On the matrix P of the web

Let n be a positive integer. Let i = 1, 2, ..., n be the sites of the web. For each site i, let μ_i and $\nu(i)$ be the number of sites pointed by i and the set whose elements are the sites pointed by i, respectively $(|\nu(i)| = \mu_i)$.

Moreover, for each site i let $\rho(i)$ be the set whose elements are the sites which point to i. Note that the $\rho(i)$ can be computed from the $\nu(i)$ via the algorithm:

For
$$i=1,2,\ldots,n$$

$$\begin{aligned} \rho(i) &:= \emptyset; \\ \text{for } k=1,2,\ldots,n \\ &\text{if } i \in \nu(k) \text{ then } \rho(i) := \rho(i) \cup \{k\} \end{aligned}$$

Now let P be the $n \times n$ matrix whose ith row, i = 1, ..., n, has all entries equal to zero except those whose indeces are in $\nu(i)$ which are set equal to $1/\mu_i$. Note that

$$(P\mathbf{x})_{k} = \begin{cases} \frac{1}{\mu_{k}} \sum_{s \in \nu(k)} x_{s} & \nu(k) \neq \emptyset \\ 0 & \nu(k) = \emptyset \end{cases}, \quad k = 1, 2, \dots, n;$$

$$(P^{T}\mathbf{x})_{k} = \begin{cases} \sum_{s \in \rho(k)} \frac{1}{\mu_{s}} x_{s} & \rho(k) \neq \emptyset \\ 0 & \rho(k) = \emptyset \end{cases}, \quad k = 1, 2, \dots, n;$$

$$\mathbf{x}^{*}P\mathbf{x} = \sum_{k=1}^{n} \overline{x_{k}}(P\mathbf{x})_{k} = \sum_{k:\nu(k) \neq \emptyset} \overline{x_{k}} \frac{1}{\mu_{k}} \sum_{s \in \nu(k)} x_{s}$$

$$= (P^{T}\mathbf{x})^{*}\mathbf{x} = \sum_{k=1}^{n} \overline{(P^{T}\mathbf{x})_{k}} x_{k} = \sum_{k:\rho(k) \neq \emptyset} x_{k} \sum_{s \in \rho(k)} \frac{1}{\mu_{s}} \overline{x_{s}}.$$

Example:
$$n = 5$$
,
$$\mu_1 = 0 \quad \nu(1) = \emptyset$$

$$\mu_2 = 3 \quad \nu(2) = \{1, 3, 5\}$$

$$\mu_3 = 2 \quad \nu(3) = \{2, 5\}$$

$$\mu_4 = 0 \quad \nu(4) = \emptyset$$

$$\mu_5 = 2 \quad \nu(5) = \{1, 3\}$$

Compute $\rho(i)$, i = 1, 2, 3, 4, 5, and write the 5×5 matrix P.

On $\rho(P^*P)$ and \mathbf{v} such that $P^*P\mathbf{v} = \rho(P^*P)\mathbf{v}$ Upper bounds for $\rho(P^*P)$:

$$\begin{split} \rho(P^*P) &= \rho(PP^*) = \|P^*P\|_2 = \|PP^*\|_2 \leq \|P^*P\|_F = \|PP^*\|_F, \\ \rho(P^*P) &\leq \min\{\min\{\|PP^*\|_1, \|P^*P\|_1\}, \min\{\|PP^*\|_\infty, \|P^*P\|_\infty\}\} \end{split}$$

(note that $||AA^*||_{2,F} = ||A^*A||_{2,F}$, $\forall A$; question: $||AA^*||_1 = ||A^*A||_1$?). One can easily prove the identities

$$(PP^*)_{ij} = \frac{1}{\mu_i \mu_j} |\nu(i) \cap \nu(j)|, \ (P^*P)_{ij} = \sum_{k \in \rho(i) \cap \rho(j)} \frac{1}{\mu_k^2}.$$

So, we have the bounds

$$\rho(P^*P) \le \frac{|\{i : \nu(i) \neq \emptyset\}|}{\min_{i:\nu(i) \neq \emptyset} \mu_i}$$

and

$$\rho(P^*P) \le \frac{|\{i : \rho(i) \neq \emptyset\}| \max_i |\rho(i)|}{\min_{k : \nu(k) \neq \emptyset} \mu_k^2}.$$

Lower bounds for $\rho(P^*P)$:

$$\rho(P^*P) = ||P||_2^2 = \max_{\mathbf{x}, ||\mathbf{x}||_2 = 1} ||P\mathbf{x}||_2^2.$$

Thus we have

$$\begin{split} \rho(P^*P) &\geq \max_{i:\rho(i)\neq\emptyset} \|P\mathbf{e}_i\|_2^2 = \max_{i:\rho(i)\neq\emptyset} \sum_{k\in\rho(i)} \frac{1}{\mu_k^2}, \\ \rho(P^*P) &\geq \max_{i,j:i\neq j;\rho(i),\rho(j)\neq\emptyset} \|P\frac{1}{\sqrt{2}}(\mathbf{e}_i + \mathbf{e}_j)\|_2^2 \\ &= \frac{1}{2} \max_{i,j:i\neq j;\rho(i),\rho(j)\neq\emptyset} \Big[\sum_{k\in(\rho(i)\cup\rho(j))\setminus(\rho(i)\cap\rho(j))} \frac{1}{\mu_k^2} + \sum_{k\in\rho(i)\cap\rho(j)} \frac{4}{\mu_k^2}\Big] \end{split}$$

(check the latter!).

On the other side, from the equality

$$\rho(P^*P) = \|P\|_2^2 = \|P^*\|_2^2 = \max_{\mathbf{x}, \|\mathbf{x}\|_2 = 1} \|P^T\mathbf{x}\|_2^2$$

we obtain

$$\begin{split} \rho(P^*P) &\geq \max_{i:\nu(i) \neq \emptyset} \|P^T \mathbf{e}_i\|_2^2 = \max_{i:\nu(i) \neq \emptyset} \frac{1}{\mu_i} = \frac{1}{\min_{i:\nu(i) \neq \emptyset} \mu_i}, \\ \rho(P^*P) &\geq \max_{i,j:i \neq j;\nu(i),\nu(j) \neq \emptyset} \|P^T \frac{1}{\sqrt{2}} (\mathbf{e}_i + \mathbf{e}_j)\|_2^2 \\ &= \frac{1}{2} \max_{i,j:i \neq j;\nu(i),\nu(j) \neq \emptyset} \left[\frac{1}{\mu_i} + \frac{1}{\mu_j} + \frac{2|\nu(i) \cap \nu(j)|}{\mu_i \mu_j} \right] \end{split}$$

(check the latter!).

Check the lower and upper bounds obtained for $\rho(P^*P)$ when $P = \mathbf{e}\mathbf{e}_i^T$, $P = \frac{1}{n}\mathbf{e}_i\mathbf{e}^T$, $P = \frac{1}{2}\mathbf{e}(\mathbf{e}_i + \mathbf{e}_j)^T$, $P = \frac{1}{n}(\mathbf{e}_i + \mathbf{e}_j)\mathbf{e}^T$, $\mathbf{e} = [1 \ 1 \ \cdots \ 1]^T$, noting that in all cases the best lower bound can be equal to the upper bound.

