this case, implies ”‘Tl Ar”";”z — 0. The required computations

are ATry and A(ATry) each step. Note that this method is nothing else that
Gradient method (see below Choice H = A) applied to the system A7 Ax =
ATb. One can obviously apply CG method to the same system and obtain an
algorithm whose rate of convergence can be much faster than (G) convergence
rate in many cases (see below the theory on CG method).

Choice H =1

For H = T the iterative scheme (it) becomes:

(X — Xk)Tdk

17d dg, £=0,1,2,....
k Yk

Xg € Rn, Xp41 = Xk +

Choose dy = A”rj.. Then, by 6), we have % — 0, that is, the xy converge to
x under the only assumption det(A) # 0. Here is the corresponding algorithm:

Xg €ER", rg=b— Axg.

For k=0,1,2,...
rir T M
Xk+1:Xk+mA Tk, (M)
ryrg T
rk+1 =T — ”A%THSA(A I']C)7

each step of which requires the computations A7ry, and A(ATry).

In general, all the above methods (it) may have a low rate of convergence in
solving Ax = b. For example, for the iterations generated by (G) we know that



I = xellara < ((12(ATA) — 1)/ (a(AT A) + 1))]x = xollar4, and it s not
difficult to prove that po(AT A) = s (A)2. However, the convergence rate of (it)
could be improved by applying it to P~ Ax = P~'b for a suitable choice of P
n x n non singular. One could set, for instance, P~ = CE%AAT where Cyr 4
is some approximation of AT A (of course such approximation should be defined
without computing the entries of AT A; may be one could set Cyr4 = CTCx
where C4 is some approximation of A). This procedure could improve the rate
of convergence at least of (G) and (GC).

Question: can a suitable choice of P improve the rate of convergence of the
methods (S),(GS),(M). If yes, then (S) and (GS) would be competitive in solving
generic large linear systems, because of their low complexity per step.

Choice H = A (allowed if A is positive definite).

It is simple to prove that also for H = A the choice dj equal to the sith
canonical basis vector (s; € {1,...,n}) with s such that

o )si| o [0)5]

las,sel —  laggl ’

(Southwell) and s = kmodn + 1 (Gauss-Seidel) yields vectors xj, convergent
to x = A~'b. Note that in the second case (sx = kmodn + 1), n iterations are
equivalent to one iteration of the well known stationary Gauss-Seidel method; it
follows that the latter method converges when applied to solve positive definite
linear systems (recall that the other well known stationary method, Jacobi, has
not such feature).

G method

Assume A, in the system Ax = b we have to solve, positive definite. Then
the choices H = A and dj, = r, = b — Axy yield lyq,}, 5 = 0 (use 6)). The
method so obtained is called steepest descent (or Gradient) since dy = ry =
—VF(x¢) and F decreases along —VF(xj) more rapidly than in any other
direction (in a neighborhood of xj). However, in general the contours of F are
far from being spheres, so the steepest descent direction (which is orthogonal
to such contours) is far from pointing to A~'b. In particular, from 4) and the
Kantorovich inequality,

zT AzzT A1z < (Amax + Amin)?

1<
N (ZTZ)Q - 4)\max )\min

(Amax = max A(A), Amin = min A(A4)), we have the following result

Amax k
HX_XkHA < )\min —1
HX_XOHA - imax +1

min

that states that G can be very slow when i’“a" >> 1.

CG method
Assume A, the coefficient matrix of our system Ax = b, positive definite
(recall that A and b are real). In the general scheme choose H = A, dg =g =
b — Axg, dy, = rg + Br—1dr—1, k =1,2,..., (rx =b — Ax}) where [;_1 is such
that
(dg,dg—1)a =0



(dg conjugate to dg—_1).

Note that for n = 2 the choice of 8y so that (d1,dg)a = 0 makes the search
direction d; = r; + Bydg pointing to the center of the contours of F', and thus
makes x, = A~ 'b, i.e. we have convergence in two steps.

Here below is the CG algorithm when n is generic:

X € Rn, rog = b — AX(), d() =Trg.
For k=0,1,...,{

dgrk

a7 Ady,

Xpt1 = X + Trdg

41 = b — Axk+1 =Tr — TkAdk

T =

B = Ty Adg
k= TTaTAq,
dit1 = rip1 + Brdi

}

known as Conjugate Gradient (CG) algorithm.

We stop here the discussion about the general iterations (it), in order to
investigate CG in detail.
First note that

0=(x—xpy1)" Hdp = (x = xp41)" Adg = vy dg, v disr = [[regal3.

