On the matriz P of the web

Let n be a positive integer. Let ¢ = 1,2,...,n be the sites of the web. For
each site 4, let p; and v(i) be the number of sites pointed by ¢ and the set whose
elements are the sites pointed by 4, respectively (|v(i)| = p;).

Moreover, for each site i let p(i) be the set whose elements are the sites
which point to i. Note that the p(i) can be computed from the v(i) via the
algorithm:

Fori=1,2,....n
p(i) = 0;
fork=1,2,...,n
if ¢ € v(k) then p(i) := p(i) U {k}
Now let P be the n x n matrix whose ith row, i = 1,...,n, has all entries

equal to zero except those whose indeces are in v(7) which are set equal to 1/ ;.
Note that
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Example: n =5,
pr=0 v(1)=10
H2 = v(2) ={1,3,5}
s =2 v(3)={2,5}
pa=0 v(4)=10
=2 w(5) = {1,3}

Compute p(i), i =1,2,3,4,5, and write the 5 x 5 matrix P.

On p(P*P) and v such that P*Pv = p(P*P)v
Upper bounds for p(P*P):

p(P*P) = p(PP*) = | P*P|lz = | PP*|s < ||P*Pl|F = | PP*| r,
p(P*P) < min{min{ [ PP*[l, | P* P}, min{|| PP o, | P Pl }}

(note that ||AA*||2,p = [|[A*All2,r, VA; question: ||AA*||; = ||[A*Allx ? ). One
can easily prove the identities
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So, we have the bounds
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Lower bounds for p(P*P):

p(P*P) = |P|3 = x| 1Px]3-

Thus we have
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(check the latter!).
On the other side, from the equality

p(PP) = IPI3 = |IP*I} = max |PTx3

we obtain
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(check the latter!).

Check the lower and upper bounds obtained for p(P*P) when P = ee!,

P=1eel P=1le(e;+e;)7, P=21L(e;+e;)eT, e=[11---1]T, noting that
in all cases the best lower bound can be equal to the upper bound.

Let us associate to P its best circulant approximation:
Cp = Fdiag ((F*PF);)F* = /nFd(FChe))F

It is clear that there are two formulas for the eigenvalues of C'p. Let us explicit
these formulas.



(a) Note that
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(b) Moreover, note that, if s;, i = —n+1,...,—1,0,1,...,n — 1, denote
the sums of the entries on the ith diagonal of P (fi. ..., s_1 = E?’:_ll(P)iHﬂ;,
so = Yor 1 (Pis, 51 = Z?;11(P)i,i+1a ...), then we have so = 0 and, for i =
1,...,n—1,
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The latter equality holds because of the following remark:
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It can be shown that the first row of Cp, say ' = [coct -+ cn_1], can be
computed via the identities

co=50/n=0, ¢ =(si+$_nti)/n, 1=1,...,n—1.

So, Cp = Fd(z)F*, z = /nFc.

Any time something in the web changes, we have to update P and Cp. In
particular, we have to compute the new s; in order to define the new c¢; and
thus the new vector z (of the eigenvalues of C'p). Now we show how such new
s; can be computed from the old s;, in the main situations that may occur.

Case 1: nascita di un sito

Po 0
Pya —  Phew= P S ()
Hrnt1

We call the new site n 4+ 1, and we associate to it the new objects pn+1 =7,
vin+1)={?} c{1,2,...,n}, p(n+1) = 0 (we need new memory allocations
for them). We assume pin+1 = |[v(n + 1)| small (pp41 > 1 (7).

Then we introduce two new numbers s, s_, (we need other two new cells
in memory for them), and we set:

Sp =0, s5_p =0, Sj_p_1 = Sj_p_1+ , jevin+1).

Mn+1

After this, we introduce another new number ¢,, (we need a further new cell in
memory for it), and we set:

cn =0, ¢j = (85 +5_(ny1)45)/n, JEV(n+1).
Finally, set n :=n + 1.