Let us associate to P its best circulant approximation:

$$C_P = F \operatorname{diag}((F^*PF)_{ii})F^* = \sqrt{n}Fd(FC_P^T\mathbf{e}_1)F^*.$$

It is clear that there are two formulas for the eigenvalues of C_P . Let us explicit these formulas.

(a) Note that

$$(F^*PF)_{jj} = \frac{1}{n} \sum_{k: \nu(k) \neq \emptyset} \sum_{s \in \nu(k)} \frac{1}{\mu_k} \omega^{(s-k)(j-1)} = \frac{1}{n} \sum_{k: \rho(k) \neq \emptyset} \sum_{s \in \rho(k)} \frac{1}{\mu_s} \omega^{(k-s)(j-1)}$$

(use the two expressions obtained above for $\mathbf{x}^*P\mathbf{x}$:

$$(F\mathbf{e}_{j})^{*}(PF\mathbf{e}_{j}) = \sum_{k:\nu(k)\neq\emptyset} \overline{(F\mathbf{e}_{j})_{k}} \frac{1}{\mu_{k}} \sum_{s\in\nu(k)} (F\mathbf{e}_{j})_{s}$$

$$= \sum_{k:\nu(k)\neq\emptyset} \frac{1}{\sqrt{n}} \overline{\omega}^{(k-1)(j-1)} \frac{1}{\mu_{k}} \sum_{s\in\nu(k)} \frac{1}{\sqrt{n}} \omega^{(s-1)(j-1)};$$

$$(P^{T}F\mathbf{e}_{j})^{*}(F\mathbf{e}_{j}) = \sum_{k:\rho(k)\neq\emptyset} (\sum_{s\in\rho(k)} \frac{1}{\mu_{s}} \overline{(F\mathbf{e}_{j})_{s}}) (F\mathbf{e}_{j})_{k}$$

$$= \sum_{k:\rho(k)\neq\emptyset} (\sum_{s\in\rho(k)} \frac{1}{\mu_{s}} \frac{1}{\sqrt{n}} \overline{\omega}^{(s-1)(j-1)}) \frac{1}{\sqrt{n}} \omega^{(k-1)(j-1)}.$$

(b) Moreover, note that, if s_i , i = -n + 1, ..., -1, 0, 1, ..., n - 1, denote the sums of the entries on the *i*th diagonal of P (f.i. ..., $s_{-1} = \sum_{i=1}^{n-1} (P)_{i+1,i}$, $s_0 = \sum_{i=1}^n (P)_{ii}$, $s_1 = \sum_{i=1}^{n-1} (P)_{i,i+1}$, ...), then we have $s_0 = 0$ and, for i = 1, ..., n-1,

$$s_{i} = \sum_{t=1...n-i, t \in \rho(t+i)} \frac{1}{\mu_{t}} = \sum_{t=1...n-i, t+i \in \nu(t)} \frac{1}{\mu_{t}},$$

$$s_{-i} = \sum_{t=1...n-i, t \in \nu(t+i)} \frac{1}{\mu_{t+i}} = \sum_{t=1...n-i, t+i \in \rho(t)} \frac{1}{\mu_{t+i}}.$$

(In fact, for the s_i :

)

$$s_i = \sum_{t=1}^{n-i} P_{t,t+i} = \sum_{t=1}^{n-i} (P\mathbf{e}_{t+i})_t = \sum_{t=1...n-i, \, \nu(t) \neq \emptyset, \, t+i \in \nu(t)} \frac{1}{\mu_t}.$$

The latter equality holds because of the following remark:

$$(P\mathbf{e}_{t+i})_k = \begin{cases} \frac{1}{\mu_k} \sum_{s \in \nu(k)} (\mathbf{e}_{t+i})_s & \nu(k) \neq \emptyset \\ 0 & \nu(k) = \emptyset \end{cases} = \begin{cases} \frac{1}{\mu_k} & \nu(k) \neq \emptyset, \ t+i \in \nu(k) \\ 0 & \text{otherwise} \end{cases}$$
$$(P\mathbf{e}_{t+i})_t = \begin{cases} \frac{1}{\mu_t} & \nu(t) \neq \emptyset, \ t+i \in \nu(t) \\ 0 & \text{otherwise} \end{cases}$$

Analogously,

$$\begin{array}{rcl} s_i & = & \sum_{t=1}^{n-i} P_{t,t+i} = \sum_{t=1}^{n-i} (P^T \mathbf{e}_t)_{t+i} \\ & = & \sum_{t=1...n-i,\; \rho(t+i) \neq \emptyset} \sum_{s \in \rho(t+i)} \frac{1}{\mu_s} (\mathbf{e}_t)_s \\ & = & \sum_{t=1...n-i,\; \rho(t+i) \neq \emptyset,\; t \in \rho(t+i)} \frac{1}{\mu_t}. \end{array}$$

Example: $s_1 = \sum_{t=1...n-1, t:t \to t+1} \frac{1}{\mu_t} \dots$ For the s_{-i} :

$$\begin{array}{rcl} s_{-i} & = & \sum_{t=1}^{n-i} P_{t+i,t} = \sum_{t=1}^{n-i} (P\mathbf{e}_t)_{t+i} \\ & = & \sum_{t=1...n-i,\,\nu(t+i)\neq\emptyset} \frac{1}{\mu_{t+i}} \sum_{s\in\nu(t+i)} (\mathbf{e}_t)_s, \\ s_{-i} & = & \sum_{t=1}^{n-i} P_{t+i,t} = \sum_{t=1}^{n-i} (P^T\mathbf{e}_{t+i})_t \\ & = & \sum_{t=1...n-i,\,\rho(t)\neq\emptyset} \sum_{s\in\rho(t)} \frac{1}{\mu_s} (\mathbf{e}_{t+i})_s. \end{array}$$

It can be shown that the first row of C_P , say $\mathbf{c}^T = [c_0 c_1 \cdots c_{n-1}]$, can be computed via the identities

$$c_0 = s_0/n = 0$$
, $c_i = (s_i + s_{-n+i})/n$, $i = 1, ..., n - 1$.

So,
$$C_P = Fd(\mathbf{z})F^*$$
, $\mathbf{z} = \sqrt{n}F\mathbf{c}$.

Any time something in the web changes, we have to update P and C_P . In particular, we have to compute the new s_i in order to define the new c_i and thus the new vector \mathbf{z} (of the eigenvalues of C_P). Now we show how such new s_i can be computed from the old s_i , in the main situations that may occur.

