
CG and GMRES iterations

From Southwell to Conjugate Gradient iterations

Let ek be the error at step k of an iterative method in approximating the
solution x of a linear system Ax = b, i.e. ek = x−xk . Choose a vector dk 6= 0

and set ek+1 = ek − ωdk. Let H be a positive definite matrix and consider
the inner product (u,v)H = uT Hv. Then the value of ω for which ‖ek+1‖H is
minimum is

ω = ωk =
(ek,dk)H

‖dk‖2
H

.

(‖ek+1‖2
H = ‖ek‖2−2ω(ek,dk)H +ω2‖dk‖2

H). So, we have the iterative scheme

x0 ∈ R
n, xk+1 = xk +

(ek,dk)H

‖dk‖2
H

dk, k = 0, 1, 2, . . . . (it)

Note that each of the three conditions:

1) ‖ek+1‖H minimum,
2) (ek+1,dk)H = 0,
3) F (xk + ωdk) minimum, F (y) = 1

2y
T Hy − yT HA−1b

yields the value ω = ωk, i.e. such conditions are equivalent. (Note that, since
F (y + z) = F (y) + zT H(y − A−1b) + 1

2z
T Hz, the vector A−1b is the global

minimum for F , and the contours of F are neighborhoods of A−1b in the metric
induced by the norm ‖ · ‖H). Moreover, for ω = ωk we have

4) ‖ek+1‖2
H = ‖ek‖2

H − ‖ωkdk‖2
H ,

5) limk ‖ek‖H = l{dk},H ≥ 0,
6) limk→+∞ ‖ωkdk‖H = 0,

7) let vi 6= 0, i = 1, . . . , r; if dk = vk mod r + 1 then limk→+∞
|(ek+1,vi)H |

‖vi‖H
= 0.

Suitable choice of H and {dk} make l{dk},H = 0, i.e. make (it) convergent to
x = A−1b. In the following, rk denotes the vector b − Axk = Aek.

Choice H = AT A

x0 ∈ R
n, xk+1 = xk +

rT
k Adk

‖Adk‖2
2

dk, k = 0, 1, 2, . . . .

Choose dk equal to the skth canonical basis vector (sk ∈ {1, . . . , n}). For the
sake of simplicity, call A(j) the jth column of A, j = 1, . . . , n. Then we obtain
the algorithm:

compute ‖A(j)‖2, j = 1, . . . , n;
x0 ∈ R

n, r0 = b − Ax0. For k = 0, 1, 2 . . .
compute rT

k A
choose sk ∈ {1, 2, . . . , n}
(xk+1)j = (xk)j , j 6= sk

(xk+1)sk
= (xk)sk

+
(rT

k A)sk

‖A(sk)‖2
2

rk+1 = rk − (rT
k A)sk

‖A(sk)‖2
2

A(sk)

(S, GS)
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Note that, both the choices sk such that

|(rT
k A)sk

|
‖A(sk)‖2

≥ |(rT
k A)j |

‖A(j)‖2
, ∀ j

(Southwell) and sk = k mod n + 1 (Gauss-Seidel) yield
|rT

k A(j) |

‖A(j)‖2
→ 0, ∀ j (use 6)

and 7), respectively), i.e. the residuals rk converge to the null vector, since the
columns of A are linearly independent.

Thus the Southwell and Gauss-Seidel variants of the above algorithm can
solve any linear system Ax = b, by requiring for each step only the computation
of rT

k A.

Choose dk = rk . Then we have the variable-step Richardson-Euler method

x0 ∈ R
n, xk+1 = xk +

rT
k Ark

‖Ark‖2
2

rk, k = 0, 1, 2, . . . . (RE)

whose convergence is assured if the symmetric part of A is positive definite (by

6), in fact,
‖rk‖

2
AS

‖A‖2‖rk‖2
→ 0).

Choose dk = AT rk. Then we obtain an algorithm always convergent

x0 ∈ R
n, xk+1 = xk +

rT
k AAT rk

‖AAT rk‖2
2

AT rk, k = 0, 1, 2, . . . , (G)

since the result 6), in this case, implies ‖AT
rk‖2

‖A‖2
→ 0. The required computations

are AT rk and A(AT rk) each step. Note that this method is nothing else that
Gradient method (see below Choice H = A) applied to the system AT Ax =
AT b. One can obviously apply CG method to the same system and obtain an
algorithm whose rate of convergence can be much faster than (G) convergence
rate in many cases (see below the theory on CG method).

Choice H = I

For H = I the iterative scheme (it) becomes:

x0 ∈ R
n, xk+1 = xk +

(x − xk)T dk

dT
k dk

dk, k = 0, 1, 2, . . . .

Choose dk = AT rk. Then, by 6), we have ‖rk‖2

‖AT ‖2
→ 0, that is, the xk converge to

x under the only assumption det(A) 6= 0. Here is the corresponding algorithm:

x0 ∈ R
n, r0 = b− Ax0.

For k = 0, 1, 2, . . .

xk+1 = xk +
r

T
k rk

‖AT rk‖2
2
AT rk,

rk+1 = rk − r
T
k rk

‖AT rk‖2
2
A(AT rk),

(M)

each step of which requires the computations AT rk and A(AT rk).

In general, all the above methods (it) may have a low rate of convergence in
solving Ax = b. For example, for the iterations generated by (G) we know that
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‖x − xk‖AT A ≤ ((µ2(A
T A) − 1)/(µ2(A

T A) + 1))k‖x − x0‖AT A, and it is not
difficult to prove that µ2(A

T A) = µ2(A)2. However, the convergence rate of (it)
could be improved by applying it to P−1Ax = P−1b for a suitable choice of P
n × n non singular. One could set, for instance, P−1 = C−1

AT A
AT where CAT A

is some approximation of AT A (of course such approximation should be defined
without computing the entries of AT A; may be one could set CAT A = CT

ACA

where CA is some approximation of A). This procedure could improve the rate
of convergence at least of (G) and (GC).