As a consequence, if at step s we have ry = b — Axy # 0, then dg # 0, 7, is
well defined and not zero . ..: the algorithm works.

Ifrg, ..., r;,_1 are non null and r,,, = 0, then 3,,_1 =0, d,,, = 0, 7,, cannot
be defined, but it doen’t matter since x,, = A~'b. This hypothesis is effectively
verified, in fact there exists m < n = the order of A, such that r,, = 0 (see
below).

Alternative expressions for 74 and S hold:

= dfrk _ rgr;C

- dlAd,  df Ady

(di =1k + Br—1dp—1, rf dp—y = 0),

ﬁk _ _r’l{-;lAdk — _"g;l?;l(”k—rkJrl)
gkAdk- - di 7, (rp—rry1)
_ T 1Tk HTp 1Tkt T Tkl
- dgrk - rgrk

The latter identity uses the result
r;‘gﬂrk =0

(residual at step k + 1 is orthogonal to residual at step k, exactly as in the
Gradient method) which is not obvious:

I‘g+1rk = rg-q—l(dk = Br-1dg—1) = _ﬂkflrg-i—ldkfl
= —Bp_1(rr — vAdg)Tdy—1 = Br_17ed} Adj—1 = 0.

First main result: If rg,r1,...,r, are non null, then

dfAd; =0, r/r; =0, 0<j<I<p.



That is, each new residual (search direction) is orthogonal (conjugate) to all
previous residuals (search directions). As a consequence, the residual r,, must
be null for some m < n, or, equivalently, CG finds the solution of Ax = b in at
most n steps.

Proof. ...

A useful representation of the residuals. If ro,r1,...,rr_1 are non null, then
there exist polynomials sy (A), gk (\) such that

r, = sp(A)ro, di = qr(A)ro,
se(\) = (=D from - me N+ L Ty # 0.

Proof (by induction). The equality ro = so(A)re holds if sg(A\) = 1; dg =
qo(A)rp holds if go(N\) = 1. Moreover,

rp1 =1 — T Adg = sk (A)ro — 7 Agr(A)ro = sk+1(A)ro
if 501 () = s1(\) — TeAge(A), and
dit1 = Thy1 + Oredi = sk41(A)ro + Brgr(A)ro = qria(A)ro
if grt1(A) = sp41(A) + Brar(A). Finally, since
sk+1(A) = sk(A) = TeA(SK(A) + Br—196-1(N)),

the coefficient of A**1 in s;.1(\) is —74 times the coefficient of A\¥ in sp(\).
Thus, by the inductive assumption, it must be (—1)**lryr -+ 717, Also,
the coefficient of A\° in s;,1()\) is equal to the coefficient of A” in sj()\), which
is 1 by the inductive assumption.

Second main result: v, = 0 for some k < #{distinct eigenvalues of A}.

Proof. Let p1, pi2, - . ., tn, be the distinct eigenvalues of A (m < n = order of
A). Assume that CG requires more than m steps to converge. So, the vectors
ro,ri,..., Iy, are non null, and, by the First main result, orthogonal (= linearly
independent). Let V' be an orthonormal matrix whose columns are eigenvectors
of A, thus VT =V~ and AV = VD for D diagonal with the eigenvalues of A
as diagonal entries. Observe that there is a degree-m polynomial which is null
in A,

[[A—wD) = [[vDV ;1) = [[ V(D= DV =V [[(D—p; VT = 0.
j=1 j=1 j=1 j=1

As a consequence the matrices A° =1, A, ..., A™ are linearly dependent. But
this implies that the dimension of the space

Kynt1(ro) = Span{rg, Arg,..., A™ro} = Span{rg,r1,...,r:n}
is smaller than m + 1, which is absurd. It follows that one of the vectors r;,
1=0,...,m, must be null.

Let II} be the set of all polynomials of degree exactly k whose graphic
pass through (0,1). We now see that the polynomial sx(\) in the expression
r, = si(A)rg is a very particular polynomial in the class IT}: it makes the norm



of the vector pg(A)rg, pr € II., minimum (for a suitable choice of the norm).
This result let us give estimates of the rate of convergence of CG, as precise as
good is the knowledge about the location of the eigenvalues of A. For example,
if it is known that the eigenvalues of A cluster around 1, then CG must converge
with a superlinear rate of convergence (see below).

