An exercise of matriz norms

It can be shown that, given any n x n matrix A and any matrix norm || - ||,
and defined p(A) = max; |A;(A)], then

IA™ I — p(A)  n— o0
(from above, in fact p(A)" = p(A™) < ||A™|| and the latter inequality implies
p(A) < | A™[H™).
Now, it is simple to verify that

(AR <A < 422 < 1A,

or that
L ASE < A%ME < ||A|

(use the fourth property of matrix norms). But it is not clear if the sequence
| A™||*/™ is not increasing, i.e. if the following inequality

A < jlAmT YYD, n > 2,
holds. In particular, is there a matrix A for which

L% > A2 2 2

Can Richardson-Eulero be improved?

Is there an € > 0 such that
(I = (1—)A)(I — (1 +)A)) < pl(I — A)2) 7
or, equivalently, is there a § > 0 (§ = £2) such that
p((I— A)? = 5A2%) < p((I = 4)%) 7

Assume A = I — aPT, P row quasi-stochastic. Then the question becomes the
following: is there a § > 0 (§ = £2) such that

p(a®(PT)? —8(1 — aPT)?) < p(a®(PT)?) 7

EXAMPLE. Let us consider an example. Set

101 o T 1 -«
P[0 ] acrearr =] 1 )

Then (PT)2 = I, and

. T\2 __ 1+O{2 —204
(I=aP?) _{ 20 1+a2 |’
2 2
2/ pT\2 _oore | @ =d0(1+4a%) 200
a(P7)" = 6(I — aP™) _[ 2a8 a? —6(1+a?)

So, the question becomes: is there a § > 0 such that

ps = max{la? — 5(1 + @)%, |o® = (1 — @)} <o ?



By noting that

a? a?

(ta2 “0-a2

and observing the graphics of the functions |a? — 6(1+«)?| and |a? —6(1 —«a)?|,
for § > 0, it is easy to conclude that

e ps<a’forde (07%)7

. . . 2
e ps is minimum for § = doy 1= 5577, and

_ 202
® D50y = a2+1°

Thus the answer is yes. [J

EXERCISE: Is the answer to the question yes if

0 a 1—a
P=1|5 0 1-b |, abcel0,1]?
c 1—c 0
or if
0 a 1—a
P=|b 0 1-b|,abel0,1]7?
0 0 0
orif... .
Let us consider the second case:
0 b 0 ba 0 0
PT = a 0 0|, (PH?= 0 ab 0
l1—-a 1-b 0 (I-b)a (1—a) 0
Note that p(a?(PT)?) = aba?
1 —ab 0
I—aPT = —aa 1 0|,
—a(l—a) —a(l-=0) 1
1+ a2ab —2ab 0
(I —aPT)? = —2aa a?ab+ 1 01|,

—2a(l —a) +a?a(l—b) o?b(1—a)—2a(l—-0b) 1
o?(PT)? —6(I — aP?)? =
a?ab — §(1 + a2ab) —6(—2ab) 0
—6(—2aa) a?ab — §(aab + 1) 0
a?(1 —b)a — §(—2a(l —a) + a?a(1 = b)) a?(1 —a)b—8(a?b(1 —a) —2a(l —b)) —§
Let ps be the spectral radius of the latter matrix.
Is ps < aba? for some § > 0 ?

ps = max{|a?ab — 6(1 — avab)?|, |a®ab — 6(1 + aVab)?|,| — 8|},

a’ab 1
Oott = { 1+gliam)2 ab < 4o?

a“ab abz

1
1+a2ab 402



a>ab 1

Do, =4 Lt(1-aVab)? ab < 7o2

ott 2a°abVab ab > 1
1+a2ab =

Thus, also in the second case the answer is yes. [

Let us consider the first case:

1 —ab —ac
I—aP? = —aa 1 —a(l—c¢) |,
—a(l—a) —a(l-—0>) 1
(I —aP?)? =
1+ a?ba + a?c(1 — a) —2ab + a2c(1 —b) —2ac+ a2b(1 —c)
—2aa+a?(1—-c)(1—-a) oa?ab+1+al?>(1—c)(1-0b) a2ac — 2a(1 —¢)

—2a(1 —a) + a?(1 — b)a a?(1 —a)b — 2a(1 —b) a?(1—a)c+a?(1-b)(1—c)+1

Non stationary Richardson-Eulero methods

Is there a z € C such that
(I = (1= 2)A)(I — (14 2)A)) < p((I — A)?)
or, equivalently, such that
p((I — A)? = 224%) < p((I — A)?) ?