Question: can a suitable choice of P improve the rate of convergence of the
methods (S),(GS),(M). If yes, then (S) and (GS) would be competitive in solving
generic large linear systems, because of their low complexity per step.

Choice H = A (allowed if A is positive definite).

It is simple to prove that also for H = A the choice dk equal to the skth
canonical basis vector (sk ∈ {1, . . . , n}) with sk such that

|(rk)sk
|

|asksk
| ≥ |(rk)j |

|ajj |
, ∀ j

(Southwell) and sk = k modn + 1 (Gauss-Seidel) yields vectors xk convergent
to x = A−1b. Note that in the second case (sk = k mod n + 1), n iterations are
equivalent to one iteration of the well known stationary Gauss-Seidel method; it
follows that the latter method converges when applied to solve positive definite
linear systems (recall that the other well known stationary method, Jacobi, has
not such feature).

G method

Assume A, in the system Ax = b we have to solve, positive definite. Then
the choices H = A and dk = rk = b − Axk yield l{dk},H = 0 (use 6)). The
method so obtained is called steepest descent (or Gradient) since dk = rk =
−∇F (xk) and F decreases along −∇F (xk) more rapidly than in any other
direction (in a neighborhood of xk). However, in general the contours of F are
far from being spheres, so the steepest descent direction (which is orthogonal
to such contours) is far from pointing to A−1b. In particular, from 4) and the
Kantorovich inequality,

1 ≤ zT AzzT A−1z

(zT z)2
≤ (λmax + λmin)2

4λmaxλmin

(λmax = maxλ(A), λmin = min λ(A)), we have the following result

‖x− xk‖A

‖x− x0‖A
≤
(

λmax

λmin
− 1

λmax

λmin
+ 1

)k

that states that G can be very slow when λmax

λmin
>> 1.

CG method

Assume A, the coefficient matrix of our system Ax = b, positive definite
(recall that A and b are real). In the general scheme choose H = A, d0 = r0 =
b−Ax0, dk = rk + βk−1dk−1, k = 1, 2, . . ., (rk = b−Axk) where βk−1 is such
that

(dk,dk−1)A = 0
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(dk conjugate to dk−1).
Note that for n = 2 the choice of β0 so that (d1,d0)A = 0 makes the search

direction d1 = r1 + β0d0 pointing to the center of the contours of F , and thus
makes x2 = A−1b, i.e. we have convergence in two steps.

Here below is the CG algorithm when n is generic:

x0 ∈ R
n, r0 = b − Ax0, d0 = r0.

For k = 0, 1, . . . , {
τk =

d
T
k rk

dT
k

Adk

xk+1 = xk + τkdk

rk+1 = b − Axk+1 = rk − τkAdk

βk = − r
T
k+1Adk

dT
k

Adk

dk+1 = rk+1 + βkdk

}

known as Conjugate Gradient (CG) algorithm.

We stop here the discussion about the general iterations (it), in order to
investigate CG in detail.

First note that

0 = (x − xk+1)
T Hdk = (x − xk+1)

T Adk = rT
k+1dk, rT

k+1dk+1 = ‖rk+1‖2
2.

As a consequence, if at step s we have rs = b − Axs 6= 0, then ds 6= 0, τs is
well defined and not zero . . .: the algorithm works.

If r0, . . ., rm−1 are non null and rm = 0, then βm−1 = 0, dm = 0, τm cannot
be defined, but it doen’t matter since xm = A−1b. This hypothesis is effectively
verified, in fact there exists m ≤ n = the order of A, such that rm = 0 (see
below).

Alternative expressions for τk and βk hold:

τk =
dT

k rk

dT
k Adk

=
rT

k rk

dT
k Adk

(dk = rk + βk−1dk−1, rT
k dk−1 = 0),

βk = − r
T
k+1Adk

dT
k

Adk
= − r

T
k+1τ−1

k
(rk−rk+1)

dT
k

τ−1
k

(rk−rk+1)

=
−r

T
k+1rk+r

T
k+1rk+1

dT
k
rk

=
r

T
k+1rk+1

rT
k
rk

.

The latter identity uses the result

rT
k+1rk = 0

(residual at step k + 1 is orthogonal to residual at step k, exactly as in the
Gradient method) which is not obvious:

rT
k+1rk = rT

k+1(dk − βk−1dk−1) = −βk−1r
T
k+1dk−1

= −βk−1(rk − τkAdk)T dk−1 = βk−1τkd
T
k Adk−1 = 0.

First main result: If r0, r1, . . . , rp are non null, then

dT
l Adj = 0, rT

l rj = 0, 0 ≤ j < l ≤ p.
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That is, each new residual (search direction) is orthogonal (conjugate) to all
previous residuals (search directions). As a consequence, the residual rm must
be null for some m ≤ n, or, equivalently, CG finds the solution of Ax = b in at
most n steps.

Proof. . . .

A useful representation of the residuals. If r0, r1, . . . , rk−1 are non null, then
there exist polynomials sk(λ), qk(λ) such that

rk = sk(A)r0, dk = qk(A)r0,
sk(λ) = (−1)kτ0τ1 · · · τk−1λ

k + . . . + 1, τ0τ1 · · · τk−1 6= 0.

Proof (by induction). The equality r0 = s0(A)r0 holds if s0(λ) = 1; d0 =
q0(A)r0 holds if q0(λ) = 1. Moreover,

rk+1 = rk − τkAdk = sk(A)r0 − τkAqk(A)r0 = sk+1(A)r0

if sk+1(λ) = sk(λ) − τkλqk(λ), and

dk+1 = rk+1 + βkdk = sk+1(A)r0 + βkqk(A)r0 = qk+1(A)r0

if qk+1(λ) = sk+1(λ) + βkqk(λ). Finally, since

sk+1(λ) = sk(λ) − τkλ(sk(λ) + βk−1qk−1(λ)),

the coefficient of λk+1 in sk+1(λ) is −τk times the coefficient of λk in sk(λ).
Thus, by the inductive assumption, it must be (−1)k+1τ0τ1 · · · τk−1τk . Also,
the coefficient of λ0 in sk+1(λ) is equal to the coefficient of λ0 in sk(λ), which
is 1 by the inductive assumption.