Notice that ry = si(A)rg =ro + ﬁk, for a particular vector flk in the space
M = Span {Arg, A%rg, ..., A¥ro}. Take a generic vector hy, in this space. Then

[ro + b5 = ||r0+1:1k+hk —flk||,24_3 R X
= |ro+hg|% -1 + b — hil[A -1 +2(ro + hy, by —hy) 41
Now observe that the latter inner product is null, in fact, for j =0,...,k — 1,

0 =rlr; = rT A YAr; = (ry, Ar;j) 41, that is, rj is A~ l-orthogonal to the
space Span {Arg, Ary,..., Ary_1}, but this space is exactly M. The thesis
follows since hy, — hy € M. So we have:

7o + bl = [lro + Bgll% - + By — hl%0 > [|ro + Bl
In other words,
[exll%- = ||r.0 +flk||,2471 :2rnin{||r0 + 111kH,2471 : hy, € M} (m)
= min{||pr(A)roll%-. : pr € I }.
Comparison with GMRES. Notice that for any hy € M we have
ro+hy =b—A(xo+2), 2= —-A""'h; € Ki(ryg) = Span {rg, Arg, ..., Ak_lro}.

Thus, the vector x; generated by the CG method is of type x¢ + 2 where z
solves the problem

b — A(xo +2)[[a-+ = min{[[b — A(xo + 2)[ 4+ : 2 € Ki(ro)}  (p)

(K (ro) is known as Krylov space). GMRES is a method able to solve Ax = b
in at most n steps under the only assumption det(4) # 0. (Like CG, GMRES
in order to be competitive must be used as an iterative method, i.e. less than
n steps must be sufficient to give a good approximation of x). In the k-th step
of GMRES it is defined a vector xj, of type x¢ + 2 where z solves exactly the
problem (p) but the norm involved is the euclidean one. So, CG is a minimal
residual algorithm different from GMRES| 4 p4.

It is easy to see that the condition (m) can be rewritten as follows:

1% = xx[% = min [|pr(4)(x = x0)[|%-
pr €I},

Now we give a bound for the quantity ||px(A4)(x — x0)||4, px € I}, which can
be evaluated if (besides A, b) also some information about the location of the
eigenvalues A\; of A is given. Let v; # 0 be such that Av; = A\;v,, Vlij = dy5.
Then

x — x0) T Apy (A)?(x — x0)

[Pk (A)(x — x0)[1% (
EZ aivi)T > a; Api(A)*v;
(

Z OziVi)T E OéiApk ()‘i)Qvi
Z OziVi)T E Qi ik ()‘i)Qvi
= > a2Ape(N)? < max; [pe(A)2[1x — %04



So, we obtain the following
Third main result: If xj, is the k-th vector generated by CG when applied
to solve the pd linear system Ax = b, then

= xil3 = min [lpe(4)(x —x0)[[3 < max|peX) Pl = o3, Ve € T
Pk k

So, if S C R, py € II},, My, € R are known such that \; € S Vi and |px(A\)| < My,
VYA €S, then ||x — xi|la < Mgllx — %ol a-

Let us see two applications of the latter result. As consequences of the
first application we observe that CG (considered as an iterative method) has
a linear rate of convergence, is in general faster than G, and is competitive
(f.i. with direct methods) if A\pax and Amin are comparable. However, as a
consequence of the second application, the latter condition is not necessary: the
rate of convergence of CG remains high (so, CG remains competitive) if most
of the eigenvalues are in [Amin, 5\] with Apin and A comparable. Further useful
applications of the Third main result hold. In particular, as a consequence of
one of these (see below), it can be stated that CG has a superlinear rate of
convergence if most of the eigenvalues of A are in the interval S =[1—¢,1+¢].

(1)
Amazx+Amin =22 )

max = Amin

nins, A\max|, pk‘
!k (Amax"l'Amin )

>\max7)\min

k
'X—XHA<2<%%%%i%>|x_xﬂm;@m>:A@&

=

S:[)\min,j\]U{Aii )\i>5\}; TX:#{iZ >\i>5\};

AtAmin =22
( ) H 1 z Tk;_r;\ ( X_)‘rﬂiu )
PelT) =i >a\ 7 .
)\z Tkﬁ*’r‘j\ ( §+)\I!lln )

-
\/m » k—rs
\V A Amin + 1

The applications (1) and (2) of the Third main result suggest an idea. When
Amin and Apax are not comparable and the eigenvalues of A are uniformly dis-
tributed in the interval [Amin, Amax] (in this case all n steps of CG are required
in order to give a good approximation of x), replace the given system Ax = b
with an equivalent system A% = B, A= E*1A~E’T, x = ETx, b = E-'b,

det(E) # 0, where the matrix F is such that pua(A) < p2(A) and has one of the
following properties

=

llx —xklla <2 [x —xolla, k>ryg.

o p2(A) << pa(A)

e A has much less distinct eigenvalues than A



e A has the eigenvalues much more clustered (around 1) than A

Then apply CG to Ai=b

If such matrix E can be found, then the pd matrix P = EET is said pre-
conditioner.