Case 2: morte di un sito contemporanea alla nascita di un altro

0
1 1 1 1
Pog= el 0 e —  Phew = " pmew 0 " mew
0

Assume that the site r dies. Then we have to set

1
Sker = Sk—yp — —, k € v(r),
and apply (4) (see below) for j = r and Vi € p(r). Assume now that at the
same time a new site is created. We call it r and we associate to it u, =7,
viry={7} c{1,2,...,n}\{r}, p(r) = 0 (i.e. we use the memory allocations of
the died site). We assume p, = |v(r)| small (u, > 1 (7)). Then we have to set

1
Sk—r = Sk—r + —, k € v(r).

T

After this, we set

Chor = (Sk—r + S—ptk—r)/n, k €V(r), k —r >0,



Crtk—r = (Sntk—r + Sk—r)/n, k €v(r), k—r <O0.

8: Site © decides to point to the site j
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First we have to set:

1 1 .
Sj_i =8j_;+ m, Sk—i = Sk—i + i+ 1 - ;7 k€ v(i).

Then set
Cj—j = (Sj_i + s_n,+j_7;)/n, lfj —1>0, or
Cnyj—i = (Sntj—i +sj-4)/n, if j —i <0,
and
Cr—i = (Sk—i + 5—ntk—i)/n, k€ v(i), k—i>0,
Cntk—i = (Sn+k—i + Sk—i)/n, k€ v(i), k—i<0.

Finally, we set u; := p; + 1, v(i) := v(i) U {j}, p(4) := p(j) U {i}. The latter

identities require reordering (forward shift).

4: Site i decides not to point to the site j anymore

1 1
P = S —  Poow = T 0

First we have to set:

Sji 1= Sj_i — i, Sk—j 1= Sp_i + " 1_ T~ i, kEev()\{j}.
Then set
Cj—i = (8joi + S—ptj—i)/n, if j—i>0, or
Cntj—i = (Sntj—i + Sj—i)/n, if j —i <0,
and

Ch—i = (Sk—i + S—nyk—i)/n, k€ v(@)\{j}, k—i>0,
Cnk—i = (Snth—i + sk—i)/n, ke v(i)\{j}, k—i<O.

Finally, we set p; = p; — 1, v(3) := v(i)\{j}, p(4j) := p(5)\{i}. The latter
identities require reordering (backward shift).

Remark Note that, after case 1 or case 2 has been run, the site i* which has
created the new site (n in Case 1 and r in case 2) must have a link to such new
site. In other words, after case 1 or case 2 we have to run (3) for j = n and
i=i"e{l,...,n—1}orfor j=randi=i"e€{1,....,n}\{r}.

An algorithm generating the test matriz P and the corresponding approxi-
mation Cp

Given a natural number N one could generate a test matrix P of order IV and,
simultaneously, its best circulant approximation Cp (or, more precisely: non
negative integers p1,. .., uy and sets v(1),...,v(N) defining P; and real num-
bers S_Ni1,---,80,-+,SN—1, COy---sCN—1, 21, - -, 2N defining Cp = Fd(z)F*)
by the following procedure:



e Consider an initial matrix matrix P of small size (i.e. choose a small n
and define p;,v(i),i=1,...,n)

e Apply to P the operators (Case 1)-(3),(Case 2)-(3),(3),(4) repeatedly, in
suitable order, each possibly more times, until n is equal to N. During this
phase, for what concerns Cp, update only the s;. (Note that the operator
(Case 2)-(3) requires |p(r)| applications of (4); so it is expensive if |p(r)]
is large. However, the death of r means generally a small |p(r)] )

e When n = N compute also the first row ¢? of Cp and the vector z = \/nFc
of the eigenvalues of C'p

Note that it is advisable to choose N as a power of 2, so that the FFT
involved (in computing the vector z defining the preconditioner Cp, and in each
step of the Richardson method preconditioned by Cp) are more efficient.