If yes, then a non stationary would be preferable with respect to a stationary
Richardson-Eulero method.
Assume A = I — aPT, P row quasi-stochastic. Is there a z € C such that

p(@PTY = 21— aPT)?) < pl(@PT)?) 7
If n; = a);, where \; = eigenvalues of PT | then the required inequality becomes

max [} — 2*(1 = n;)°| < max |

i = 2% (1= n)?*[* < max |n}[?, V5 (x)
Inj|* = 2R(EZ*(1 —m5)°n3) + |2*1 — ns|* < max Imil*, Vj: m; #0.

In fact, if j : n; = 0, then the inequality (*) is verified for any z, |z| < max; |n;|.
From now on, by writing Vj we will mean Vj : n; # 0.

If z = Vei¥, § > 0, then the question is the following: are there v €10,2m)
and § > 0 such that

|77j|4 - 25%(67&(‘0(1 - 777)277]2) + 621 — 77j|4 < max Ins|*, Vj§ 7
Call p;,,(6) the parabola on the left of the latter inequality. Then
P} (8) = =2R(e 22 (1 —15)*n3) + 26[1 — ;[

P (0) = =2R(e” 4 (1 —737)%7).



If R(e~2¢(1 —75)%n7) > 0, then there exists d;,, > 0 such that V4 € (0,d;,,)
il = 20R(e ™2 (1 = 775)%117) + 671 — m[* < [ < maxc g [*.

—i2 =22
(05,0 = QW) Moreover, there exists d, > 0 such that V4 € (0,0,,)

M, m(e—s2e (172020 {05 — 20R(e 7120 (1 = 77)2n2) + 621 — |1}
< MAX;R(e—i2¢ (1-777)272) >0 |nd4 < max; [n;]*.

In fact, let j* € {j : R(e™2?(1 —77;)?n7) > 0} be such that

| 4

|77j* 4= man:?R(e_i2‘/’(1*7]_j)2nj2')>O |77j
%(6—124;)(1 _ %_*)27]?*) is minimum,
|1 —nje

)

is maximum.

Then
Re e )
1= m;-[* ’

where ¢* is the minimum among the positive abscissas of the intersections
between the parabola pj;« , and all the parabolas p;,, with j : R(e™2¢(1 —
77_]‘)27732) >0, pjp 7# Pj* e

However, |n;|* — 26R(e~2¢(1 —17;)?n3) + 62[1 — n;[* > |n;|* in a right neigh-
borhood of § = 0, for all j such that R(e 2 (1 — n_j)znjz.) < 0.

So, the inequality

d, = min{2

masc{n; " — 20R (™ (1= 75)*n}) + %1 =y [*} < max ||

(for some ¢ > 0 and ) remains unproved.

The region R(e™22(1 —7)2n?) > 0 for |n| < a < 1:

The region R((1 —7)*7%) >0 (¢ = 0):

n=rel? = (1-7)2n? = r2(ei?® —2rel +12) = R((1-7)*n?) = r?(cos(20) —
2r cos(0) +r?). So, R((1—1)%n?) > 0iff r < cosf —|sinf| or r > cosf + |sin 6|

Exercise. Draw in || < «a the region {re! : r < cosf — |sinf| or r >
cosf + |sind|}.

The region R(e~1"(1 —7)%n%) > 0 (p = 7/2):

R(e™ (1 —7)%n?) > 0 iff R((1 —7)2n?) < 0. So, this region is the comple-
mentary of the previous one.

Note: the region R(e2(¥+3)(1 —77)?,?) > 0 is the complementary of the
region R(e 2% (1 —7)2n?) > 0.

By considering the cases ¢ = 0 and ¢ = 7/2, we can say that there exists
d* such that V4§ € (0,0%)

2 2 2 2
max n:—90(1—n;)7| < max [n;1° < max |n;]
jz?R((l—nT)znf-bO' 5 0= m)] FR(1=7;)2n)>0 i
2 2 2 2
max n;+0(1l—m)° < max 7% < max |n;|°.
jr?R((l—n_j)2n,2-)<0| 5 o= m)] jr?R((l—n_j)Qni)<0| i i



So, perhaps, by compensation, there exists a right neighborhood of § = 0 where

max [ = 01 —n3)?[n; +6(1 —n;)?| < max || .