Note that E-TAET = P~1 A, so one could look directly for a pd matrix P
such that the (real positive) eigenvalues of P~!A have the required properties.
For example, in order to obtain something of type P~1 A ~ I (which would result
in a very high increase of the CG rate of convergence) one could choose P as
an approximation A of A. We shall see that applying CG to A% = b requires,
for each step, a surplus of computation: solve a system of type Pz = hy.
This computation must not make CG slow, in other words P must be a lower
complexiy matrix than A. Also notlce that F7 and Eg, Ey # Es, E\ET = B,ET,
define matrices A; = 1AE and Ay = 1AE A1 #* Ag, with the same
spectrum. For this reason one prefers to call precondltloner P instead of E.

A final remark. The vector x = A~'b we are looking for is also the minimum
point of the function F(z) = %ZTAZ — zTb. Analogously, x = A~'b is the
minimum point of the function ﬁ'(z) = %ZTAZ —2zTb. The preconditioning
technique replaces the (sections of the) contours of F' with the more spherical
(sections of the) contours of F', and this results in a more efficient minimization
when using gradient-type methods.

Let us write the preconditioned version of the CG algorithm, well defined
once that A, b and the preconditioner P are given.
Let us apply CG to the system Ax =

Axy, do = To.

dTAd;C
X1 = Xpp + Fed
I‘k+1 = b AXk+1 = I‘k — TkAdk

6 rk+1rk+1
rgr;‘

diy1 = Fpa1 + Gedy

}

Note that the convergence rate of the sequence {X;} can be evaluated by using
the following results

k
~ ~ ’LLQ(A) - 1 ~ ~ 1 anax
[x =%kl <2 | ——=——] x—%0l4 #H2(A)=+—,
/.LQ(A) +1 Amin
N k—rg
/\//\mln

% — %l 4 <2 [x—=x0llz, k=>r5:

\//\//\mm+ 1

if po (fl) << p2(A)or A has most of the eigenvalues \; in [Xmin, 5\] and S\/S\min <<
Amax/Amin, then X — X = ETx with a greater rate than x; — x.



Now we obtain each row of the preconditioned CG method. Define x; =

E_Tf(k, ry=b— Axk, and dj = E‘T&k. Then

v = b—Ax,=E 'b—E'AET(ETx;)
= E_lrk = ETE_TE_ll‘k = EThk, h;, = P_ll‘k,

7ty = rI'E-TE 'ry =rThy,
dTAd, = dTE-'AE-Td, =dTAd,.
Thus
. rihy,
T = .
d? Ady

Moreover, we have

)~Ck+1 = ETX]H_l = ETXk =+ f‘kETdk =
Xp41 = X + Trdy,

f‘k+1 = Eilrk+1 = Eill‘}C — f'kEflAEfTETdk =
rpp1 = Ty + TR Ady,

T
5 ry b
I‘ghk

(I’OW?).E)Z hk+1 = Pilrk+1)7

diy1 = ETdk+1~: EThyq + G ETdy =
di+1 = hyp + Grdy.

Finally, in order to initialize the algorithm, set:

X9 = E_T)’V((), ro=>b— AXO,
dg = Ede() = Ein‘() = EiTEThQ = hyg.

(rowl)

(row?2)

(row3)

(rowd)

(rowb)

(row0)

Regarding the convergence rate of the sequence {xj}, generated by the al-

gorithm rowO and, for £k = 0,1, ..., rowsl, 2,3, 3.5,4, 5, note that

(x5, —x)TA(X), — X)

% — %1%

= (ETx;, — E"x)TE'AE-T(ETx); — ETx)

= (xr—x)TAG —x) =[x — x[[%

Thus the bounds for ||%X — X ; obtained above, can be rewritten as follows

_ k
lIxr—%[la pn2(A)—1 A\ Amax
Teo—xlla = 2 <— ) ha(A) = o,

2 (A)+1

\/i/i- 1 s
Eririetl Gyl BENRNL LY

\/)\/Amin"rl

Why clustering around 1 is good
Let A be a p.d. matrix and ¢, 0 < € < 1, be fixed.