Upper and lower bounds for p(P*P)
A first upper bound is obtained as follows:

p(P*P) = [Pz =[|P*||2 = maxyx,=1 [| P"x]2
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However, a lower upper bound can be obtained. In fact, we have that p(P*P) <
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or, equivalently,

12 p() # 0} max|p(k)| > 115 : v(3) # 0} _min (k)

true? Note that

maxy, [p(k)| < [{j : v(j) # 0},
{3 : p(G) # O} = maxy [v(k)| = ming., gz [V (k)]

)

Let us now obtain lower bounds for p( P* P) more general than those obtained
in the previous section.
Choose x = %(ei +e; +eg), 4, J, k distinct, in

p(P*P) = ||PTx]3, ||x[l2 =1,

in order to obtain

p(P*P)>r3 = %maxi,j,k:i,j,k: distinct, v(i),v(5),v (k)20
111
i Hj 1223
2lv@nv(| | 2lv@nv(k)| | 2l Nv(k)]
i g + i fok + Hj ke
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Note that if )
P = ;(ez +e; + ek)eT,

then in the above inequality the equal sign holds, i.e. d = p(P*P) =13 = 3/n.
Choose x = %(ei +e; +eg), 4, J, k distinct, in

p(P*P) > ||Px|3, [x[l2 =1,
in order to obtain

p(P*P) > c3 = 3 MAaXAc(ip(5) 20}, | As|=3
1
EiE.Ag Esep(i)\UjEA:;\{i}p(j) w2

+ EieAg Zse(ﬁjeA;,\{i}P(j))\P(i) w2
9
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Note that if

1
P= §e(ei +e;+ep),

then in the above inequality the equal sign holds, i.e. d = p(P*P) = ¢35 =n/3.
We guess that the following results (r) and (c) hold:
(r) Set

1 1 2
T = & max [ — 4+ v(r ﬂus]
k Anciiv(i)#0},| A=k ; P me;r@ urus| (r)nv(s)

Then
e < p(P*P) <d, Vk € {1,...,[{i:v(i) # 0}|}.



(Proof: apply the inequality
p(P*P) = |[P*|3 > [PTx[[3, |[Ix]l2 =1,

forX:ﬁ(eil—i—...—i—eik),1§i1<i2<...<ik§n).
Note that if

1 . . .
P:E(eil—keiQ—i—...—i—eik)eT, 1<ip<ig<...<ir <mn,

then r, = p(P*P) =d = £.
(¢) Now set

2

1 K T
T E Al AL =k [Z 2 2 w2l

r=1~,CAg,|vr|=r Seij'wP(j)\UjeAk. \'yrp(j)

Then
ek < p(P*P)<d, Vke {1,...,[{i:p(i) #0}}.

(Proof: apply the inequality
p(P*P) = ||P|3 = | Px[l3, I[x]2=1,

forx:ﬁ(eil+...+eik),1§i1<i2<...<ik§n).
Note that if

1
P:Ee(ei1+ei2+...+eik)T, 1<y <ig <...<ip <,

then ¢ = p(P*P) =d = T

Remark. By choosing k = 1, k = 2 and k = 3 in the above statements we
retrieve the lower bounds for p(P*P) obtained explicitly.

If the lower bounds in (r) and (c) for p(P*P) are true, then we can say that

ek} < p(P*P)<d

max{ max Tk, max
Lo i (D20} 1 {iop(3) 20}

4 ming V) A0V 2 pli) # 0} max, o(i)],

Ming., (520 M ’ MiNg., (k)£0 Mﬁ

Question: is the sequence max{ry,cx}, k& = 1,..., non decreasing? If yes,
then one could compute its terms to obtain better and better lower bounds for
p(P*P).

Examples.

c) P=eel,d=n

rm=1,c=n

ro = 2, cg =und

r3 = 3, c3 =und

cc) P=e(e;+e;)T,d=n/2

r1=1/2,¢; =n/4

To = 1, Cy = TI,/2



r3 = 3/2, c3 =und

r) P=1leel d=1/n
ry=1/n, c; = 1/n?
ro =und, ¢ = 2/n?
r3 =und, c3 = 3/n?

rr) P=1(e;+e;)e”, d=2/n
r=1/n, c; = 2/n?

ro =2/n, co = 4/n?

r3 =und, c3 = 6/n?

Set 6 =>"_, e
clyP=¢el,d=t

r = ]., c1 = t

ro = 2, cg =und

r3 = 3, c3 =und

ccl) P = teel + (e — é)e?, d=n
7'1:]., clzt/4+(n—t)
ro =2, c0=n/2

r3 = 3, c3 =und

rl) P=tee”, d=1/t
r = ]./t, c1 = ]./t2
ro =und, cp = 2/t2
r3 =und, c3 = 3/t2

rrl) P = lee” + 1e;8T, d =2/t
ri=1/t,c1 = 1/t +1/n?

ro = 5(3/n+1/t), ca = 2/t* 4+ 2/n?
r3 =und, c3 = 3/t2 + 3/n?(?)