This would be surely true if R((1 — 7;)*n#) > 0, Vi, or, equivalently, if R((1 —
n)4n*) > 0,Vn: |n| < a, or, equivalently, if

r*[(cos(20) — 2r cos @ + r?)? — (sin(26) — 2rsinf +r*)?] >0, VO, Vr<a
(n = re'?). But the latter inequality is not true for all required 6 and r.

Exercise. Draw in || < « the region where the latter inequality i s verified.

Notes on work with Fra

Experimental tests show that the eigenvalues of P are all grouped in a circle
with center in the origin and radius about 0.3 except one which is near 1.
Moreover, they show that no eigenvalue of C’;lP is outside the previous circle.
(NOT CORRECT! P and Cp may be singular)

Experimental tests show that the eigenvalues of I — aP are all grouped in
a circle with center in 1 and radius about 0.3« except one which is near 1 — a.
Moreover, they show that no eigenvalue of C’Iila p(I—aP) is outside the previous
circle. (CORRECT)

One should give a theoretical justification of these observations.
We know that
Cpr = Fdiag (F*PTF);)F*, Cp = Fdiag ((F*PF);;)F*.

Moreover, (F*PTF);; = (FPF); = (F*PF);. Thus Cpr = C} = C%, where
the latter equality follows from the fact that Cp is real (because P is real and
there exists a real basis for circulant matrices, see [maiop]).

So, in the notations Cp = FDpF*, Cpr = FDprF*, we have the equality
DPT = D_P

Note also that (C;% PTYT = PCp"'. Thus, C;% PT has the same eigenvalues
of C’;lP. In other words, the spectra of P and C;lP coincide with the spectra
of PT and C;% PT respectively. (NOT CORRECT! P and Cp may be singular)

Note also that (C’;_laPT (I—aP™)T = (I —aP)C;! p. Thus, Clopr(I—
aPT) has the same eigenvalues of C; ! (I —aP). In other words, the spectra of
I—aP and C; ' p(I—aP) coincide with the spectra of I —aPT and C;jaPT (I—

aPT), respectively. (CORRECT)

Another question is the following. How are the eigenvalues of (I —aP)*(I —
aP) distributed on (0, 00) ? and the eigenvalues of C(;l—aP)*(I—aP) (I—aP)*(I-
aP) 7 This question in order to investigate the possibility of using precondi-
tioned conjugate gradients to solve the google system.

A final question. Is there one event between 1,2,3,4 for which, after this
event, the pagerank corresponding to P, can be easily obtained from the
pagerank corresponding to Pyigq 7

I level degree in Math, February 24, 2010, Matteo Ferrone, Giosi & a problem
of Math Physics involving the columns of the sine transform: a more direct proof
of their orthogonality



Set S = ﬁ(blnﬂ-ir)Jr 1, BER.
Denote by ay, x the inner product of the h and k columns of S (A = ST9).
Then we have:

1
> | sin 7ih ip ik
j= n n

62

p2 27:11 é[COS w cos W]
2

P )]

—1
X Z;l 1 [(R(e! o) e
1 smith—k v—1 smi(htk
= %%(Z? 0€ _Z?:() e )

So, agr = %zn and if h # k:

Ghk

jmihk) jmi(htk)
— el

2 inj(h—k) _imj(h+k)
ap k. = %%(11 ei'rr;'(h—k) - 11 eiw;'gwrk) )
iR —&
2 .« .
= %[1 - 61773(}1,—1@)]3%( .7r17(h 5 i7r_17‘(h+k))
R L 1—e' 1—e n
= B1—émi(h=R]0.5 —0. 5) 0.

The latter equality holds since

1 1 (1 —cosz) +isinz 1
) = - — =, Va # 2%k
1—61-”) 1—cosz —isinz (1 —cosx)?+sin’z 2 © 7 2k

R(

Thus A = %in. In particular, S is unitary (A = 1) for 8 = /2/n.

Claudia, Marcello, Andrea and the roots in [0,1] of Bernoulli polynomials

Any odd degree Bernoulli polynomial Bgg1(z) is null for z = 0, %, 1. As-
sume that it is null also in & € (0, 3). Then B}, | (x) = (2k + 1)Bay(x) is null
in & € (0,2) and in &, € (&,3). But then Bj, (z) = 2kBagj—1(x) must assume
the value zero in the open interval (2, 4,) C (0, %).