Case 1: nascita di un sito

$$P_{old} \rightarrow P_{new} = \begin{bmatrix} P_{old} & \mathbf{0} \\ \dots \frac{1}{\mu_{n+1}} \dots & 0 \end{bmatrix}$$

We call the new site n+1, and we associate to it the new objects $\mu_{n+1}=?$, $\nu(n+1)=\{?\}\subset\{1,2,\ldots,n\},\ \rho(n+1)=\emptyset$ (we need new memory allocations for them). We assume $\mu_{n+1}=|\nu(n+1)|$ small $(\mu_{n+1}\geq 1\ (?))$.

Then we introduce two new numbers s_n , s_{-n} (we need other two new cells in memory for them), and we set:

$$s_n := 0, \ s_{-n} := 0, \ s_{j-n-1} := s_{j-n-1} + \frac{1}{\mu_{n+1}}, \ j \in \nu(n+1).$$

After this, we introduce another new number c_n (we need a further new cell in memory for it), and we set:

$$c_n := 0, \ c_j := (s_j + s_{-(n+1)+j})/n, \ j \in \nu(n+1).$$

Finally, set n := n + 1.

Case 2: morte di un sito contemporanea alla nascita di un altro

$$P_{old} = \left[\begin{array}{ccc} \cdot \frac{1}{\mu_r} \cdot & 0 & \cdot \frac{1}{\mu_r} \cdot \\ & \end{array} \right] \quad \rightarrow \quad P_{new} = \left[\begin{array}{ccc} & \mathbf{0} & \\ \cdot \frac{1}{\mu_r^{new}} \cdot & 0 & \cdot \frac{1}{\mu_r^{new}} \cdot \\ & \mathbf{0} & \end{array} \right]$$

Assume that the site r dies. Then we have to set

$$s_{k-r} := s_{k-r} - \frac{1}{\mu_r}, \ k \in \nu(r),$$

and apply (4) (see below) for j=r and $\forall i\in\rho(r)$. Assume now that at the same time a new site is created. We call it r and we associate to it $\mu_r=?$, $\nu(r)=\{?\}\subset\{1,2,\ldots,n\}\backslash\{r\},\,\rho(r)=\emptyset$ (i.e. we use the memory allocations of the died site). We assume $\mu_r=|\nu(r)|$ small $(\mu_r\geq 1$ (?)). Then we have to set

$$s_{k-r} := s_{k-r} + \frac{1}{\mu_r}, \ k \in \nu(r).$$

After this, we set

$$c_{k-r} = (s_{k-r} + s_{-n+k-r})/n, \ k \in \nu(r), \ k-r > 0,$$

$$c_{n+k-r} = (s_{n+k-r} + s_{k-r})/n, \ k \in \nu(r), \ k-r < 0.$$

3: Site i decides to point to the site j

$$P_{old} = \left[\begin{array}{ccc} \cdot \frac{1}{\mu_i} \cdot & 0 & \cdots \end{array} \right] \quad o \quad P_{new} = \left[\begin{array}{ccc} \cdot \frac{1}{\mu_i + 1} \cdot & \frac{1}{\mu_i + 1} & \cdots \end{array} \right]$$

First we have to set:

$$s_{j-i} := s_{j-i} + \frac{1}{\mu_i + 1}, \ s_{k-i} := s_{k-i} + \frac{1}{\mu_i + 1} - \frac{1}{\mu_i}, \ k \in \nu(i).$$

Then set

$$c_{j-i} = (s_{j-i} + s_{-n+j-i})/n$$
, if $j - i > 0$, or $c_{n+j-i} = (s_{n+j-i} + s_{j-i})/n$, if $j - i < 0$,

and

$$c_{k-i} = (s_{k-i} + s_{-n+k-i})/n, \ k \in \nu(i), \ k-i > 0,$$

 $c_{n+k-i} = (s_{n+k-i} + s_{k-i})/n, \ k \in \nu(i), \ k-i < 0.$

Finally, we set $\mu_i := \mu_i + 1$, $\nu(i) := \nu(i) \cup \{j\}$, $\rho(j) := \rho(j) \cup \{i\}$. The latter identities require reordering (forward shift).

4: Site i decides not to point to the site j anymore

$$P_{old} = \begin{bmatrix} \cdot \frac{1}{\mu_i} & \frac{1}{\mu_i} & \cdots \end{bmatrix} \rightarrow P_{new} = \begin{bmatrix} \cdot \frac{1}{\mu_i - 1} & 0 & \cdots \end{bmatrix}$$

First we have to set:

$$s_{j-i} := s_{j-i} - \frac{1}{\mu_i}, \ s_{k-i} := s_{k-i} + \frac{1}{\mu_i - 1} - \frac{1}{\mu_i}, \ k \in \nu(i) \setminus \{j\}.$$

Then set

$$c_{j-i} = (s_{j-i} + s_{-n+j-i})/n$$
, if $j - i > 0$, or $c_{n+j-i} = (s_{n+j-i} + s_{j-i})/n$, if $j - i < 0$,

and

$$c_{k-i} = (s_{k-i} + s_{-n+k-i})/n, \ k \in \nu(i) \setminus \{j\}, \ k-i > 0,$$

$$c_{n+k-i} = (s_{n+k-i} + s_{k-i})/n, \ k \in \nu(i) \setminus \{j\}, \ k-i < 0.$$

Finally, we set $\mu_i := \mu_i - 1$, $\nu(i) := \nu(i) \setminus \{j\}$, $\rho(j) := \rho(j) \setminus \{i\}$. The latter identities require reordering (backward shift).

Remark Note that, after case 1 or case 2 has been run, the site i^* which has created the new site (n in Case 1 and r in case 2) must have a link to such new site. In other words, after case 1 or case 2 we have to run (3) for j=n and $i=i^*\in\{1,\ldots,n-1\}$ or for j=r and $i=i^*\in\{1,\ldots,n\}\backslash\{r\}$.

An algorithm generating the test matrix P and the corresponding approximation C_P

Given a natural number N one could generate a test matrix P of order N and, simultaneously, its best circulant approximation C_P (or, more precisely: non negative integers μ_1, \ldots, μ_N and sets $\nu(1), \ldots, \nu(N)$ defining P; and real numbers $s_{-N+1}, \ldots, s_0, \ldots, s_{N-1}, c_0, \ldots, c_{N-1}, z_1, \ldots, z_N$ defining $C_P = Fd(\mathbf{z})F^*$) by the following procedure:

- Consider an initial matrix matrix P of small size (i.e. choose a small n and define $\mu_i, \nu(i), i = 1, \ldots, n$)
- Apply to P the operators (Case 1)-(3),(Case 2)-(3),(3),(4) repeatedly, in suitable order, each possibly more times, until n is equal to N. During this phase, for what concerns C_P , update only the s_i . (Note that the operator (Case 2)-(3) requires $|\rho(r)|$ applications of (4); so it is expensive if $|\rho(r)|$ is large. However, the death of r means generally a small $|\rho(r)|$)
- When n = N compute also the first row \mathbf{c}^T of C_P and the vector $\mathbf{z} = \sqrt{n}F\mathbf{c}$ of the eigenvalues of C_P

Note that it is advisable to choose N as a power of 2, so that the FFT involved (in computing the vector \mathbf{z} defining the preconditioner C_P , and in each step of the Richardson method preconditioned by C_P) are more efficient.