Question: from the equality

p(P*P) = p(PP") = inf(||(PP")" [o0)'/* = Lim(||(PP")" o) "/*

is it possible to define a non increasing sequence dj such that dp = d = |{i :
v(i) # 0}|/ min pg (recall that |PP*||c < d) and p(PP*) < dyp < d,Vk 7 If
yes, then one could compute its terms to obtain better and better upper bounds
for p(P*P).

The proof of an inequality
We now prove the inequality:

(omin, RN 145 v(5) # 0} < (max|p(k)]) 17 : p(j) # 01.

So, for the d in the upper bound p(P*P) < d (see above) we simply have
d= w
mink:u(h)#@ Kk

Without loss of generality, assume that

{.71/(]) 7&@}:{1)2""’37}7 L= |{jy(j)7é®}|a
{jp(j)#w}:{LQ”y}a y:|{.]p(.7)7é



Thus, the x x y upper left submatrix of P, which we call W, has no null row and
no null column, whereas the entries of the remaining part of P are all zeroes:
W 0
oW 0],

(1) T minge gy [¥(8)] = 1, then & < (maxy [o(k)])y-

Proof. We prove the thesis considering the two different cases y > x and
y < x. It is useful to observe that, by the hypotheses, the nonzero entries of
the matrix W fory =z, 5,%,..., 7, z+1 must be (modulo permutations) in the
positions shown in Figure 1.

y > x: In this case maxy |p(k)| > 1 (see Figure 1, y = z). Thus 1-2 < 1.y <
(masxi [o(k))y-

y < x: If y < x, then maxy |p(k)| > 2 (bee Figure 1, y =z, 3). If $ <y
too, then r < 2y < (maxg |p(k)|)y. If y < Z, then max; |p( )| > 3 (see Figure

X

1,y = £,2). IfZ <y too, then = < 3y < (max [o(k)|)y. In general, let

16{12 3. Ify < %, then maxy [p(k)| > i + 1 (see Figure 1, y = 7, 75). If
71 <y too, thenm<(z—|—1)y< (maxy, |p(k)|)y.
Figure 1: W for minpy =1, y =2, %, 5,.... 7, 77
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] 0 ] 0 ]
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| | | 0 ]
| | | |
| | | |
| |
|

EECNR
EEERCE

(2) If ming.,, (k)2 [v(k)| = 2, then 2z < (maxy [p(k)])y.

Proof. We prove the thesis considering the two different cases y > 2z and
y < 2zx. It is useful to observe that, by the hypotheses, the nonzero entries of
the matrix W for y = 22,2%,2%,...,2%,2-5 must be (modulo permutations)
in the positions shown in Flgure 2.

y > 2x: In this case maxy |p(k)| > 1 (see Figure 2, y = 2x). Thus 2z <
1y < (maxy [o(k)))y.

y < 2x: If y < 2w, then maxy [p(k)| > 2 (see Figure 2, y = 22,27). If 25 <y
too, then 2z < 2y < (maxy [p(k)|)y. If y < 23, then maxy [p(k)| > 3 (see Figure
2,y =2%,2%). If 25 <y too, then 2z < 3y < (maxy |p(k)|)y. In general, let
i€{1,2,...}. If y <2%, then maxy [p(k)| > i+ 1 (see Figure 2, y = 2%,2:35).
It < (i+ 1)y < (maxy [p(k))y-

10



Figure 2: W for min puy, = 2, y = 2x,25,2%, ...
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] L] L] ([
]| ]| ] ]
L] ] ]
] L]
] ] oo
L]
L]

(3) If ming., (x)20 [v(k)| = 3, then 3z < (maxy |p(k)|)y.
Proof. We prove the thesis considering the two different cases y > 3z and
y < 3z. It is useful to observe that, by the hypotheses, the nonzero entries of

the matrix W for y = 3z,3%,3%, ..
in the positions shown in Figure 3.