Denote by A% the eigenvalues of A outside the interval [1 —¢,1+ €] and by
7e the number of such eigenvalues. Set S = [l —¢,1+ ] U{A5} and let p; be
the polynomial

AN\ Ty (1A
N =]] <1 - )\—§> Tq((re(l/s))/a)’ q>re

X

where T} (z) denotes the chebycev polynomial of degree k. ((b+a—2\)/(b—a) =
(I1=X)/e, (b+a)/(b—a)=1/e,ifa=1—¢,b=1+¢ ). Notice that S is a set
containing all the eigenvalues of A, and p, has exactly degree ¢ and p,(0) = 1.
Then one can say that if x, is the g-th vector generated by the CG method
when solving Ax = b, then

1 =%l < (max[pg (A)])x —xol|.1- (bound)
This bound for ||x — x4||4 allows a better evaluation of the CG rate of conver-
gence with respect to the well known bound

% — Xgl[a < 2 %Zﬁi:) % — Xol4, p2(A) = % (wkbound)

in case it is known that most of (almost all) the eigenvalues of A are in some
interval [1 — ¢,1 + €] where ¢ is small (almost zero).

If, moreover, the n x n linear system Ax = b can be seen as one of a sequence
of increasing order linear systems, with the property that Ve > 0 3 k., n. such
that for all n > n. outside [1 — &, 1 + ] fall no more than n. eigenvalues of A,
then (bound) allows to prove the superlinear convergence of CG.

(Note that in general CG has a linear rate of convergence, as a consequence
of (wkbound)).

Let us prove these assertions, by evaluating maxyeg [pg(N)]-

maxies |pq()‘)| = INaX)g[l—e,1+€] |pq()‘)|
Tq—r. (1=X)/e
< (maxm]_[Aj 1— % )(max_ % )

_ _ A1
= (max_. HA; 1 Py )Tq,%u/g)-
Now first notice that
1+
1= T 1

1) . ) 1

_ - | =T,- > | —
q—7Te q—Te 1+e

<6 <1—5_1 2 ’/%tz—l

Then denote by 5\3 those eigenvalues \j satisfying the inequalities

1
A5 <1-g, /\§<§(1+5)

and observe that

1- 2

1— G
>\.7

IA

MAX\c[1—¢,14¢] HA? max_ HX?

— o | 1fe =
- H*?(Xi 1)

10



So, we have

IN

maxxes [Pq(A)] AT \/EH
e = q—Te
(i ) (8
min A(A) \/ itiJrl
( 1+4e _1)#>‘§ e
min A(A) eTeQa—re—1)

where in the latter approximation we have used the following Taylor expansion

/1+€_1

1-¢ &
M =" "2

yie t1

IN

Q

o |

+—=f"0)+....

From CG to GMRES

The minimal property satisfied by the residual ry = b — Ax; at the kth
iteration of the CG method can be rewritten in a way that allows us to compare
the x;, generated by CG with the approximation x defined by GMRES, which is
a method sharing CG properties (convergence in at most the number of distict
eigenvalues of A; fast convergence if the eigenvalues of A are clustered), but
working for any linear system Ax = b (i.e. not limited to positive definite
ones). However, we immediately underline that GMRES is not as cheap as CG.

Note that, for any py € II},

pk(A)I'O = ro+aArg+...+ OékAkI'O
= b—AX()—f—OélAI'()—F...—FakAkI'O
= b—A(XO —oqrg — ... —OékAk_lro)
= b-— A(x¢+2),

z € Span {rg, Arg, ..., A¥"1ry}.
Thus the result

x; of CG is such that
[rella-r = [[sk(A)rolla-r = min,, e [lpr(A)rolla—

can be rewritten as follows

x; of CG is equal to xg + z with
z such that ||b — A(xg + Z)|| a-1 = mingex, ||b — A(x0 + 2)||4-1,
where Ky = Span {rg, Arg, ..., A¥=Irg}.

Note that K = Ki(rg) is a Krylov space and has dimension at most k.

Now, consider a generic linear system Ax = b, where A is assumed non
singular. Then the approximation of x = A~!b proposed by GMRES at step k
is defined as follows:

x; of GMRES is equal to xg + z with
z such that |b — A(xg + z)||2 = mingek, |[|b — A(xo + 2)||2,
where Kj, = Span {rq, Aro,..., A¥ 1ry}.

11



So, in case A is positive definite, the “only” difference between GMRES and CG
is in the fact that in GMRES the euclidean norm of the residual is minimized,
whereas in CG the norm used is || - || a4-1.