Thus we have proved the following

Result 1. Any time Baj1(z) is zero in some point of the interval (0, 3), also
Bak—1(z) must be zero in (0, 3).

It follows that if for some odd n the polynomial B, () is zero in (0, 1), then
Bs(x) must be zero in (0, 3). But the only zeros of Bj are 0, 3, 1. Thus:

Result 2. For any n odd, the only zero in (0,1) of B,, is 5; for any n even,
n # 0, the only stationary point in (0,1) of B, is % (note that also 0,1 are
stationary points for B,, for any n even, n # 2)

Result 3. The Bernoulli polynomials whose degree is even have two, and
only two, roots in the interval (0,1), say & € (0, 3) and 1 — 2.

Proof. The fact that in the interval (0, 1) there must be two distinct roots of
By, of the form & € (0, 3) and 1— 2, follows from the equalities fo B (x)dz =0
and Bayp(z) = Bag(1l — x). Assume that Bsj, has another pair of roots, say
z € (0, —] and 1 —Z, T # &. Then B) 2% = = 2kBsj_1 must have a root in the open
interval (min{#, 2}, max{#,#}) C (0, 1), which is absurd by the Result 2.

As a consequence of the Result 2, if we prove that |Bai(3)| < |B2y(0)], then
the inequality
|Bar(x)| < |Bar(0)|, V€ [0,1]



will be obtained.
I esonero ANS3 - 17 Marzo 2010

Exercise 1. Consider the problem of approximating I = f; f(z)dz, being
f(z) =2, a=1,b=2. Note that  =In2 = 0.69314718. ...
One could use the Nicolaus Mercator series representation of In 2,

In(l+az) =2 — 322+ 1% — Ja* + 225 — ..

_ 1 1 1 1
1n2—1—5+§—z+3—...,

but too terms are required to obtain a sufficient accuracy (for example, one
hundred terms give 0.6981..; one thousand terms give 0.69364.. (CASIO PB-
200)).

A better method is approximating I by the trapezoidal quadrature formula,
combined with the Romberg extrapolation method. Set h = b;—l“ = % Then

the values
Sn=T1 =3 (30 + 572+ 5 f+i),

n=1,2,3,4,... approach I better and better (since S,, — I as n — +00). Let
us compute the first four such approximations:

Si=L = 1-(3+1)=3=0.75,
_  1/1 1 2\ _ 17
So=1. = §(§+Z+§)_ﬂ_0'7083’
S3=I1 = s(3+3+7+3)=5=07,
Sy=11 TG+ 1+ 2+1+3) =10 =0.697023809,

and from these, via the Romberg method, the following better quality approxi-
mations:

Sy = =5 2694,
S = TH=S = 1T - 0.693253968,
Sy = 255 = 4561 — (.693174603.

Let us prove an alternative extrapolation technique, where the intervals are
divided by 3, instead of by 2. We know that

I=1In+cih®+eh*+eshS+ ... .

Thus

I =13+ 0132h2 + 0234h4 + 6336h6 +...,
321 = 321}, + c13%h® + c232h* + ¢33%R5 + .. .,
(32 — 1)I = 320}, — Iy, + 2(32 — 39)R% + ¢5(32 — 3)h6 + ..,
[ =30t | aopt 4 Enb 4
It follows that
. 320, — I3
A P

By applying this formula (for h = %) to our particular problem, we obtain

, I =1, =O(h*).

320 — T 111
=25 2 069375,

-
Ss =1y =357 160



Comparison of all approximations:

<8 <8i<85<8<Ss<S85<585 <.

Ezercise 2. Higher order derivation rules for Bernoulli polynomials follow
immediately from the identity B/, (x) = nB,_1(x):

By (x) = nBy-1(z), By(z) =nB;_;(z) =n(n—1)By_2(z),
BY (z)=nn—1)---(n—j+1)Bn_;(),
Thus, B () =8-7-6-5-4- By(z) = 6720z(x — 1)(z — 1).

Let n be even. If * > 1 is such that B, (z*) = 0, then B,_1(Z) = 0, for
some & € (1,2*). Let us prove this fact.

Since By, (1) = B, (z*) = 0, there exists & € (1,z*) such that 0 = B,,(z*) —
B,(1) = B, (&)(z* = 1) = nBp_1(&)(x* — 1). Alternatively,

0= By(z*) = Bo(0)+n / By 1(t)dt = n / By 1(t)dt =n / Bo 1 (1),
0 0 1

thus B,,_; must become zero in some point of (1,z*).