Second main result: rk = 0 for some k ≤ #{distinct eigenvalues of A}.
Proof. Let µ1, µ2, . . . , µm be the distinct eigenvalues of A (m ≤ n = order of

A). Assume that CG requires more than m steps to converge. So, the vectors
r0, r1, . . . , rm are non null, and, by the First main result, orthogonal (⇒ linearly
independent). Let V be an orthonormal matrix whose columns are eigenvectors
of A, thus V T = V −1 and AV = V D for D diagonal with the eigenvalues of A
as diagonal entries. Observe that there is a degree-m polynomial which is null
in A,

m
∏

j=1

(A−µjI) =

m
∏

j=1

(V DV T−µjI) =

m
∏

j=1

V (D−µjI)V T = V

m
∏

j=1

(D−µjI)V T = 0.

As a consequence the matrices A0 = I , A, . . ., Am are linearly dependent. But
this implies that the dimension of the space

Km+1(r0) = Span {r0, Ar0, . . . , A
mr0} = Span {r0, r1, . . . , rm}

is smaller than m + 1, which is absurd. It follows that one of the vectors ri,
i = 0, . . . , m, must be null.

Let Π1
k be the set of all polynomials of degree exactly k whose graphic

pass through (0, 1). We now see that the polynomial sk(λ) in the expression
rk = sk(A)r0 is a very particular polynomial in the class Π1

k: it makes the norm
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of the vector pk(A)r0, pk ∈ Π1
k, minimum (for a suitable choice of the norm).

This result let us give estimates of the rate of convergence of CG, as precise as
good is the knowledge about the location of the eigenvalues of A. For example,
if it is known that the eigenvalues of A cluster around 1, then CG must converge
with a superlinear rate of convergence (see below).

Notice that rk = sk(A)r0 = r0 + ĥk, for a particular vector ĥk in the space
M = Span {Ar0, A

2r0, . . . , A
kr0}. Take a generic vector hk in this space. Then

‖r0 + hk‖2
A−1 = ‖r0 + ĥk + hk − ĥk‖2

A−1

= ‖r0 + ĥk‖2
A−1 + ‖hk − ĥk‖2

A−1 + 2(r0 + ĥk,hk − ĥk)A−1 .

Now observe that the latter inner product is null, in fact, for j = 0, . . . , k − 1,
0 = rT

k rj = rT
k A−1Arj = (rk , Arj)A−1 , that is, rk is A−1-orthogonal to the

space Span {Ar0, Ar1, . . . , Ark−1}, but this space is exactly M. The thesis

follows since hk − ĥk ∈ M. So we have:

‖r0 + hk‖2
A−1 = ‖r0 + ĥk‖2

A−1 + ‖hk − ĥk‖2
A−1 ≥ ‖r0 + ĥk‖2

A−1 .

In other words,

‖rk‖2
A−1 = ‖r0 + ĥk‖2

A−1 = min{‖r0 + hk‖2
A−1 : hk ∈ M}

= min{‖pk(A)r0‖2
A−1 : pk ∈ Π1

k}.
(m)

Comparison with GMRES. Notice that for any hk ∈ M we have

r0 +hk = b−A(x0 + z), z = −A−1hk ∈ Kk(r0) = Span {r0, Ar0, . . . , A
k−1r0}.

Thus, the vector xk generated by the CG method is of type x0 + ẑ where ẑ

solves the problem

‖b− A(x0 + ẑ)‖A−1 = min{‖b− A(x0 + z)‖A−1 : z ∈ Kk(r0)} (p)

(Kk(r0) is known as Krylov space). GMRES is a method able to solve Ax = b

in at most n steps under the only assumption det(A) 6= 0. (Like CG, GMRES
in order to be competitive must be used as an iterative method, i.e. less than
n steps must be sufficient to give a good approximation of x). In the k-th step
of GMRES it is defined a vector xk of type x0 + ẑ where ẑ solves exactly the
problem (p) but the norm involved is the euclidean one. So, CG is a minimal
residual algorithm different from GMRES|A pd.

It is easy to see that the condition (m) can be rewritten as follows:

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A.

Now we give a bound for the quantity ‖pk(A)(x − x0)‖2
A, pk ∈ Π1

k, which can
be evaluated if (besides A,b) also some information about the location of the
eigenvalues λi of A is given. Let vi 6= 0 be such that Avi = λivi, vT

i vj = δij .
Then

‖pk(A)(x − x0)‖2
A = (x − x0)

T Apk(A)2(x − x0)
= (

∑

αivi)
T
∑

αiApk(A)2vi

= (
∑

αivi)
T
∑

αiApk(λi)
2vi

= (
∑

αivi)
T
∑

αiλipk(λi)
2vi

=
∑

α2
i λipk(λi)

2 ≤ maxi |pk(λi)|2‖x− x0‖2
A.
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So, we obtain the following
Third main result: If xk is the k-th vector generated by CG when applied

to solve the pd linear system Ax = b, then

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A ≤ max

i
|pk(λi)|2‖x− x0‖2

A, ∀ pk ∈ Π1
k.

So, if S ⊂ R, pk ∈ Π1
k, Mk ∈ R are known such that λi ∈ S ∀ i and |pk(λ)| ≤ Mk

∀λ ∈ S, then ‖x − xk‖A ≤ Mk‖x− x0‖A.