Upper and lower bounds for $\rho(P^*P)$

A first upper bound is obtained as follows:

$$\begin{array}{lll} \sqrt{\rho(P^*P)} & = & \|P\|_2 = \|P^*\|_2 = \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \|P^T\mathbf{x}\|_2 \\ & \leq & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \|P^T\mathbf{x}\|_1 \\ & = & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \sum_i |\left(\sum_{s: \nu(s) \neq \emptyset} x_s P^T\mathbf{e}_s\right)_i| \\ & = & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \sum_i |\sum_{s: \nu(s) \neq \emptyset} x_s (P^T)_{i, s}| \\ & \leq & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \sum_i \sum_{s: \nu(s) \neq \emptyset} |x_s| (P^T)_{i, s}| \\ & = & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \sum_{s: \nu(s) \neq \emptyset} |x_s| \sum_i (P^T)_{i, s}| \\ & = & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \sum_{s: \nu(s) \neq \emptyset} |x_s| \\ & = & \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \underbrace{\sum_{s: \nu(s) \neq \emptyset} |x_s|}_{s: \nu(s) \neq \emptyset} |x_s| \\ & = & \sqrt{|\{s: \nu(s) \neq \emptyset\}|}. \end{array}$$

However, a lower upper bound can be obtained. In fact, we have that $\rho(P^*P) \leq d$ where

$$d=\min\{\frac{|\{i:\nu(i)\neq\emptyset\}|}{\min_{i:\nu(i)\neq\emptyset}\mu_i},\ \frac{|\{i:\rho(i)\neq\emptyset\}|\max_i|\rho(i)|}{\min_{k:\nu(k)\neq\emptyset}\mu_k^2}\}.$$

Proof.

$$\begin{split} \|PP^*\|_{\infty} &= \max_{i} \sum_{j} |(PP^*)_{ij}| = \max_{i} \sum_{j} \frac{1}{\mu_{i}\mu_{j}} |\nu(i) \cap \nu(j)| \\ &= \max_{i} \frac{1}{\mu_{i}} \sum_{j} \frac{1}{\mu_{j}} |\nu(i) \cap \nu(j)| \\ &= \max_{i} \frac{1}{\mu_{i}} \sum_{j:\nu(j) \neq \emptyset} \frac{1}{\mu_{j}} |\nu(i) \cap \nu(j)| \\ &\leq \max_{i} \frac{1}{\mu_{i}} \sum_{j:\nu(j) \neq \emptyset} \frac{1}{\mu_{j}} \mu_{j} = \max_{i} \frac{1}{\mu_{i}} |\{j:\nu(j) \neq \emptyset\}| \\ &= |\{j:\nu(j) \neq \emptyset\}| \frac{1}{\min_{i:\nu(i) \neq \emptyset} \mu_{i}}, \end{split}$$

$$\begin{split} \|P^*P\|_{\infty} &= \max_{i} \sum_{j} |(P^*P)_{ij}| = \max_{i} \sum_{j} \sum_{k \in \rho(i) \cap \rho(j)} \frac{1}{\mu_{k}^{2}} \\ &\leq \max_{i} \frac{1}{\min_{k:\nu(k) \neq \emptyset} \mu_{k}^{2}} \sum_{j} \sum_{k \in \rho(i) \cap \rho(j)} 1 \\ &= \max_{i} \frac{1}{\min_{k:\nu(k) \neq \emptyset} \mu_{k}^{2}} \sum_{j} |\rho(i) \cap \rho(j)| \\ &= \max_{i} \frac{1}{\min_{k:\nu(k) \neq \emptyset} \mu_{k}^{2}} \sum_{j:\rho(j) \neq \emptyset} |\rho(i) \cap \rho(j)| \\ &\leq |\{j:\rho(j) \neq \emptyset\}| \max_{k} |\rho(k)| \frac{1}{\min_{k:\nu(k) \neq \emptyset} \mu_{k}^{2}}. \ \Box \end{split}$$

(Question: is the following inequality

$$\frac{|\{j:\nu(j)\neq\emptyset\}|}{\min_{i:\nu(i)\neq\emptyset}\mu_i} \leq \frac{|\{j:\rho(j)\neq\emptyset\}|\max_k|\rho(k)|}{\min_{k:\nu(k)\neq\emptyset}\mu_k^2}$$

or, equivalently,

$$|\{j: \rho(j) \neq \emptyset\}| \max_{k} |\rho(k)| \ge |\{j: \nu(j) \neq \emptyset\}| \min_{k: \nu(k) \neq \emptyset} |\nu(k)|$$

true? Note that

$$\begin{aligned} \max_k |\rho(k)| &\leq |\{j: \nu(j) \neq \emptyset\}|, \\ |\{j: \rho(j) \neq \emptyset\}| &\geq \max_k |\nu(k)| \geq \min_{k: \nu(k) \neq \emptyset} |\nu(k)|. \end{aligned}$$

Let us now obtain lower bounds for $\rho(P^*P)$ more general than those obtained in the previous section.

Choose $\mathbf{x} = \frac{1}{\sqrt{3}}(\mathbf{e}_i + \mathbf{e}_j + \mathbf{e}_k), i, j, k \text{ distinct, in}$

$$\rho(P^*P) \ge ||P^T\mathbf{x}||_2^2, ||\mathbf{x}||_2 = 1,$$

in order to obtain

$$\rho(P^*P) \ge r_3 = \frac{1}{3} \max_{i,j,k:i,j,k} \underset{l}{distinct}, \nu(i), \nu(j), \nu(k) \ne \emptyset$$

$$\left[\frac{1}{\mu_i} + \frac{1}{\mu_j} + \frac{1}{\mu_k} + \frac{2|\nu(i) \cap \nu(k)|}{\mu_i \mu_j} + \frac{2|\nu(i) \cap \nu(k)|}{\mu_i \mu_k} + \frac{2|\nu(j) \cap \nu(k)|}{\mu_j \mu_k} \right].$$

Note that if

$$P = \frac{1}{n} (\mathbf{e}_i + \mathbf{e}_j + \mathbf{e}_k) \mathbf{e}^T,$$

then in the above inequality the equal sign holds, i.e. $d = \rho(P^*P) = r_3 = 3/n$. Choose $\mathbf{x} = \frac{1}{\sqrt{3}}(\mathbf{e}_i + \mathbf{e}_j + \mathbf{e}_k)$, i, j, k distinct, in

$$\rho(P^*P) \ge ||P\mathbf{x}||_2^2, ||\mathbf{x}||_2 = 1,$$

in order to obtain

$$\rho(P^*P) \ge c_3 = \frac{1}{3} \max_{\mathcal{A}_3 \subset \{i: \rho(i) \ne \emptyset\}, |\mathcal{A}_3| = 3} \left[\sum_{i \in \mathcal{A}_3} \sum_{s \in \rho(i) \setminus \bigcup_{j \in \mathcal{A}_3 \setminus \{i\}} \rho(j)} \frac{1}{\mu_s^2} + \sum_{i \in \mathcal{A}_3} \sum_{s \in (\bigcap_{j \in \mathcal{A}_3 \setminus \{i\}} \rho(j)) \setminus \rho(i)} \frac{4}{\mu_s^2} + \sum_{s \in \cap_{i \in \mathcal{A}_3} \rho(i)} \frac{9}{\mu_s^2} \right].$$