Let m > 1, be a natural number. By the Euler-Maclaurin formula, for any
n > m we have

1 1,1 1 BQJ(O) 1 1
Z;:i(E )—|—lnn—lnm—|—z; [— W-FW]‘FW@H,
r=m J

1 1 1
[uk41] < k—H|B2k+2(0)|| oz T W|'

n m—1
1 1 1.1 BQJ 1
;1;‘1“”—;;*5% ~lom *Z de s + )+

n

and thus, if v denotes lim,, 1o (> ._; = —Inn), we have

rlr
[ I | B 1
_E:_ - E: 2J
7_r:1r+2m 8 =1 m2j+uk+1(oo),

()] < g2

For instance, for m = 1 and m = 10 we obtain, respectively,

k
1 B5;(0) | Bay+2(0)]
i 225\ oo)| < ===
2+ g 9 + ug+1(00), [uprt1(00)] < F+1

9
11 By; (0 |Bak+2(0)]
v = Zﬁ%_l 10+Z 2 102j+ w1 (00): Jura(00)| < = vioars:




As a consequence, two numbers that differ from the Euler-Mascheroni v constant
less that 0.01 are

5+ 5B2(0) + 1 B4(0) = {5 = 0.575,
3+ 3B2(0) + 1 Ba(0) + §Bs(0) = 5555 = 0.578968,

and two numbers that differ from 7 less than 1/10% and 1/10'°, respectively,
are

29 1+%_1n10+322(0)#+344(0)#,

r=17r

9 B3 (0 B4 (0 Bg (0
S gy — 104 B0 4 B0y B
FExercise 3.
ng(x) — ng(O) = 2k fow ngfl(t)dt

2k [y’ (Bak-1(0) + (2k — 1) 5 Bok—o(€)d€)dt
2k(2k — 1) [ [ Bor—o(€)dE dt.

Thus, if = € (0,1],

2k(2k — 1) [ [ |Bak—2(€)|dE dt
2k (2k — 1)| Bax—2(0)| [ [ dé dt )
2k(2k — 1)| Bap—2(0)| [ tdt = 2k(2k — 1)| Bar—2(0)|%-.

| Bar () — Bar(0)]

A A

(recall that |Bag(z)| < |Ba2r(0)|, Va € [0,1]). Note that equality holds if = = 0.

Exercise 4. Let D be a diagonal matrix. Is D¥ = D ? We have D¥ = D,
so the question becomes: is D = D ? The answer is: D = D iff D is real. Thus,
if one of the diagonal entries of D is in C\R, then DH +£ D; ie. there exist
diagonal matrices which are not hermitian.

If D is diagonal, then DD¥ and DH D are diagonal, and the 4,3 element of
DD is equal to [D];;[D)s; = [D]:i[D]ii, which is the i,i element of D¥D. So,
DD® = DH D ie. any diagonal matrix D is normal.

More in general, any matrix A = QDQH, D diagonal, Q unitary, is normal.
In fact,

(QDRMM(QDQY) = QD"Q"QDQY =QD"DQY =QDDHQY
= QDQTQDYQM =QDQ"(QDQ™)M.

On the relation between the numbers Bak(0) and ng(%)

By calculating the first Bernoulli polynomials (they are listed after formula
(c) below), we observe that

B4(0) = —%, B4(%) = —% + % . %,

B4(0) + By %):_2435’
Bﬁ(o)zﬁalBﬁ %)_ﬁ_%év
B6(0)+BG(§): 26.3.7)



Blo(o) = 65_67 Blo(%) :5 65_6 - 150% : 65_6’

Bi1o(0) + B1o(3) = 50517
Thus we conjecture that the following identity holds:

B2k2gc0)l— % - Bay(0)
92k—1_

— L=t Ba(0)
— (1= 5+=) Bax(0).  (¢)

Bak(3)

Once such conjecture is proved, we will have the inequality |B2k(%)| < |Bak(0)],
Vk (note that limg— oo (Bok(3)/Bak(0)) = —1), and, as a consequence, the
result |Bak(z)| < |B2x(0)], Vx € [0, 1].

