Abate: how to check if the eigenvalues of a matrix have negative real parts?
(Marco Abate was professor in Tor Vergata; now he is professor in SNS of Pisa)

Assume n > 2. Let D and C be the (n — 1) x (n — 1) matrices
n+1 -2 -1 1

-2 -1 1
2n —2 -2 -1

and set A = DC. What can one say about the eigenvalues of A ? Let us study
the cases n = 3,4,5,6,8.

n=3: A:[g 2“:3 _11}=[:Z _34]-

The eigenvalues of A are: (—13 +iv/71)/2.

4 -3 1 —-12 4
n=4: A= 5 -2 -1 1 =| —-10 -5 5
6 -2 -1 —12 —6

The characteristic polynomial of A is

A+12 —4
det(| 10 A+5 =5 |)

12 A+6
= AH12)[A+5)(A+6)] +4-10[(\+6) + 6]
= (A+12)[A2 + 11X + 70],

pa(N)

therefore, one of the eigenvalues of A is —12 = ay1. The other two eigenvalues

are (—11 4 iv/159)/2.

5 -3 1 -15 5
6 2 1 1 ~12 -6 6
n=5: A= 7 2 -1 1 || -4 -7 7
8 2 1 ~16 -8

The characteristic polynomial of A is

A+15 -5
12 A+6 -6

pA()‘) = det( 14 A+7 _7 )
16 A+ 8

A+ 15)[(A+6)(A+T)(A+8)]
+5-12[(A+7)A+8) +7(A+8)+ 78]

What are the roots of this polynomial 7 ...

6 -3 1 —-18 6
7 -2 -1 1 —-14 -7
n==6 A= 8 -2 -1 1 =] —16 -8
9 -2 -1 1 —-18
10 -2 -1 —20

—10



The characteristic polynomial of A is

A+18 -6
14 A+T7 =7
pa(A) = det( 16 A+8 -8 )
18 A+9 -9
20 A+10

A+18) [A+T)(A+8)(A+9)(A +10)]
+6 - 14[(A + 8)(A + 9)(A + 10) + 8(A + 9)(A + 10)
+8-9(A+10) +8-9-10].

It can be shown that p4(—18) =0, i.e. —18 = a1; is eigenvalue (see below).
We conjecture that for n = 8 the matrix A (which is 7 x 7) has the following
characteristic polynomial

pa(d) = (A+249)[(A+9)(A+10)(A+ 11)(A+12)(A + 13)(A + 14)]
+8 - 18[(A + 10)(A + 11)(A + 12)(A + 13) (A + 14)
F10(A + 11)(A + 12) (A + 13) (A + 14)
+10 - 11(A + 12) (A + 13)(\ + 14)
+10-11 - 12(A + 13) (A + 14)
+10-11-12- 13(\ + 14)
+10-11-12-13-14],

and, for a generic n, where A is the following (n — 1) x (n — 1) matrix

—3n n
—2(n+1) —(n+1) (n+1)
—2(n+2) —n+2) (n+2)
A = : . ., b
—9(2n —3) —(2n—3) (2n—3)
—2(2n — 2) —(2n —2)

the characteristic polynomial of A has the following form

pa(d) = A+3n)[A+n+1)A+n+2)--(A+2n—2)]
+n(2n+2)[(A+n+2)--- (A +2n—2)
+(n+2)A+n+3)---(A+2n—-2)
+(n+2)(n+3)A+n+4)---(A+2n—-2)
+(n+2)(n+3)---2n—3)(A+2n—2)
+(n+2)(n+3)---(2n — 2)]
= (A+3n) [Z7 O+ n+5) +n(2n+2)ga-s()

where g, _3 is the polynomial of degree n — 3 here below:

n—2
gn3(N) =D i n+1+4) 22 (A+n+ ).
k=1

Note that if £ = A + 3n, then

g3V = Gns(t)=252) T (n+1+45) TI1Z2,, (= 2n+ )

at® +t(...)=a+A+3n)(...)