Let us see two applications of the latter result. As consequences of the
first application we observe that CG (considered as an iterative method) has
a linear rate of convergence, is in general faster than G, and is competitive
(f.i. with direct methods) if λmax and λmin are comparable. However, as a
consequence of the second application, the latter condition is not necessary: the
rate of convergence of CG remains high (so, CG remains competitive) if most

of the eigenvalues are in [λmin, λ̂] with λmin and λ̂ comparable. Further useful
applications of the Third main result hold. In particular, as a consequence of
one of these (see below), it can be stated that CG has a superlinear rate of
convergence if most of the eigenvalues of A are in the interval S = [1− ε, 1+ ε].

(1)

S = [λmin, λmax], pk(x) =
Tk

(

λmax+λmin−2x
λmax−λmin

)

Tk

(

λmax+λmin

λmax−λmin

) ⇒

‖x− xk‖A < 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)k

‖x− x0‖A, µ2(A) =
λmax

λmin
.

(2)

S = [λmin, λ̂] ∪ {λi : λi > λ̂}, rλ̂ = #{i : λi > λ̂},

pk(x) = Πi: λi>λ̂

(

1 − x

λi

) Tk−r
λ̂

(

λ̂+λmin−2x

λ̂−λmin

)

Tk−r
λ̂

(

λ̂+λmin

λ̂−λmin

) ⇒

‖x− xk‖A < 2





√

λ̂/λmin − 1
√

λ̂/λmin + 1





k−r
λ̂

‖x − x0‖A, k ≥ rλ̂.

The applications (1) and (2) of the Third main result suggest an idea. When
λmin and λmax are not comparable and the eigenvalues of A are uniformly dis-
tributed in the interval [λmin, λmax] (in this case all n steps of CG are required
in order to give a good approximation of x), replace the given system Ax = b

with an equivalent system Ãx̃ = b̃, Ã = E−1AE−T , x̃ = ET x, b̃ = E−1b,
det(E) 6= 0, where the matrix E is such that µ2(Ã) < µ2(A) and has one of the
following properties

• µ2(Ã) << µ2(A)

• Ã has much less distinct eigenvalues than A
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• Ã has the eigenvalues much more clustered (around 1) than A

Then apply CG to Ãx̃ = b̃.
If such matrix E can be found, then the pd matrix P = EET is said pre-

conditioner.
Note that E−T ÃET = P−1A, so one could look directly for a pd matrix P

such that the (real positive) eigenvalues of P−1A have the required properties.
For example, in order to obtain something of type P−1A ≈ I (which would result
in a very high increase of the CG rate of convergence) one could choose P as
an approximation A of A. We shall see that applying CG to Ãx̃ = b̃ requires,
for each step, a surplus of computation: solve a system of type Pz = hk.
This computation must not make CG slow, in other words P must be a lower
complexiy matrix than A. Also notice that E1 and E2, E1 6= E2, E1E

T
1 = E2E

T
2 ,

define matrices Ã1 = E−1
1 AE−T

1 and Ã2 = E−1
2 AE−T

2 , Ã1 6= Ã2, with the same
spectrum. For this reason one prefers to call preconditioner P instead of E.

A final remark. The vector x = A−1b we are looking for is also the minimum
point of the function F (z) = 1

2z
T Az − zT b. Analogously, x̃ = Ã−1b̃ is the

minimum point of the function F̃ (z) = 1
2z

T Ãz − zT b̃. The preconditioning
technique replaces the (sections of the) contours of F with the more spherical
(sections of the) contours of F̃ , and this results in a more efficient minimization
when using gradient-type methods.

Let us write the preconditioned version of the CG algorithm, well defined
once that A, b and the preconditioner P are given.

Let us apply CG to the system Ãx̃ = b̃:

x̃0 ∈ R
n, r̃0 = b̃ − Ãx̃0, d̃0 = r̃0.

For k = 0, 1, . . . , {
τ̃k =

r̃
T
k r̃k

d̃T
k

Ãd̃k

x̃k+1 = x̃k + τ̃kd̃k

r̃k+1 = b̃ − Ãx̃k+1 = r̃k − τ̃kÃd̃k

β̃k =
r̃

T
k+1r̃k+1

r̃T
k
r̃k

d̃k+1 = r̃k+1 + β̃kd̃k

}

Note that the convergence rate of the sequence {x̃k} can be evaluated by using
the following results

‖x̃ − x̃k‖Ã < 2





√

µ2(Ã) − 1
√

µ2(Ã) + 1





k

‖x̃ − x̃0‖Ã, µ2(Ã) =
λ̃max

λ̃min

,

‖x̃− x̃k‖Ã < 2





√

˜̂
λ/λ̃min − 1

√

˜̂
λ/λ̃min + 1





k−r˜̂
λ

‖x̃− x̃0‖Ã, k ≥ r˜̂
λ

:

if µ2(Ã) << µ2(A) or Ã has most of the eigenvalues λ̃i in [λ̃min,
˜̂
λ] and

˜̂
λ/λ̃min <<

λmax/λmin, then x̃k → x̃ = ET x with a greater rate than xk → x.
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Now we obtain each row of the preconditioned CG method. Define xk =
E−T x̃k , rk = b − Axk, and dk = E−T d̃k. Then

r̃k = b̃− Ãx̃k = E−1b− E−1AE−T (ET xk)
= E−1rk = ET E−T E−1rk = ET hk,hk = P−1rk,

r̃T
k r̃k = rT

k E−T E−1rk = rT
k hk,

d̃T
k Ãd̃k = d̃T

k E−1AE−T d̃k = dT
k Adk.

Thus

τ̃k =
rT

k hk

dT
k Adk

. (row1)

Moreover, we have

x̃k+1 = ET xk+1 = ET xk + τ̃kET dk ⇒
xk+1 = xk + τ̃kdk,

(row2)

r̃k+1 = E−1rk+1 = E−1rk − τ̃kE−1AE−T ET dk ⇒
rk+1 = rk + τ̃kAdk,

(row3)

β̃k =
rT

k+1hk+1

rT
k hk

(row4)

(row3.5: hk+1 = P−1rk+1),

d̃k+1 = ET dk+1 = ET hk+1 + β̃kET dk ⇒
dk+1 = hk+1 + β̃kdk.