The Bernoulli polynomials By, By, ..., Bio:

(note that By(x) — B4(0) = (Ba(x) — B2(0))?),

Bs(z) = a°—32a2%+4 323 — 1y
= z(@-1)(z-3)@* -z - 3),
Bg(z) = af—32°+ 5a* %xz—kl%
= S+t (z—-1)7>%(a* -2 - 3),
Br(z) = 271284125 —1a3+ 1lg
= z(z— -1 -22°+2+ 1),
Bg(x) = a8 4x7+14x6—§x4+%x2—%
= —& 42}z —1)>%(a? —22° — L2t 4+ Fo + 2),
By(z) = 2%—2a%+62" — 2a® +22% - 2o
= z(z—3)(z—1)(a% —32° + 2% +32% — 1a? — Lo — 2),
Bio(z) = a'9—52%+ 1228 — 726 4 521 — 327 + 2

6
= S +42%2(x—1)22%—32° + Lot + 2% + L2 — 32— 3).
Exercise. Prove the following assertion

| B2k (0)]
28)] —c¢>0, k— +oco.

The eigenvalue problem is optimally conditioned (in the spectral norm) for
a matriz A iff A is normal

Let M be a non singular n x n matrix. If us(M) = 1 then ¢M is unitary for
some ¢ > 0. As a consequence, any time a matrix A is diagonalized by a matrix
with spectral-condition number 1, the same A is also diagonalized by a unitary
matrix, that is, A is normal. Thus, we have the following statement:

A is normal iff it is diagonalized by a matrix M with condition number 1.

10



Assume || M||2]|M~1||2 = 1. Then

max; |/\7(MHM)|
mini |)\l(MMH)|

= p(MIM)p(MM™) ™) = p(MH M)p(M~HT (M) =1.

But the eigenvalues of MM are equal to the eigenvalues of M# M (AB and
BA have the same eigenvalues, even in case both A and B are singular), and
the latter are positive (B¥ B is positive definite if B is non singular). So, we
must have

max; )\i (MHM)

— = =1 ie. 3 : J(MPM) =min \;(MTM) = c.
iny (M) ie. 3¢ >0 miax)\( ) miln)\( y=c¢

We also know that there is a matrix @ unitary such that QM7 MQ is diag-
onal. Thus MHM = QcIQ~' = ¢I, and the thesis follows.

An ANS transition matriz

Let P be the 21 x 21 matrix associated with the 21 students of AN3, whose
entries are defined as follows. Pj; = 1/p; if student ¢ € AN3 satisfies the
following two conditions: 1) has the mobil phone number of student j € AN3;
2) has the mobil phone number of p; students of AN3. Otherwise, P;; = 0.

For example, student 2 = MC has the mobil phone number of students
4=5C,13=MD,16 = DA and 21 = I1.

AC =1 wac =6, vac={CP,MF,DL,GS,JD,AC}
MC =2 HNIC :47 vpmC :{SC,MD,DA,II}
CP=3 pcp=2 vep={AC,GL}

SC=4  psc=3, wvsc={AC,MC,MD}

SM =5 HSM = 47 VSM = {AC, GS, JD,A_C}
RP=6  prp=4, vrp={EL,SB,GL, MR}

MF =17 ;L]\/[FZQ, V]\/[F:{AC,CP}

AF =8  par=1, var={CM}

FI=9 HEr =2, vrr = {EL,CM}

DL =10 ,U,DL:O, VDL:@

EL=11 ppp =4, vgr={RP,FI,CM,GL}

CM =12 ,LLCA[:3, VCA[:{AF,FI,EL}

MD =13 pump =4, vmp={MC,SC,GL,II}
GS=14 pugs=4, vgs={AC,SM,JD,AC}
SB=15 usgp =, vsp = {}

DA =16 ,U'DA:L VDA:{MC}

JD=17 p;p=6, vyp={AC,SM,DL,GS, AC,II}
AC =18 jpgz=4, vge={AC,SM,GS,JD}
GL=19 pgr =7, wvgL={CP,SC,RP,EL,MD,MR,II}
MR=20 pmr=3, vur={SC,RP,AC}

I1=21 /.L[[:5, V[[:{MC,SC,MD,JD,GL}

1 = AC =Andrea Celidonio, 2 = M C =Maria Chiara Capuzzo, 3 = C P =Claudia Pallotta,
4 = SC =Stefano Cipolla, 5 = SM =Sara Malacarne, 6 = RP =Roberta Piersimoni,

7 = M F =Marcello Filosa, 8 = AF =Alessandra Fabrizi, 9 = F'I =Federica lacovissi,