Note that if

$$P = \frac{1}{3}\mathbf{e}(\mathbf{e}_i + \mathbf{e}_j + \mathbf{e}_k)^T,$$

then in the above inequality the equal sign holds, i.e. $d = \rho(P^*P) = c_3 = n/3$. We guess that the following results (r) and (c) hold: (r) Set

$$r_k = \frac{1}{k} \max_{\mathcal{A}_k \subset \{i: \nu(i) \neq \emptyset\}, |\mathcal{A}_k| = k} \left[\sum_{r \in \mathcal{A}_k} \frac{1}{\mu_r} + \sum_{r, s \in \mathcal{A}_k, r < s} \frac{2}{\mu_r \mu_s} |\nu(r) \cap \nu(s)| \right].$$

Then

$$r_k \le \rho(P^*P) \le d, \ \forall k \in \{1, \dots, |\{i : \nu(i) \ne \emptyset\}|\}.$$

(Proof: apply the inequality

$$\rho(P^*P) = ||P^*||_2^2 \ge ||P^T\mathbf{x}||_2^2, \quad ||\mathbf{x}||_2 = 1,$$

for
$$\mathbf{x} = \frac{1}{\sqrt{k}} (\mathbf{e}_{i_1} + \ldots + \mathbf{e}_{i_k}), \ 1 \le i_1 < i_2 < \ldots < i_k \le n).$$

Note that if

$$P = \frac{1}{n} (\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \dots + \mathbf{e}_{i_k}) \mathbf{e}^T, \quad 1 \le i_1 < i_2 < \dots < i_k \le n,$$

then
$$r_k = \rho(P^*P) = d = \frac{k}{n}$$
.

(c) Now set

$$c_k = \frac{1}{k} \max_{A_k \subset \{i: \rho(i) \neq \emptyset\}, |A_k| = k} \left[\sum_{r=1}^k \sum_{\gamma_r \subset A_k, |\gamma_r| = r} \sum_{s \in \cap_{j \in \gamma_r} \rho(j) \setminus \bigcup_{j \in A_k \setminus \gamma_r} \rho(j)} \frac{r^2}{\mu_s^2} \right].$$

Then

$$c_k \le \rho(P^*P) \le d, \ \forall k \in \{1, \dots, |\{i : \rho(i) \ne \emptyset\}|\}.$$

(Proof: apply the inequality

$$\rho(P^*P) = ||P||_2^2 \ge ||P\mathbf{x}||_2^2, \quad ||\mathbf{x}||_2 = 1,$$

for
$$\mathbf{x} = \frac{1}{\sqrt{k}} (\mathbf{e}_{i_1} + \ldots + \mathbf{e}_{i_k}), \ 1 \le i_1 < i_2 < \ldots < i_k \le n).$$

Note that if

$$P = \frac{1}{k} \mathbf{e} (\mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \dots + \mathbf{e}_{i_k})^T, \quad 1 \le i_1 < i_2 < \dots < i_k \le n,$$

then
$$c_k = \rho(P^*P) = d = \frac{n}{k}$$
.

Remark. By choosing k = 1, k = 2 and k = 3 in the above statements we retrieve the lower bounds for $\rho(P^*P)$ obtained explicitly.

If the lower bounds in (r) and (c) for $\rho(P^*P)$ are true, then we can say that

$$\max\{\max_{1,...,|\{i:\nu(i)\neq\emptyset\}|} r_k, \max_{1,...,|\{i:\rho(i)\neq\emptyset\}|} c_k\} \le \rho(P^*P) \le d$$

$$d=\min\{\frac{|\{i:\nu(i)\neq\emptyset\}|}{\min_{i:\nu(i)\neq\emptyset}\mu_i},\ \frac{|\{i:\rho(i)\neq\emptyset\}|\max_i|\rho(i)|}{\min_{k:\nu(k)\neq\emptyset}\mu_k^2}\}.$$

Question: is the sequence $\max\{r_k, c_k\}, k = 1, ..., \text{ non decreasing?}$ If yes, then one could compute its terms to obtain better and better lower bounds for $\rho(P^*P)$.

Examples.

c)
$$P = \mathbf{e}\mathbf{e}_i^T$$
, $d = n$

$$r_1 = 1, c_1 = n$$

$$r_2 = 2, c_2 = \text{und}$$

$$r_3 = 3, c_3 = \text{und}$$

cc)
$$P = \frac{1}{2}\mathbf{e}(\mathbf{e}_i + \mathbf{e}_j)^T$$
, $d = n/2$

$$r_1 = 1/2, c_1 = n/4$$

$$r_2 = 1, c_2 = n/2$$

$$r_{3} = 3/2, c_{3} = \text{und}$$

$$r) P = \frac{1}{n} \mathbf{e}_{i} \mathbf{e}^{T}, d = 1/n$$

$$r_{1} = 1/n, c_{1} = 1/n^{2}$$

$$r_{2} = \text{und}, c_{2} = 2/n^{2}$$

$$r_{3} = \text{und}, c_{3} = 3/n^{2}$$

$$rr) P = \frac{1}{n} (\mathbf{e}_{i} + \mathbf{e}_{j}) \mathbf{e}^{T}, d = 2/n$$

$$r_{1} = 1/n, c_{1} = 2/n^{2}$$

$$r_{2} = 2/n, c_{2} = 4/n^{2}$$

$$r_{3} = \text{und}, c_{3} = 6/n^{2}$$

$$\text{Set } \tilde{\mathbf{e}} = \sum_{i=1}^{t} \mathbf{e}_{i}.$$

$$c1) P = \tilde{\mathbf{e}}_{i}^{T}, d = t$$

$$r_{1} = 1, c_{1} = t$$

$$r_{2} = 2, c_{2} = \text{und}$$

$$r_{3} = 3, c_{3} = \text{und}$$

$$cc1) P = \frac{1}{2} \tilde{\mathbf{e}} \mathbf{e}_{i}^{T} + (\mathbf{e} - \frac{1}{2} \tilde{\mathbf{e}}) \mathbf{e}_{j}^{T}, d = n$$

$$r_{1} = 1, c_{1} = t/4 + (n - t)$$

$$r_{2} = 2, c_{2} = n/2$$

$$r_{3} = 3, c_{3} = \text{und}$$

$$r1) P = \frac{1}{t} \mathbf{e}_{i} \tilde{\mathbf{e}}^{T}, d = 1/t$$

$$r_{1} = 1/t, c_{1} = 1/t^{2}$$

$$r_{2} = \text{und}, c_{2} = 2/t^{2}$$

$$r_{3} = \text{und}, c_{3} = 3/t^{2}$$

$$rr1) P = \frac{1}{n} \mathbf{e}_{i} \mathbf{e}^{T} + \frac{1}{t} \mathbf{e}_{j} \tilde{\mathbf{e}}^{T}, d = 2/t$$