The cost of the computation of z in GMRES grows with k. For this reason,
1) GMRES is not competitive with CG when A is positive definite; 2) when
A is not positive definite, GMRES is more efficient than other linear system
solvers only if A has suitable spectral properties (a “small” number of distinct
eigenvalues, eigenvalues clustering, etc), otherwise GMRES must be modified
to be competitive (restarted GMRES, etc).

Performing the kth iteration of GMRES

First we have to find an orthonormal basis {v1,..., vy} of Ky, by using the
Arnoldi procedure, so that z € Ky (z € Kj) can be represented as z = Viy,
y € R (z = Vy, y € R¥), where V}, is the n x k matrix whose columns are
Vi,..., VL.

Let us find such basis. Let xg € R™ and set rg = b — Axg.
If rg # 0, then set

1 ~
Vi = ro, Vo = Avy — h1ivy,

hi1 = (Avi,vi), ho1 = [[V2lf2.

Note that (Vo,v1) = 0.
If 5 # 0 (hoy # 0), then set

1 - A
har V2) V3 = Avy — hiavi — haova,

Vo =
hiz = (AV27V1)7 hag = (AVQ,VQ), haa = ||‘73||2-

Note that (vs,v1) = (V3,ve) =0. ...
If ¥, # 0 (hym—1 # 0), then set

Vm = Rmm—1 ‘A/m’ ‘A/erl = Avm - hlmvl - h2mV2 e — hmmvmv
him = (Avin, v1), hom = (AVi,, va), ...
oy B = (AVi, Vi), Bntim = [|[Vint1 ]2

V41l -

),
Note that (Vim+1,v1) = (Vimg1,v2) = ... = (Vim+1, vin) = 0.
If Vpr1 # 0 (ht1m # 0), then set v, 1 =

Observe that the vectors vy, defined as above satisfy the vectorial identities

hnL+1nL

Avi = hi1vi + hai v

Avy = hiav1 + hoova + h3avs

Avm - hlmvl + h2mv2 +...+ hmmvm + herlmeJrl
or, equivalently, the matrix identity

Avm - m+1f{m - VmHm + Vm+1[0 e Ohm—i-lm];

where V,,, = [Vl Vo ot Vi |,
hit hiz - . him
ha1  hao - .
- H,,
Hm = h32 . . . ) Hm = [ 0 0 hmttm ]



Note that H,, is a Hessenberg matrix.
It is clear that

ro #0 = Ki(rg) = Ki(v1) = Span{vi}

ro, Ve Z0 = Ky(rg) =Ka(vy) = Span{vy, Avi} = Span{vy,va}

ro,Vo,...,vim #0 = K, (ro) = K,,(v1) = Span {vy, Avy,..., A" vy}
= Span{vi,va,...,Vin}

ie. {vi,..., vy} is a well defined orthonormal basis for K,,(rp), provided that
Vi :=Tg, Vo,..., Vin # 0 (hio == [[¥1]l2, k21, Rmm—1 # 0).

Now let us proceed by rewriting the function ||b — A(xg + z)||2 of z € K,
so that its minimum value and the point z € K where such value is assumed,
are defined more explicitly and become computable.

In order to do that we change variable, i.e. we set z = V,y, y € R¥. Then

b~ Axo +2)[13 = b — Alxo + Viy) I3 = lIro — AVey)l3 = ...

Let M, _; be a n x (n — k) matrix whose columns are orthonormal, each other
and with the columns of Vj, and assume its first column equal to vj41:

_ Vk* _ Vk* 2
- ”[Am%}rO {Ma%]AW“b
= |Viro — Vi AViyll3 + | M) _yro — M AViyll3 = ...

The equality AVy, = Vi Hy + vi41[0 - -+ 0 hgp1 5] holds:

l[roll2 l[roll2
0 « 0
= —Hry|3+I1—M;_AViyll5 = || , —Hyyll3+vihii g
0 0
l[roll2
0 ~
= ' — Hpyll3 = ...
0
0

Assume that we know @ real unitary and Ry upper triangular such that
QgH r = Ri. By using these matrices one can construct at a low cost Q41 real
unitary and Ry41 upper triangular such that Q;;F+1Hk+1 = Rj+1. In fact, set

N I Qr 0
Qi = a —p ;o + 57 =1 Q)
0 « o7 1
Then
o I Ry
QrHy, = a -3
B « 0 0hktik

Now choose «,3 such that
a —p [RiJer | _
B« Ptk

13

0

1/ [Relip + higax ]



i.e.
+[R :Fh
. [ k]kk : ﬁ 5]@ k+1,k

[Rel7), + hi+1,k [Rel7), + hi+1,k

by choosing the upper sign if [Ri]rr > 0 and the lower sign if [Rg]gr < 0 (the
reason for that will be clear below). Then