10 = DL =Diego Lopez, 11 = EL =FErika Leo, 12 = CM =Chiara Minotti

13 = M D =Martina De Marchis, 14 = GS =Giulia Sambucini, 15 = S B =Sofia Basile,

16 = DA =Davide Angelocola, 17 = JD =Jacopo De Cesaris, 18 = AC =Alessandra Cataldo,

19 = GL =Giorgia Lucci, 20 = M R =Maria Grazia Rositano, 21 = I] =Isabella Iori
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W= N=

=

(SIS

PN

o=

=

MC CP SC SM RP MF AF FI DL EL CM MD GS SB DA JD AC GL MR II

1 1 1 1 1 1
6 6 6 6 6 6
1 1 1
4 1 1
1 1
3 3
1 1 1
4 4 4
1 1
4 4
1
2
1
1 1
2 2
1 1 1
1 1 4
1 1 1
3 3 3
1 1
1 4
1 1 1
1 4 4
1
1 1 1 1
6 6 6 6
1 1 1
1 4 4
1 1 1 1 1
7 7 7 7 7
1 1 1
3 3 3
1 1 1 1
5 5 5 5

1 = AC =Andrea Celidonio, 2 = M C =Maria Chiara Capuzzo, 3 = C P =Claudia Pallotta,
4 = SC =Stefano Cipolla, 5 = SM =Sara Malacarne, 6 = RP =Roberta Piersimoni,

7 = M F =Marcello Filosa, 8 = AF =Alessandra Fabrizi, 9 = F'I =Federica lacovissi,

10 = DL =Diego Lopez, 11 = EL =FErika Leo, 12 = CM =Chiara Minotti

13 = M D =Martina De Marchis, 14 = GS =Giulia Sambucini, 15 = S B =Sofia Basile,

16 = DA =Davide Angelocola, 17 = JD =Jacopo De Cesaris, 18 = AC =Alessandra Cataldo,

19 = GL =Giorgia Lucci, 20 = M R =Maria Grazia Rositano, 21 = I =Isabella Iori

| Bog ()] in [0,1] is dominated by |Bay(0)]

It is easy to verify that for j = 0, for j = 1, and for all odd j, j > 3, the
number B;(1) satisfies the following identity:

By = (55 —1) BO, (cp)
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As a matter of fact, the same identity holds also for j = 2k, k =1,2,.... Thus,
one has the inequality |Bak(3)| = (1 — 5= )|Bar(0)| < |B2x(0)], and therefore
the desired result: |Bag ()| in [0, 1] is dominated by | Bz (0)].

The proof is by induction: we assume the equality (CP) true for all j < 2k—1,
and we prove it for j = 2k. We use the Taylor expansions of Bgy centered in 0
and in %
First note that since Bag(x) = Bag(1 — ) we have

1 1
0= / By (z)dx = 2/ Boy(z)dz,
0 S

1
2
and recall the derivation rule B ()=nn—-1)---(n—k+1)Bp_i(x).
Thus, by integrating the identity

2k

_ Bt 1 o) L Ly
Bop(z) = BQk(i) + ; ﬁB% (5)(1‘ — 5)
from % to 1, one obtains
0 = sz(%)JFZJ 1 (Jﬁ)uzf Bé;c)(%)
= Bu(3) +X08, FEE By(3)

(fll(x — $Yde = W) Analogously, by integrating the identity

Boy(x) = Bay(0 Z B“)

first from 0 to 1 and then from 0 to %, we have, respectively,

0 = Bu(0)+ 535 2 BR0)
= By (0)+ Y3k, 2 8+1()2!k_]+1)32k—j(0)7

0 = sz(o)‘FZj 1(g+1)|2135§3(0?
= Boy(0) + Yk, BN gy (0)

1 . 1 .
(fy #/dx = Jﬁ and [? 2/dx = W)

Now assume (CP) true for j < 2k — 1. Then
j= J 7
= — E2k 2k(2k (111(?2,: i) (sz 17 T 1)B2k7j (O)
_ sz 2h(2h-1)--Gh—j+) p J(0)

+1 |22k 1
I sz 2k (2K (J1J)r1)(|22k7: J+1)B ;(0)
= gt (- X P By (0)
N sz 2k(2k (J1J)r1)(|22k7: it g2k-1p,, (0))

= gz (Ba2r(0) — 2271 B3, (0)) = B2k (0) (5= — 1).
That is, (CP) is true also for j = 2k.
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