$$r_{1} = 1/t, c_{1} = 1/t^{2} + 1/n^{2}$$

$$r_{2} = \frac{1}{2}(3/n + 1/t), c_{2} = 2/t^{2} + 2/n^{2}$$

$$r_{3} = \text{und}, c_{3} = 3/t^{2} + 3/n^{2}(?)$$

Question: from the equality

$$\rho(P^*P) = \rho(PP^*) = \inf_k (\|(PP^*)^k\|_{\infty})^{1/k} = \lim_k (\|(PP^*)^k\|_{\infty})^{1/k}$$

is it possible to define a non increasing sequence d_k such that $d_0 = d = |\{i : \nu(i) \neq \emptyset\}|/\min \mu_k$ (recall that $\|PP^*\|_{\infty} \leq d$) and $\rho(PP^*) \leq d_k \leq d$, $\forall k$? If yes, then one could compute its terms to obtain better and better upper bounds for $\rho(P^*P)$.

The proof of an inequality

We now prove the inequality:

$$(\min_{k:\nu(k)\neq\emptyset}|\nu(k)|)\ |\{j:\nu(j)\neq\emptyset\}|\leq (\max_k|\rho(k)|)\ |j:\rho(j)\neq\emptyset|.$$

So, for the d in the upper bound $\rho(P^*P) \leq d$ (see above) we simply have

$$d = \frac{|\{k : \nu(k) \neq \emptyset\}|}{\min_{k : \nu(k) \neq \emptyset} \mu_k}.$$

Without loss of generality, assume that

$$\{j : \nu(j) \neq \emptyset\} = \{1, 2, \dots, x\}, \ x := |\{j : \nu(j) \neq \emptyset\}|, \{j : \rho(j) \neq \emptyset\} = \{1, 2, \dots, y\}, \ y := |\{j : \rho(j) \neq \emptyset\}|.$$

Thus, the $x \times y$ upper left submatrix of P, which we call W, has no null row and no null column, whereas the entries of the remaining part of P are all zeroes:

$$P = \left[\begin{array}{cc} W & 0 \\ 0 & 0 \end{array} \right].$$

(1) If $\min_{k:\nu(k)\neq\emptyset} |\nu(k)| = 1$, then $x \leq (\max_k |\rho(k)|)y$.

Proof. We prove the thesis considering the two different cases $y \geq x$ and y < x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for $y = x, \frac{x}{2}, \frac{x}{3}, \ldots, \frac{x}{i}, \frac{x}{i+1}$ must be (modulo permutations) in the positions shown in Figure 1.

 $y \ge x$: In this case $\max_k |\rho(k)| \ge 1$ (see Figure 1, y = x). Thus $1 \cdot x \le 1 \cdot y \le (\max_k |\rho(k)|)y$.

y < x: If y < x, then $\max_k |\rho(k)| \ge 2$ (see Figure 1, $y = x, \frac{x}{2}$). If $\frac{x}{2} \le y$ too, then $x \le 2y \le (\max_k |\rho(k)|)y$. If $y < \frac{x}{2}$, then $\max_k |\rho(k)| \ge 3$ (see Figure 1, $y = \frac{x}{2}, \frac{x}{3}$). If $\frac{x}{3} \le y$ too, then $x \le 3y \le (\max_k |\rho(k)|)y$. In general, let $i \in \{1, 2, \ldots\}$. If $y < \frac{x}{i}$, then $\max_k |\rho(k)| \ge i + 1$ (see Figure 1, $y = \frac{x}{i}, \frac{x}{i+1}$). If $\frac{x}{i+1} \le y$ too, then $x \le (i+1)y \le (\max_k |\rho(k)|)y$.

Figure 1: W for min $\mu_k = 1$, $y = x, \frac{x}{2}, \frac{x}{3}, \dots, \frac{x}{i}, \frac{x}{i+1}$

(2) If $\min_{k:\nu(k)\neq\emptyset} |\nu(k)| = 2$, then $2x \leq (\max_k |\rho(k)|)y$.

Proof. We prove the thesis considering the two different cases $y \geq 2x$ and y < 2x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for $y = 2x, 2\frac{x}{2}, 2\frac{x}{3}, \ldots, 2\frac{x}{i}, 2\frac{x}{i+1}$ must be (modulo permutations) in the positions shown in Figure 2.

 $y \ge 2x$: In this case $\max_k |\rho(k)| \ge 1$ (see Figure 2, y = 2x). Thus $2x \le 1 \cdot y \le (\max_k |\rho(k)|)y$.

 $\begin{array}{l} y<2x\text{: If }y<2x\text{, then }\max_{k}|\rho(k)|\geq2\text{ (see Figure 2, }y=2x,2\frac{x}{2})\text{. If }2\frac{x}{2}\leq y\\ \text{too, then }2x\leq2y\leq(\max_{k}|\rho(k)|)y\text{. If }y<2\frac{x}{2}\text{, then }\max_{k}|\rho(k)|\geq3\text{ (see Figure 2, }y=2\frac{x}{2},2\frac{x}{3})\text{. If }2\frac{x}{3}\leq y\text{ too, then }2x\leq3y\leq(\max_{k}|\rho(k)|)y\text{. In general, let }i\in\{1,2,\ldots\}\text{. If }y<2\frac{x}{i}\text{, then }\max_{k}|\rho(k)|\geq i+1\text{ (see Figure 2, }y=2\frac{x}{i},2\frac{x}{i+1}\text{).}\\ \text{If }2\frac{x}{i+1}\leq y\text{ too, then }2x\leq(i+1)y\leq(\max_{k}|\rho(k)|)y\text{.}\end{array}$

Figure 2: W for min $\mu_k = 2$, $y = 2x, 2\frac{x}{2}, 2\frac{x}{3}, \dots, 2\frac{x}{i}, 2\frac{x}{i+1}$

(3) If $\min_{k:\nu(k)\neq\emptyset} |\nu(k)| = 3$, then $3x \leq (\max_k |\rho(k)|)y$.

Proof. We prove the thesis considering the two different cases $y \geq 3x$ and y < 3x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for $y = 3x, 3\frac{x}{2}, 3\frac{x}{3}, \ldots, 3\frac{x}{i+1}$ must be (modulo permutations) in the positions shown in Figure 3.

 $y \ge 3x$: In this case $\max_k |\rho(k)| \ge 1$ (see Figure 3, y = 3x). Thus $3x \le 1 \cdot y \le (\max_k |\rho(k)|)y$.