(aB)

i Ry +
QF Hy, = F { 7] sy = = B [Relie +hi s — [Relke, ()
0

hi k1 { ]
~ ) R + ~
QT Hyn = QF | Hy, : = F ol QF

Pit1 k41 0 - - 0 i1 k41

hi k41

The latter matrix is upper triangular. Call it Rgy1 and set Qry1 = Qk Then
Qi1 Hrt1 = Riya.

l[roll2 l[roll2

0 - 0 r| |
= 1QE S AL R ) IR B W P
0 0 0 «ov oen 0
[[roll2
0
o /0% IR I R R o
0

It follows that, if ry is the residual at step k of the GMRES method, then
lexll3 = Ib — A(xo +2)[13 = min |[b— A(xo + 2)[13 = IIroll 3@+ 1]+ 1.1,

where
l[roll2
- - - 0
= kaa (Rk + |: 7y :|)y = IlngJrl . )
0

i.e. z can be computed by solving an upper triangular linear system of k linear
equations and by performing a matrix-vector product involving a n X k matrix.
However, one can do such operations, i.e. compute X, only when the inequality
lre]l < TOL|rpl| is satisfied, a condition that can be checked by using the

following formula
k
[lrx H J+17J
lroll* 5 [Rs]3; + it

Proof: [Q;{H]kﬂ,l = BrQ% k=

2
hk-{—l k

e~ | SHY |9 (r)
[Ry ]kk+hk+1k iz

lexl3 = Biller-1l3 =
So, we have the GMRES algorithm:

Choose xg € R™ and set rg = b — Axg.
Form=0,1,...:

14



Compute hmti1m = [Vmt1]l (V1 = ro).

If Bys1m # 0, THEN {

i Je=l < TOL THEN {

compute X, and stop (x,, ~ A~1b),

} ELSE { define QI | from QT (except when m = 0: Qf = 1),
set Vipt1 = m@mﬂ, compute Avyi1, Rjmy1 = (AVit1,V;),
j = 1, oo, + 1, \A/'m_i_g = AVm+1 — hl,m_Hvl e — hm+1,m+1vm+1;
define R, 41 from R, (except when m =0: Ry = h11) }

} ELSE compute X, and stop (x,, = A~'b).

Exercise. Count the number of of memory allocations needed to implement
the above algorithm. Count the number of arithmetic operations required to do
k steps.

The first step in detail

Given xg € R", let us perform the first step of the GMRES method.
Set k=1, 1.e x3 =x0+WV1y =%+ V171 = X0+ ”r—lol‘rogjl with g1 € R such
that

(Ri+7)51 = [1QF [ HrOOH } -

Since Hy = hy; = (Avy,vy) = % and 1-hy; = hi11, we have QT = 1 and
Ri = [Ri]11 = ha1.
Then vo = Avy — h11vy, hoy = ||V,

il RIR Y
278« 0o 1| |8 a |’
Fhoi

a=qQq = \/W, 6 61 ma

h2, + h2, — h11 (choose the upper sign if h1; > 0 and the lower sign if
hi1 < 0). So, the system becomes

~ « — I
e A e L B

Thus, §1 = ||rol| I ‘Jrhz , and x1 = xg + mro.

But h3, = (AV1 hy1vi)T (Av1 h11vi) = ... =vI AT Av, — (vI Avy)?, so
h2, + b3, = vIAT Avy = ”Iﬁ”T"L It follows that
AI‘O
X1 =
IIA TAro[2™

i.e. x1 coincides with the approximation generated by one application of step-
variable Richardson-Euler method. We could foresee this remark since

x; of GMRES is equal to x¢ + z with
z such that |b — A(xg + Z)||2 = mingex, ||b — A(xo + 2)||2,
where K; = Span {rg}
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is exactly the same condition required on x; = xg + wrp, w € R, by RE.

Note that if rg # 0, then Ry +v1 = ++/h3, + h3; # 0, i.e. the first step of
GMRES is well defined. Let us show this fact. If Aoy # 0 then the thesis is true.
Assume hoy = [|[V2]] = 0. If hy; = 0 too, then 0 = V3 = Avy — hy1vy = Avy,
with vy # 0; this implies det(A) = 0, which is absurd. So, if he; = 0, h11 must
be nonzero, and the proof of the fact is completed.