T T
32,32

must be (modulo permutations)

y > 3x: In this case maxy [p(k)| > 1 (see Figure 3, y = 3x). Thus 3z <

1y < (maxy [p(k)|)y-

y < 3x: If y < 3w, then maxy [p(k)| > 2 (see Figure 3, y = 32,35). If 35 <y

too, then 3z < 2y < (maxy [p(k)|)y. If y < 35, then maxy, [p(k)| > 3 (see Figure
3,y =3%,33). If 33 <y too, then 3z < 3y < (maxy [p(k)|)y. In general, let
i€{l,2,...}. If y < 3%, then maxy [p(k)| > i+ 1 (see Figure 3, y = 37,3:7).
If 35 <y too, then 3z < (i + 1)y < (maxg [p(k)|)y.

Figure 3: W for min puy = 3, y = 3x,35,35 .. .,3%,3%
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L] ]|
HEN
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0od
L] ] L] ]
ood L] ]
L] ] L] ]
L] ] oogd
0od ood
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L] ] ’ L] ]
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(4) (im0 [#(8) ) < (max [o(k)))y:

Proof. Set ptmin = ming.,, >0 pr. We prove the thesis considering the two
different cases ¥y > pumin® and y < pminz. It is useful to observe that, by the
hypotheses, the nonzero entries of the matrix W for y = uminx,uming,umin%,
e umin%, umini% must be (modulo permutations) in the positions shown in
Figure 4.

Y > umin®: In this case maxy [p(k)| > 1 (see Figure 4, ¥y = piminz). Thus
panin® < 1-y < (maxy, [p(k)])y.

Y < pmin®: If y < piminz, then maxy |p(k)| > 2 (see Fig.4, ¥ = fimin®, fhmin )-
If piming < ¥y too, then pminr < 2y < (maxy [p(k)))y. If ¥y < fiming, then
maxy [p(k)] > 3 (see Figure 4, ¥y = fimin5,Uming). If pming < y too, then
pmin® < 3y < (maxy [p(k)|)y. In general, let i € {1,2,...}. If y < pmin%, then
maxyg [p(k)| > i+ 1 (see Figure 4, y = ,umin%,,umini%). If pmingi7 <y too,
then pminz < (14 1)y < (maxy |p(k)])y.

Figure 4: W fOI‘ Hmin geﬂeric, Y = UminT, ,Umin%; Nmin% o 7,Umin%; Nmin%
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Better upper bounds for p(P*P) ?

Let 4,7 € {1,2,...,n}. If v(i) = 0 or v(j) = 0, then ((PP*)*);; = 0, for all
k > 1. Otherwise, i.e. if both v(i) and v(j) are non empty, then

(PP*),; = M;j (@) N ()],
s 1 w(@) N ()] [v(k) O v()]
(PP*)?);; = 7
Hillg oo 20 Hi

1 v(@) N (k)] [v(k) Nwv(s)|lv(s) Nv()]

PP*)3); =
s = uin

)

Hi k,s:w(k),v(s)#£0

I

1 (i) Nw(r)|lv(r) Nv(r)l---v(re—1) N v ()]
Z IUQ ,UQ .. .MQ
TLyeens rEe_1:v(rs)#0,Vs T2 Tk—1

((PP*)k+1)” — i Z |V(Tk) N V(.])| ((PP*)k)z,rk

HivnGrzo  Hme

Aim: find a sequence dj, such that p(P*P) < dy41 < d < dy, di. — p(P*P).
Recall that

1

p(P*P) p(PP*)))k

p(PP") = inf | (PP*)*|[} = Tim | (PP*)"| £,

PP — e S MO0 o vG) A0

i >0 L - ’ ;
jegi; >0 il Hmin
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Thus, from the inequality

”(PP*)QHOO = maXg.,; >0 /% Zj:uj>0 % Zk:uk>0 @) )L‘t‘{( JOv()|
. .9
< maXs:,,; >0 ML?(ZJ‘:MJ>O ‘V(l—);]u(j)l) = ||PP*||go < d%,

we have that a first step towards our aim, could be the following: look for d;
such that
1 1 i k k)Nnv(j
||(PP*)2Hoo:maXO_ Z — |V(Z)ﬂ1/( )Hgl/( ) V(])|§d%, d1<d0.
V=0 pi i >0 M kipp>0 o

(Note that

1 1 1
p(PP?) < ... < [(PP|% < [(PP*)!% < |(PP)?]1& < [[(PP*)|sc,
[(PP*)?" |35 — p(PP*).