 $y<3x\text{: If }y<3x\text{, then }\max_k|\rho(k)|\geq 2\text{ (see Figure 3, }y=3x,3\frac{x}{2}\text{). If }3\frac{x}{2}\leq y$ too, then $3x\leq 2y\leq (\max_k|\rho(k)|)y$. If $y<3\frac{x}{2}$, then $\max_k|\rho(k)|\geq 3$ (see Figure 3, $y=3\frac{x}{2},3\frac{x}{3}$). If $3\frac{x}{3}\leq y$ too, then $3x\leq 3y\leq (\max_k|\rho(k)|)y$. In general, let $i\in\{1,2,\ldots\}$. If $y<3\frac{x}{i}$, then $\max_k|\rho(k)|\geq i+1$ (see Figure 3, $y=3\frac{x}{i},3\frac{x}{i+1}$). If $3\frac{x}{i+1}\leq y$ too, then $3x\leq (i+1)y\leq (\max_k|\rho(k)|)y$.

Figure 3: W for min $\mu_k = 3$, $y = 3x, 3\frac{x}{2}, 3\frac{x}{3}, \dots, 3\frac{x}{i}, 3\frac{x}{i+1}$

 $(4) \left(\min_{k:\nu(k)\neq\emptyset} |\nu(k)| \right) x \le \left(\max_k |\rho(k)| \right) y.$

Proof. Set $\mu_{\min} = \min_{k:\mu_k>0} \mu_k$. We prove the thesis considering the two different cases $y \geq \mu_{\min} x$ and $y < \mu_{\min} x$. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for $y = \mu_{\min} x, \mu_{\min} \frac{x}{2}, \mu_{\min} \frac{x}{3}, \ldots, \mu_{\min} \frac{x}{i}, \mu_{\min} \frac{x}{i+1}$ must be (modulo permutations) in the positions shown in Figure 4.

 $y \ge \mu_{\min} x$: In this case $\max_k |\rho(k)| \ge 1$ (see Figure 4, $y = \mu_{\min} x$). Thus $\mu_{\min} x \le 1 \cdot y \le (\max_k |\rho(k)|) y$.

 $y<\mu_{\min}x\text{: If }y<\mu_{\min}x\text{, then }\max_{k}|\rho(k)|\geq 2\text{ (see Fig.4, }y=\mu_{\min}x,\mu_{\min}\frac{x}{2}\text{)}.$ If $\mu_{\min}\frac{x}{2}\leq y$ too, then $\mu_{\min}x\leq 2y\leq (\max_{k}|\rho(k)|)y$. If $y<\mu_{\min}\frac{x}{2}$, then $\max_{k}|\rho(k)|\geq 3$ (see Figure 4, $y=\mu_{\min}\frac{x}{2},\mu_{\min}\frac{x}{3}$). If $\mu_{\min}\frac{x}{3}\leq y$ too, then $\mu_{\min}x\leq 3y\leq (\max_{k}|\rho(k)|)y$. In general, let $i\in\{1,2,\ldots\}$. If $y<\mu_{\min}\frac{x}{i}$, then $\max_{k}|\rho(k)|\geq i+1$ (see Figure 4, $y=\mu_{\min}\frac{x}{i},\mu_{\min}\frac{x}{i+1}$). If $\mu_{\min}\frac{x}{i+1}\leq y$ too, then $\mu_{\min}x\leq (i+1)y\leq (\max_{k}|\rho(k)|)y$.

Figure 4: W for μ_{\min} generic, $y = \mu_{\min} x, \mu_{\min} \frac{x}{2}, \mu_{\min} \frac{x}{3}, \dots, \mu_{\min} \frac{x}{i}, \mu_{\min} \frac{x}{i+1}$

Better upper bounds for $\rho(P^*P)$?

Let $i, j \in \{1, 2, ..., n\}$. If $\nu(i) = \emptyset$ or $\nu(j) = \emptyset$, then $((PP^*)^k)_{ij} = 0$, for all $k \ge 1$. Otherwise, i.e. if both $\nu(i)$ and $\nu(j)$ are non empty, then

$$(PP^*)_{ij} = \frac{1}{\mu_i \mu_j} |\nu(i) \cap \nu(j)|,$$

$$((PP^*)^2)_{ij} = \frac{1}{\mu_i \mu_j} \sum_{k:\nu(k) \neq \emptyset} \frac{|\nu(i) \cap \nu(k)| |\nu(k) \cap \nu(j)|}{\mu_k^2},$$

$$((PP^*)^3)_{ij} = \frac{1}{\mu_i \mu_j} \sum_{k,s:\nu(k),\nu(s) \neq \emptyset} \frac{|\nu(i) \cap \nu(k)| |\nu(k) \cap \nu(s)| |\nu(s) \cap \nu(j)|}{\mu_k^2 \mu_s^2},$$

. . .

$$((PP^*)^k)_{ij} = \frac{1}{\mu_i \mu_j} \sum_{r_1, \dots, r_{k-1} : \nu(r_s) \neq \emptyset, \ \forall \ s} \frac{|\nu(i) \cap \nu(r_1)| |\nu(r_1) \cap \nu(r_2)| \cdots |\nu(r_{k-1}) \cap \nu(j)|}{\mu_{r_1}^2 \mu_{r_2}^2 \cdots \mu_{r_{k-1}}^2},$$

$$((PP^*)^{k+1})_{ij} = \frac{1}{\mu_j} \sum_{r_k: \nu(r_k) \neq \emptyset} \frac{|\nu(r_k) \cap \nu(j)|}{\mu_{r_k}} ((PP^*)^k)_{i,r_k}.$$

Aim: find a sequence d_k such that $\rho(P^*P) \leq d_{k+1} \leq d_k \leq d_0, d_k \to \rho(P^*P)$. Recall that

$$\rho(P^*P) = \rho(PP^*) = ((\rho(PP^*))^k)^{\frac{1}{k}} = (\rho((PP^*)^k))^{\frac{1}{k}} \\
\leq \|(PP^*)^k\|^{\frac{1}{k}} \leq \|PP^*\|, \ k = 1, 2, \dots, \\
\rho(PP^*) = \inf_k \|(PP^*)^k\|^{\frac{1}{k}} = \lim_k \|(PP^*)^k\|^{\frac{1}{k}}, \\
\|PP^*\|_{\infty} = \max_{i:\mu_i > 0} \sum_{j:\mu_j > 0} \frac{|\nu(i) \cap \nu(j)|}{\mu_i \mu_j} \leq d_0 := d = \frac{|\{j: \nu(j) \neq \emptyset\}|}{\mu_{min}}.$$

Thus, from the inequality

$$\begin{split} \|(PP^*)^2\|_{\infty} &= \max_{i:\mu_i>0} \frac{1}{\mu_i} \sum_{j:\mu_j>0} \frac{1}{\mu_j} \sum_{k:\mu_k>0} \frac{|\nu(i)\cap\nu(k)||\nu(k)\cap\nu(j)|}{\mu_k^2} \\ &\leq \max_{i:\mu_i>0} \frac{1}{\mu_i^2} \Big(\sum_{j:\mu_j>0} \frac{|\nu(i)\cap\nu(j)|}{\mu_j}\Big)^2 = \|PP^*\|_{\infty}^2 \leq d_0^2, \end{split}$$

we have that a first step towards our aim, could be the following: look for d_1 such that

$$\|(PP^*)^2\|_{\infty} = \max_{i:\mu_i > 0} \frac{1}{\mu_i} \sum_{j:\mu_j > 0} \frac{1}{\mu_j} \sum_{k:\mu_k > 0} \frac{|\nu(i) \cap \nu(k)| |\nu(k) \cap \nu(j)|}{\mu_k^2} \le d_1^2, \ d_1 < d_0.$$