(row5)

Finally, in order to initialize the algorithm, set:

x0 = E−T x̃0, r0 = b− Ax0,

d0 = E−T d̃0 = E−T r̃0 = E−T ET h0 = h0.
(row0)

Regarding the convergence rate of the sequence {xk}, generated by the al-
gorithm row0 and, for k = 0, 1, . . ., rows1, 2, 3, 3.5, 4, 5, note that

‖x̃k − x̃‖2
Ã

= (x̃k − x̃)T Ã(x̃k − x̃)

= (ET xk − ET x)T E−1AE−T (ET xk − ET x)
= (xk − x)T A(xk − x) = ‖xk − x‖2

A.

Thus the bounds for ‖x̃− x̃k‖Ã obtained above, can be rewritten as follows

‖xk−x‖A

‖x0−x‖A
≤ 2

(√
µ2(Ã)−1√
µ2(Ã)+1

)k

, µ2(Ã) = λ̃max

λ̃min
,

‖xk−x‖A

‖x0−x‖A
≤ 2

(

√

˜̂
λ/λ̃min−1

√

˜̂
λ/λ̃min+1

)k−r˜̂
λ

, k ≥ r˜̂
λ
.

Why clustering around 1 is good

Let A be a p.d. matrix and ε, 0 < ε < 1, be fixed.
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Denote by λε
j the eigenvalues of A outside the interval [1 − ε, 1 + ε] and by

rε the number of such eigenvalues. Set S = [1 − ε, 1 + ε] ∪ {λε
j} and let pq be

the polynomial

pq(λ) =
∏

λε
j

(

1 − λ

λε
j

)

Tq−rε
((1 − λ)/ε)

Tq−rε
(1/ε)

, q ≥ rε

where Tk(x) denotes the chebycev polynomial of degree k. ((b+a−2λ)/(b−a) =
(1− λ)/ε, (b + a)/(b− a) = 1/ε, if a = 1− ε, b = 1 + ε ). Notice that S is a set
containing all the eigenvalues of A, and pq has exactly degree q and pq(0) = 1.
Then one can say that if xq is the q-th vector generated by the CG method
when solving Ax = b, then

‖x− xq‖A ≤ (max
λ∈S

|pq(λ)|)‖x − x0‖A. (bound)

This bound for ‖x− xq‖A allows a better evaluation of the CG rate of conver-
gence with respect to the well known bound

‖x − xq‖A ≤ 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)q

‖x − x0‖A, µ2(A) =
maxλ(A)

min λ(A)
(wkbound)

in case it is known that most of (almost all) the eigenvalues of A are in some
interval [1 − ε, 1 + ε] where ε is small (almost zero).

If, moreover, the n×n linear system Ax = b can be seen as one of a sequence
of increasing order linear systems, with the property that ∀ ε > 0 ∃ kε, nε such
that for all n > nε outside [1 − ε, 1 + ε] fall no more than nε eigenvalues of A,
then (bound) allows to prove the superlinear convergence of CG.

(Note that in general CG has a linear rate of convergence, as a consequence
of (wkbound)).

Let us prove these assertions, by evaluating maxλ∈S |pq(λ)|.

maxλ∈S |pq(λ)| = maxλ∈[1−ε,1+ε] |pq(λ)|
≤ (max...

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣)(max...

∣

∣

∣

Tq−rε ((1−λ)/ε)
Tq−rε (1/ε)

∣

∣

∣)

= (max...

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣) 1
Tq−rε (1/ε) .

Now first notice that

Tq−rε

(

1

ε

)

= Tq−rε

(

1+ε
1−ε + 1
1+ε
1−ε − 1

)

>
1

2





√

1+ε
1−ε + 1

√

1+ε
1−ε − 1





q−rε

.

Then denote by λ̂ε
j those eigenvalues λε

j satisfying the inequalities

λε
j < 1 − ε, λε

j <
1

2
(1 + ε)

and observe that

maxλ∈[1−ε,1+ε]

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣ ≤ max...

∏

λ̂ε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣

=
∏

λ̂ε
j

(

1+ε

λ̂ε
j

− 1

)

.
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So, we have

maxλ∈S |pq(λ)| ≤
∏

λ̂ε
j

(

1+ε
λ̂ε

j

− 1

)

2

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≤ 2
(

1+ε
min λ(A) − 1

)#λ̂ε
j

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≈
(

1+ε
minλ(A) − 1

)#λ̂ε
j εq

εrε2q−rε−1 ,

where in the latter approximation we have used the following Taylor expansion

f(ε) =

√

1+ε
1−ε − 1

√

1+ε
1−ε + 1

=
ε

2
+

ε2

2
f ′′(0) + . . . .

From CG to GMRES

The minimal property satisfied by the residual rk = b − Axk at the kth
iteration of the CG method can be rewritten in a way that allows us to compare
the xk generated by CG with the approximation xk defined by GMRES, which is
a method sharing CG properties (convergence in at most the number of distict
eigenvalues of A; fast convergence if the eigenvalues of A are clustered), but
working for any linear system Ax = b (i.e. not limited to positive definite
ones). However, we immediately underline that GMRES is not as cheap as CG.

Note that, for any pk ∈ Π1
k,

pk(A)r0 = r0 + α1Ar0 + . . . + αkAkr0

= b− Ax0 + α1Ar0 + . . . + αkAkr0

= b− A(x0 − α1r0 − . . . − αkAk−1r0)
= b− A(x0 + z),

z ∈ Span {r0, Ar0, . . . , Ak−1r0}.

Thus the result

xk of CG is such that
‖rk‖A−1 = ‖sk(A)r0‖A−1 = minpk∈Π1

k
‖pk(A)r0‖A−1

can be rewritten as follows

xk of CG is equal to x0 + z̃ with
z̃ such that ‖b− A(x0 + z̃)‖A−1 = minz∈Kk

‖b− A(x0 + z)‖A−1 ,
where Kk = Span {r0, Ar0, . . . , Ak−1r0}.