Note also that, from

2

h3 4
Ir1]l3 = BFlIroll3 = 555 lIroll3
2 ! PRy + h3 z

and the previous reasonings, it follows that 1) if he; = 0, then h1; = [R1]11
must be nonzero and the the initial residual is canceled by the first step of
GMRES. 2) if ha; # 0, then the norm of the initial residual is reduced by the
first step of GMRES, unless the choice of the initial guess is so unlucky that
hi11 = (Avy,v1) = 0; in such case, the norm of the residual remains unchanged
(stagnation phenomenon).

Convergence in at most n steps

A simple investigation let us observe that the upper triangular matrices Ry,
generated by the GMRES algorithm have the form

o1+/[R1]3 + h3, * e * *
o2/ [Ral3y + 13, *
Ry = ' :
Ok—1 \/[Rk—l]iflkfl +hijy *
[Rk]kk
where o; = 11if [R;];; > 0 and 0; = —1 if [R;];; < 0. Also recall that the

coefficient matrix of the system we have to solve to compute x;, is
Ry + { - } s Ve = 0/ [Re)ig + hiy1 g — [Belek

where o, = 1 if [Rk]kk >0and o = —11if [Rk]kk < 0.

Now assume that at a certain step k we have hoi, ..., hgr—1 nonzero (so
Vi,...,Vg are orthonormal, i.e. V*Vi = I), but hgyix = 0 (so Viy1 = 0, and
Avy, is a linear combination of vi, ..., vy). Note that there must exists k < n for

which this happens. Then necessarily [Rg]rr # 0 (see below). As a consequence
all diagonal entries of Ry are nonzero, and vy, = og|[Rk]kk| — [Ri]kk = 0. Thus
the coefficient matrix, at such step k, must be equal to Ry and non singular. It
follows that x; = xg + Vi ¥ is well defined, and by (r) the residual in x; must
be null (hgt1,% = 0!), that is, xi = A~ 1b.

Let us show that [Rg]gx # 0. Assume [Ry]gr = 0. Then, since Ry = QF Hy,
the matrix Hj must be singular. This fact with the identity AV, = ViHy
(hi+1,5 = 0!) implies AVye; = Ej# AVye; for some ¢, and thus det(A4) = 0
(otherwise the columns of Vj, should be linearly dependent which is impossible
since V;*Vi, = I). It follows that [Ry]x, must be nonzero.

Stagnation phenomenon
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Assume ry # 0 and set vy = H:_gl\ Assume that the value of hi; for which
vy = Avy — hq1vy is orthogonal to v; turns out to be zero, i.e.

hi1 = [Ri]11 = (Avy,vi) =0,

but \72 = AV1 — h11V1 = AV1 75 07 so that h21 = ||\A12‘ 7é 0. Then the
first step of GMRES is well defined (R; + 71 = 014/h3; = o1ha1 # 0), and

h2
1117 = g2 lieoll” = ol

Assume also that [Rg]22 = 0 but hge = ||[Vs|| # 0 (V3 = Ava—hiavi—haava #
0). From the equality Ry = QT H, it follows that

_ o1ho1 * _ hit hio
0 = [det( 0 [Ro]2=0 b' B |det({ hai  hao ])|

0 A2

jder( | 32 | = fharia

= higa = (Ava,vy) = (mszl’VI) = 0. Moreover,

0'1h21 *
R =
2 { 72 } [ 0 o2hs }

is non singular, so the second step of GMRES is well defined, and ||ra||? =
ari e = e
0+h, 1 = 1 ..

Question: for any k < m — 1 is it possible to introduce a residual ro such
that GMRES iterations yield

0=hi1=...=hig

0=[RiJ11 =...=[Rilrk

0= (AI‘(),I‘()) = (AQI'(),I‘()) =...= (Akro,ro)
hai, ..., hit1,x all nonzero

? (for k = n it cannot be possible because hy,1 , must be zero, or, equivalently,
Av,, must be a linear combination of vi,...,vy).
If yes, then we would have stagnation for k steps:

[l = = [lra]] = [Iroll

For instance, if such situation occurs for £ = n — 1, then the method works well
only in last step, in fact r,, must be necessarily null by the convergence in at
most n steps property ([Rp]nn must be nonzero and hy41,, must be zero).

Question: investigate stagnation that begins at the kth step (k < n): [R,];; #
0 (hjr1; #0),7=1,...,k =1, [Reik = 0 (= hpgir #0), [[ri]| = [|[re—1]] <
2l < ... < ol
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