So, the ideal result we would like to obtain is the following: define an easily
computable number di such that

R _ 1
(PP )25 < dp < (PP )3T, k=1,2,....
)

Computing v(i) Nv(j), [v(i) Nv(j)| and (PP*);; = lv@)nvg)]

Hilty

The following algorithm

fori=1,...,n{
m; = null; (m;(j) == (0,0,0) Vj=1,...,n)
if (i) # 0 (u; > 0) then {
ni = v(i); i = pis fi = 1/ps;
forj=i+1,...,n{
n; =0;¢c; =0;
for k € v(7) {
if k € v(j) then {
nj =1 Uik}
cii=ci+ 11} (= v(@)Nv(h), ¢ = v(i) Nv(H)])
} if Cj > (0 then { f] = CJ/(/J%/J’])
forjzia-~-vn{(Wj;é@foratleastj:i)
mi(j) = (nj,¢5, f5) }
forj=1,...,i—1{m(y) :==m;(@) } (m; # null)
}
}

yields the vectors m; here below:

my=1[(,)...]
mi=[(, ). (v@) Nv(), [v(i) N, BESADL ()
ma =10, ). .

14



2k—1

Question: is it possible to compute |\(PP*)2k|\oo from ||(PP*)
less than |{j : v(j) # 0}|® arithmetic operations ?

||oo With

p(H) as the limit of a sequence (written about two years ago)
(Given v € S C X and v € X, by writing

Ve =
we mean the convergence to zero of the sequence of non negative real numbers
& = ||ve — ||, where || may be the absolute value (X = R, C), a vector norm
(X = R™,C"), a matrix norm (X = R"*" C"*"), a functional norm (X =
C0,12).)
Let H be a n x n matrix and pg the sequence of non negative real numbers
pr = (|HFIDY*, k> 1.

It is simple to verify that p(H) < pr < p1 = |H||, Vk and that ...pg < pg <
P2 < p1;---ps < p3 < p1; ... It is not simple to establish if the sequence py is
non increasing or not. In particular, is it true that

L'

p3 < p2 7 (surely we have p3 < P2W)

However, even if we succeed in proving the non increasing behaviour of pg, or,
more simply, the convergence of pj, we could only conclude that

p(H) < hinpn < Ps.

In the following theorem, instead, it is noticed that a stronger result holds: the
sequence py converges (from above) to p(H).

Lemma Given H € C"*™ and € > 0 there exists a matriz norm || = ||
such that || H|| < p(H) + €.
Proof. The thesis is verified, for example, by setting [|A| = [|SAS™!||w

where S = DQ, with Q unitary such that 7= QAQ ™! is upper triangular, and
D diagonal with D;; = 1/6%, § suitable.

Theorem Given H € C"*", indipendently from the choice of the matriz
norm || - ||, we have

1
k

p(H) = lim (| *])

Proof. Set p = inf py, for a particular choice of ||. Then it can be shown that
Pk, for any choice of ||, converges to p. It follows that the definition of p does
not depend upon the choice of ||. Since pir > p(H), we have p > p(H). But we
also have € + p(H) > p, for any ¢ > 0. In fact, by the Lemma there exists ﬂ
such that (ﬂH’“ﬂ)l/k < ﬂHﬂ < p(H)+e¢, and p = inf(ﬂHkﬂ)l/k. Thus p must
be equal to p(H). QED

Problem: p; > ps > p4s > ps > ..., are better and better approximations of
p(H). Is it possible to introduce a norm | - || such that these approximations
are easily computable and converge rapidly to p(H) ?

Corollary Given H € C**", H* — 0 if and only if p(H) < 1.

Proof. p(H) < 1 = (|H*|)Y* < v < 1,Vk > N = |H| < V' =
|H¥|| — 0. Viceversa, |H*|| — 0= 3k : ||H*| < 1= 3Fk: p(H)* = p(H*) <1
= p(H)<1. QED
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