Note that Kk = Kk(r0) is a Krylov space and has dimension at most k.
Now, consider a generic linear system Ax = b, where A is assumed non

singular. Then the approximation of x = A−1b proposed by GMRES at step k
is defined as follows:

xk of GMRES is equal to x0 + z̃ with
z̃ such that ‖b− A(x0 + z̃)‖2 = minz∈Kk

‖b− A(x0 + z)‖2,
where Kk = Span {r0, Ar0, . . . , Ak−1r0}.
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So, in case A is positive definite, the “only” difference between GMRES and CG
is in the fact that in GMRES the euclidean norm of the residual is minimized,
whereas in CG the norm used is ‖ · ‖A−1 .

The cost of the computation of z̃ in GMRES grows with k. For this reason,
1) GMRES is not competitive with CG when A is positive definite; 2) when
A is not positive definite, GMRES is more efficient than other linear system
solvers only if A has suitable spectral properties (a “small” number of distinct
eigenvalues, eigenvalues clustering, etc), otherwise GMRES must be modified
to be competitive (restarted GMRES, etc).

Performing the kth iteration of GMRES

First we have to find an orthonormal basis {v1, . . . ,vk} of Kk, by using the
Arnoldi procedure, so that z̃ ∈ Kk (z ∈ Kk) can be represented as z̃ = Vkỹ,
ỹ ∈ R

k (z = Vky, y ∈ R
k), where Vk is the n × k matrix whose columns are

v1, . . . ,vk.
Let us find such basis. Let x0 ∈ R

n and set r0 = b − Ax0.
If r0 6= 0, then set

v1 = 1
‖r0‖2

r0, v̂2 = Av1 − h11v1,

h11 = (Av1,v1), h21 = ‖v̂2‖2.

Note that (v̂2,v1) = 0.
If v̂2 6= 0 (h21 6= 0), then set

v2 = 1
h21

v̂2, v̂3 = Av2 − h12v1 − h22v2,

h12 = (Av2,v1), h22 = (Av2,v2), h32 = ‖v̂3‖2.

Note that (v̂3,v1) = (v̂3,v2) = 0. . . .
If v̂m 6= 0 (hmm−1 6= 0), then set

vm = 1
hmm−1

v̂m, v̂m+1 = Avm − h1mv1 − h2mv2 . . . − hmmvm,

h1m = (Avm,v1), h2m = (Avm,v2), . . .
. . . , hmm = (Avm,vm), hm+1m = ‖v̂m+1‖2.

Note that (v̂m+1,v1) = (v̂m+1,v2) = . . . = (v̂m+1,vm) = 0.
If v̂m+1 6= 0 (hm+1m 6= 0), then set vm+1 = 1

hm+1m
v̂m+1 . . .

Observe that the vectors vk defined as above satisfy the vectorial identities

Av1 = h11v1 + h21v2

Av2 = h12v1 + h22v2 + h32v3

. . .
Avm = h1mv1 + h2mv2 + . . . + hmmvm + hm+1mvm+1

or, equivalently, the matrix identity

AVm = Vm+1H̃m = VmHm + vm+1[0 · · · 0 hm+1m],

where Vm =
[

v1 v2 · · · vm

]

,

Hm =













h11 h12 · · h1m

h21 h22 · ·
h32 · · ·

· · hm−1m

hmm−1 hmm













, H̃m =

[

Hm

[ 0 · 0 hm+1,m ]

]

.
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Note that Hm is a Hessenberg matrix.
It is clear that

r0 6= 0 ⇒ K1(r0) = K1(v1) = Span {v1}
r0, v̂2 6= 0 ⇒ K2(r0) = K2(v1) = Span {v1, Av1} = Span {v1,v2}
r0, v̂2, . . . , v̂m 6= 0 ⇒ Km(r0) = Km(v1) = Span {v1, Av1, . . . , A

m−1v1}
= Span {v1,v2, . . . ,vm}

i.e. {v1, . . . ,vm} is a well defined orthonormal basis for Km(r0), provided that
v̂1 := r0, v̂2, . . . , v̂m 6= 0 (h10 := ‖v̂1‖2, h21, . . . , hmm−1 6= 0).

Now let us proceed by rewriting the function ‖b − A(x0 + z)‖2 of z ∈ Kk,
so that its minimum value and the point z̃ ∈ Kk where such value is assumed,
are defined more explicitly and become computable.

In order to do that we change variable, i.e. we set z = Vky, y ∈ R
k. Then

‖b− A(x0 + z)‖2
2 = ‖b− A(x0 + Vky)‖2

2 = ‖r0 − AVky)‖2
2 = . . .

Let Mn−k be a n × (n − k) matrix whose columns are orthonormal, each other
and with the columns of Vk , and assume its first column equal to vk+1:

. . . = ‖
[

V ∗
k

M∗
n−k

]

r0 −
[

V ∗
k

M∗
n−k

]

AVky‖2
2

= ‖V ∗
k r0 − V ∗

k AVky‖2
2 + ‖M∗

n−kr0 − M∗
n−kAVky‖2

2 = . . .

The equality AVk = VkHk + vk+1[0 · · · 0 hk+1,k] holds:

. . . = ‖









‖r0‖2

0
·
0









−Hky‖2
2+‖−M∗

n−kAVky‖2
2 = ‖









‖r0‖2

0
·
0









−Hky‖2
2+y2

kh2
k+1,k

= ‖













‖r0‖2

0
·
0
0













− H̃ky‖2
2 = . . .

Assume that we know Qk real unitary and Rk upper triangular such that
QT

k Hk = Rk. By using these matrices one can construct at a low cost Qk+1 real
unitary and Rk+1 upper triangular such that QT

k+1Hk+1 = Rk+1. In fact, set

Q̃T
k =





I
α −β
β α









QT
k 0

0T 1



 , α2 + β2 = 1. (Q)

Then

Q̃T
k H̃k =





I
α −β
β α









Rk

0 · · · 0 hk+1k



 .