(Note that

$$\rho(PP^*) \le \dots \le \|(PP^*)^8\|_{\infty}^{\frac{1}{8}} \le \|(PP^*)^4\|_{\infty}^{\frac{1}{4}} \le \|(PP^*)^2\|_{\infty}^{\frac{1}{2}} \le \|(PP^*)\|_{\infty},$$
$$\|(PP^*)^{2^k}\|_{\infty}^{\frac{1}{2^k}} \to \rho(PP^*).$$

So, the ideal result we would like to obtain is the following: define an easily computable number d_k such that

$$\|(PP^*)^{2^k}\|_{\infty}^{\frac{1}{2^k}} \le d_k \le \|(PP^*)^{2^{k-1}}\|_{\infty}^{\frac{1}{2^{k-1}}}, \ k = 1, 2, \dots$$

Computing $\nu(i) \cap \nu(j)$, $|\nu(i) \cap \nu(j)|$ and $(PP^*)_{ij} = \frac{|\nu(i) \cap \nu(j)|}{\mu_i \mu_i}$

The following algorithm

```
for i = 1, ..., n {
m_i := null; (m_i(j) := (\emptyset, 0, 0) \, \forall j = 1, ..., n)
if \nu(i) \neq \emptyset \ (\mu_i > 0) then {
\eta_i := \nu(i); \ c_i := \mu_i; \ f_i := 1/\mu_i;
for j = i + 1, ..., n {
\eta_j = \emptyset; \ c_j = 0;
for k \in \nu(i) {
    if k \in \nu(j) then {
    \eta_j := \eta_j \cup \{k\};
    c_j := c_j + 1 } } (\eta_j = \nu(i) \cap \nu(j), \ c_j = |\nu(i) \cap \nu(j)|)
    if c_j > 0 then { f_j := c_j/(\mu_i\mu_j)
    }
    for j = i, ..., n { (\eta_j \neq \emptyset \ \text{for at least } j = i)
    m_i(j) := (\eta_j, c_j, f_j) }
    for j = 1, ..., i - 1 { m_i(j) := m_j(i) } (m_i \neq null)
}

yields the vectors m_i here below:

m_1 = [(\ ,\ ) \ldots]
...
```

Question: is it possible to compute $\|(PP^*)^{2^k}\|_{\infty}$ from $\|(PP^*)^{2^{k-1}}\|_{\infty}$ with less than $|\{j: \nu(j) \neq \emptyset\}|^3$ arithmetic operations?

 $\rho(H)$ as the limit of a sequence (written about two years ago)

(Given $\gamma_k \in S \subset X$ and $\gamma \in X$, by writing

$$\gamma_k \to \gamma$$

we mean the convergence to zero of the sequence of non negative real numbers $\xi_k = \|\gamma_k - \gamma\|$, where $\|$ may be the absolute value $(X = \mathbb{R}, \mathbb{C})$, a vector norm $(X = \mathbb{R}^n, \mathbb{C}^n)$, a matrix norm $(X = \mathbb{R}^{n \times n}, \mathbb{C}^{n \times n})$, a functional norm $(X = C^0, L^2)$.

Let H be a $n \times n$ matrix and ρ_k the sequence of non negative real numbers

$$\rho_k = (\|H^k\|)^{1/k}, \ k \ge 1.$$

It is simple to verify that $\rho(H) \leq \rho_k \leq \rho_1 = ||H||$, $\forall k$ and that $\dots \rho_8 \leq \rho_4 \leq \rho_2 \leq \rho_1; \dots \rho_6 \leq \rho_3 \leq \rho_1; \dots$ It is not simple to establish if the sequence ρ_k is non increasing or not. In particular, is it true that

$$\rho_3 \le \rho_2$$
? (surely we have $\rho_3 \le \rho_2 \frac{\|H\|^{1/3}}{\|H^2\|^{1/6}}$)

However, even if we succeed in proving the non increasing behaviour of ρ_k , or, more simply, the convergence of ρ_k , we could only conclude that

$$\rho(H) \le \lim_{k} \rho_n \le \rho_s.$$

In the following theorem, instead, it is noticed that a stronger result holds: the sequence ρ_k converges (from above) to $\rho(H)$.

Lemma Given $H \in \mathbb{C}^{n \times n}$ and $\varepsilon > 0$ there exists a matrix norm $\hat{\parallel} = \hat{\parallel}_{H,\varepsilon}$ such that $\hat{\parallel} H \hat{\parallel} < \rho(H) + \varepsilon$.

Proof. The thesis is verified, for example, by setting $\|A\| = \|SAS^{-1}\|_{\infty}$ where S = DQ, with Q unitary such that $T = QAQ^{-1}$ is upper triangular, and D diagonal with $D_{ii} = 1/\delta^i$, δ suitable.

Theorem Given $H \in \mathbb{C}^{n \times n}$, indipendently from the choice of the matrix norm $\|\cdot\|$, we have

$$\rho(H) = \lim_{k} (\|H^k\|)^{\frac{1}{k}}.$$

Proof. Set $\rho = \inf \rho_k$, for a particular choice of $\|$. Then it can be shown that ρ_k , for any choice of $\|$, converges to ρ . It follows that the definition of ρ does not depend upon the choice of $\|$. Since $\rho_k \geq \rho(H)$, we have $\rho \geq \rho(H)$. But we also have $\varepsilon + \rho(H) > \rho$, for any $\varepsilon > 0$. In fact, by the Lemma there exists $\|$ such that $(\|H^k\|)^{1/k} \leq \|H\| < \rho(H) + \varepsilon$, and $\rho = \inf(\|H^k\|)^{1/k}$. Thus ρ must be equal to $\rho(H)$. QED

Problem: $\rho_1 \geq \rho_2 \geq \rho_4 \geq \rho_8 \geq \ldots$, are better and better approximations of $\rho(H)$. Is it possible to introduce a norm $\|\cdot\|$ such that these approximations are easily computable and converge rapidly to $\rho(H)$?

Corollary Given $H \in \mathbb{C}^{n \times n}$, $H^k \to 0$ if and only if $\rho(H) < 1$.

Proof. $\rho(H) < 1 \Rightarrow (\|H^k\|)^{1/k} \leq \nu < 1, \ \forall k \geq N \Rightarrow \|H^k\| \leq \nu^k \Rightarrow \|H^k\| \to 0.$ Viceversa, $\|H^k\| \to 0 \Rightarrow \exists k : \|H^k\| < 1 \Rightarrow \exists k : \rho(H)^k = \rho(H^k) < 1 \Rightarrow \rho(H) < 1.$ QED