Now choose α,β such that

[

α −β
β α

][

[Rk]kk

hk+1,k

]

=

[

±
√

[Rk]2kk + h2
k+1,k

0

]
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i.e.

α = αk =
±[Rk]kk

√

[Rk]2kk + h2
k+1,k

, β = βk =
∓hk+1,k

√

[Rk]2kk + h2
k+1,k

(αβ)

by choosing the upper sign if [Rk]kk ≥ 0 and the lower sign if [Rk]kk < 0 (the
reason for that will be clear below). Then

Q̃T
k H̃k =





Rk +

[

γ

]

0 · · · · · · 0



 , γ = γk = ±
√

[Rk]2kk + h2
k+1,k − [Rk]kk , (γ)

Q̃T
k Hk+1 = Q̃T

k



 H̃k

∣

∣

∣

∣

∣

∣





h1,k+1

·
hk+1,k+1







 =





Rk +

[

γ

]

0 · · · · · · 0

∣

∣

∣

∣

∣

∣

Q̃T
k





h1,k+1

·
hk+1,k+1







 .

The latter matrix is upper triangular. Call it Rk+1 and set Qk+1 = Q̃k. Then
QT

k+1Hk+1 = Rk+1.

. . . = ‖QT
k+1









‖r0‖2

0
·
0









− QT
k+1H̃ky‖2 = ‖QT

k+1









‖r0‖2

0
·
0









−





Rk +

[

γ

]

0 · · · · · · 0



 y‖2
2

= ‖I1
kQT

k+1









‖r0‖2

0
·
0









− (Rk +

[

γ

]

)y‖2
2 + ‖r0‖2

2[Q
T
k+1]

2
k+1,1.

It follows that, if rk is the residual at step k of the GMRES method, then

‖rk‖2
2 = ‖b− A(x0 + z̃)‖2

2 = min
z∈Kk

‖b− A(x0 + z)‖2
2 = ‖r0‖2

2[Q
T
k+1]

2
k+1,1,

where

z̃ = Vkỹ, (Rk +

[

γ

]

)ỹ = I1
kQT

k+1









‖r0‖2

0
·
0









,

i.e. z̃ can be computed by solving an upper triangular linear system of k linear
equations and by performing a matrix-vector product involving a n× k matrix.
However, one can do such operations, i.e. compute xk, only when the inequality
‖rk‖ < TOL‖r0‖ is satisfied, a condition that can be checked by using the
following formula

‖rk‖2

‖r0‖2
=

k
∏

j=1

h2
j+1,j

[Rj ]2jj + h2
j+1,j

.

Proof: [QT
k+1]k+1,1 = βk[QT

k ]k1 ⇒

‖rk‖2
2 = β2

k‖rk−1‖2
2 =

h2
k+1,k

[Rk]2kk + h2
k+1,k

‖rk−1‖2
2. (r)

So, we have the GMRES algorithm:
Choose x0 ∈ R

n and set r0 = b− Ax0.
For m = 0, 1, . . .:
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Compute hm+1,m = ‖v̂m+1‖ (v̂1 = r0).

If hm+1,m 6= 0, THEN {

if ‖rm‖
‖r0‖

< TOL THEN {
compute xm and stop (xm ≈ A−1b),

} ELSE { define QT
m+1 from QT

m (except when m = 0: QT
1 = 1),

set vm+1 = 1
hm+1,m

v̂m+1, compute Avm+1, hj,m+1 = (Avm+1,vj),

j = 1, . . . , m + 1, v̂m+2 = Avm+1 − h1,m+1v1 . . . − hm+1,m+1vm+1;
define Rm+1 from Rm (except when m = 0: R1 = h11) }

} ELSE compute xm and stop (xm = A−1b).

Exercise. Count the number of of memory allocations needed to implement
the above algorithm. Count the number of arithmetic operations required to do
k steps.

The first step in detail

Given x0 ∈ R
n, let us perform the first step of the GMRES method.

Set k = 1, i.e. x1 = x0 + V1ỹ = x0 +v1ỹ1 = x0 + 1
‖r0‖

r0ỹ1 with ỹ1 ∈ R such

that

(R1 + γ1)ỹ1 = I1
1QT

2

[

‖r0‖
0

]

.

Since H1 = h11 = (Av1,v1) =
r

T
0 Ar0

‖r0‖2 and 1 · h11 = h11, we have QT
1 = 1 and

R1 = [R1]11 = h11.
Then v̂2 = Av1 − h11v1, h21 = ‖v̂2‖,

QT
2 =

[

α −β
β α

] [

QT
1 0
0 1

]

=

[

α −β
β α

]

,

α = α1 = ±h11√
h2
11+h2

21

, β = β1 = ∓h21√
h2
11+h2

21

,

γ1 = ±
√

h2
11 + h2

21 − h11 (choose the upper sign if h11 > 0 and the lower sign if
h11 < 0). So, the system becomes

±
√

h2
11 + h2

21ỹ1 = I1
1

[

α −β
β α

] [

‖r0‖
0

]

= α‖r0‖

Thus, ỹ1 = ‖r0‖ h11

h2
11+h2

21
, and x1 = x0 + h11

h2
11+h2

21
r0.

But h2
21 = (Av1 − h11v1)

T (Av1 − h11v1) = . . . = vT
1 AT Av1 − (vT

1 Av1)
2, so

h2
11 + h2

21 = vT
1 AT Av1 = ‖Ar0‖

2

‖r0‖2 . It follows that

x1 = x0 +
rT
0 Ar0

‖Ar0‖2
r0,

i.e. x1 coincides with the approximation generated by one application of step-
variable Richardson-Euler method. We could foresee this remark since

x1 of GMRES is equal to x0 + z̃ with
z̃ such that ‖b− A(x0 + z̃)‖2 = minz∈K1 ‖b− A(x0 + z)‖2,
where K1 = Span {r0}
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is exactly the same condition required on x1 = x0 + ωr0, ω ∈ R, by RE.
Note that if r0 6= 0, then R1 + γ1 = ±

√

h2
11 + h2

21 6= 0, i.e. the first step of
GMRES is well defined. Let us show this fact. If h21 6= 0 then the thesis is true.
Assume h21 = ‖v̂2‖ = 0. If h11 = 0 too, then 0 = v̂2 = Av1 − h11v1 = Av1,
with v1 6= 0; this implies det(A) = 0, which is absurd. So, if h21 = 0, h11 must
be nonzero, and the proof of the fact is completed.

Note also that, from

‖r1‖2
2 = β2

1‖r0‖2
2 =

h2
2,1

[R1]211 + h2
2,1

‖r0‖2
2,

and the previous reasonings, it follows that 1) if h21 = 0, then h11 = [R1]11
must be nonzero and the the initial residual is canceled by the first step of
GMRES. 2) if h21 6= 0, then the norm of the initial residual is reduced by the
first step of GMRES, unless the choice of the initial guess is so unlucky that
h11 = (Av1,v1) = 0; in such case, the norm of the residual remains unchanged
(stagnation phenomenon).

Convergence in at most n steps

A simple investigation let us observe that the upper triangular matrices Rk

generated by the GMRES algorithm have the form

Rk =

















σ1

√

[R1]211 + h2
21 ∗ · · · ∗ ∗

σ2

√

[R2]222 + h2
32 ∗

. . .
...

σk−1

√

[Rk−1]2k−1k−1 + h2
kk−1 ∗

[Rk]kk

















where σj = 1 if [Rj ]jj ≥ 0 and σj = −1 if [Rj ]jj < 0. Also recall that the
coefficient matrix of the system we have to solve to compute xk is

Rk +

[

γk

]

, γk = σk

√

[Rk]2kk + h2
k+1,k − [Rk]kk .

where σk = 1 if [Rk]kk ≥ 0 and σk = −1 if [Rk]kk < 0.
Now assume that at a certain step k we have h21, . . . , hk,k−1 nonzero (so

v1, . . . ,vk are orthonormal, i.e. V ∗
k Vk = I), but hk+1k = 0 (so v̂k+1 = 0, and

Avk is a linear combination of v1, . . . ,vk). Note that there must exists k ≤ n for
which this happens. Then necessarily [Rk]kk 6= 0 (see below). As a consequence
all diagonal entries of Rk are nonzero, and γk = σk|[Rk]kk | − [Rk]kk = 0. Thus
the coefficient matrix, at such step k, must be equal to Rk and non singular. It
follows that xk = x0 + Vkỹ is well defined, and by (r) the residual in xk must
be null (hk+1,k = 0!), that is, xk = A−1b.

Let us show that [Rk]kk 6= 0. Assume [Rk]kk = 0. Then, since Rk = QT
k Hk,

the matrix Hk must be singular. This fact with the identity AVk = VkHk

(hk+1,k = 0!) implies AVkei =
∑

j 6=i AVkej for some i, and thus det(A) = 0
(otherwise the columns of Vk should be linearly dependent which is impossible
since V ∗

k Vk = I). It follows that [Rk]kk must be nonzero.

Stagnation phenomenon
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Assume r0 6= 0 and set v1 = r0

‖r0‖
. Assume that the value of h11 for which

v̂2 = Av1 − h11v1 is orthogonal to v1 turns out to be zero, i.e.

h11 = [R1]11 = (Av1,v1) = 0,

but v̂2 = Av1 − h11v1 = Av1 6= 0, so that h21 = ‖v̂2‖ 6= 0. Then the
first step of GMRES is well defined (R1 + γ1 = σ1

√

h2
21 = σ1h21 6= 0), and

‖r1‖2 =
h2
21

0+h2
21
‖r0‖2 = ‖r0‖2.

Assume also that [R2]22 = 0 but h32 = ‖v̂3‖ 6= 0 (v̂3 = Av2−h12v1−h22v2 6=
0). From the equality R2 = QT

2 H2 it follows that

0 = | det(

[

σ1h21 ∗
0 [R2]22 = 0

]

)| = | det(

[

h11 h12

h21 h22

]

)|

= | det(

[

0 h12

h21 h22

]

)| = |h21h12|

⇒ h12 = (Av2,v1) = ( 1
‖Av1‖

A2v1,v1) = 0. Moreover,

R2 +

[

γ2

]

=

[

σ1h21 ∗
0 σ2h32

]

is non singular, so the second step of GMRES is well defined, and ‖r2‖2 =
h2
32

0+h2
32
‖r1‖2 = ‖r1‖2. . . .

Question: for any k ≤ n − 1 is it possible to introduce a residual r0 such
that GMRES iterations yield

0 = h11 = . . . = h1k

0 = [R1]11 = . . . = [Rk]kk

0 = (Ar0, r0) = (A2r0, r0) = . . . = (Akr0, r0)
h21, . . . , hk+1,k all nonzero

? (for k = n it cannot be possible because hn+1,n must be zero, or, equivalently,
Avn must be a linear combination of v1, . . . ,vn).

If yes, then we would have stagnation for k steps:

‖rk‖ = . . . = ‖r1‖ = ‖r0‖.

For instance, if such situation occurs for k = n− 1, then the method works well
only in last step, in fact rn must be necessarily null by the convergence in at
most n steps property ([Rn]nn must be nonzero and hn+1,n must be zero).

Question: investigate stagnation that begins at the kth step (k < n): [Rj ]jj 6=
0 (hj+1j 6= 0), j = 1, . . . , k − 1, [Rk]kk = 0 (⇒ hk+1k 6= 0), ‖rk‖ = ‖rk−1‖ <
‖rk−2‖ < . . . < ‖r0‖.
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