where

o = 2;12 H?;ll(n +1 +j)H§L:_kQ+1(—2n +j) = Z;f(_l)n—kfzak’
ap = [(n+2)(n+3)...(n+k)][(n+2)(n+3)...(n+(n_k_1))]'

Moreover, since aj = Gn,—k—1, We have

n/2—1 n—k— n- n—k= T
° ’E:jlﬂj (—=1)"*2ay, + Zk:?n/ﬂ (=p)n=* Q(If_j Ono(=1)73 Inst
_ P ETH(= )R =2 4 (< 1)F Y ag + 5n,o(—1)7a“7*1'

Thus,

n=3 e
a:{ 2> 2 (—1)k_1ak—|—(—1)73a% n odd
0

n even

It follows that for n even ¢,—3(A) = (A+3n)(...) and pa(N) = (A+3n)[H;-L;12 (A+
n+j7)+n(2n+2)(...)]. In other words, —3n is eigenvalue of the (n—1) x (n—1)
matrix A for all n even.

Let us look for the eigenvector x = [z @2 - -- mn_l]T of A corresponding to
the eigenvalue —3n. Note that Ax = —3nx iff Ox = —3nD~'x iff

—3(E1 + o = —3%%%1
—2x1 — X0 +x3 = —Bnﬁxg
—2x1 —x3+ x4 = —3nn—+2x3
1
—221 — Tp—2 + Tp—1 =1 —3ng-—Tn—2
—2x1 — Tp—1 = —3N5, —5Tn-1
if and only if
x1 arbitrary
T = 0
_ 2n—i42 .
T =-S5 o1 22, 0=3,...,n—1
n—1
Tpo1 =475 0

O Prove that if the first n — 2 equations are verified, then also the (n — 1)th
equation is verified, provided that n is even.

Abate, 15 Ottobre 1998: “Non e difficilissimo dimostrare che quando n e pari
(per cui la matrice ha ordine dispari) allora —3n ¢ autovalore di A”. Moreover,
Abate thinks that “la matrice A [...] non ha autovalori con parte reale positiva.”,
but he is not able to prove his assertion.

How to prove Abate assertion?

(in a place, near our matrix A, n generic, I have written (\;) <n ...)

A sufficient condition for a matriz A to have R(A(A)) <0

We know that Aj, = $(A + A*) p.d. implies R(A(A4)) > 0. Analogously, one
can prove that A, = $(A + A*) n.d. (negative definite) implies R(A(A)) < 0.

But, for our matrix A, the matrix A + A* is not n.d. already for n = 4. In
fact:

n=3: A+A*:{_18 =5

5 —8}’ n.d.,



-24 -6 —12
n=4: A+A*=| -6 —-10 5 ,  not n.d..
—12 5 —12

A necessary condition for a matriz A to have R(A(A)) < 0 (see toe_le)

Let A be anxn real matrix and assume that R(A(A4)) < 0. Set h(x) = b+Ax
where b € R™. Note that h(—A~'b) = 0, h € C!'(R"), and the eigenvalues of
Jn(=A7'b) = Ju(x) = A have negative real parts. It follows that x(t), the
solution of

d);—gf) =b + Ax(t), t >0, x(0) = xo, (p)
tends to —A~1b (ast — +o00) for any choice of x¢. Analogously, the Richardson-
Eulero iterative scheme (Euler method applied to (p)) n(tx+1) = n(tx) +w(b +
An(ty)), w > 0, must converge to —A~'b for all n(0) = x¢ (if w is sufficiently
small).

One could check if the above Richardson-Eulero method converges when A
is the Abate matrix ...

Necessary and necessary and sufficient conditions for a polynomial to have all
roots with negative real part

Let p(z) be a polynomial of degree n,
p(2) =apz" +a12" ' 4. . an_12+an, a; €R, ag >0,

and A;, i = 1,...,n, the determinant of the ¢ x i upper left submatrix of the
n X n matrix

a1 as as
ap G2 a4

M, = 0 a az aqg - , ap = 01if k > n.

an

Then the roots of p have negative real parts if and only if A; >0,i=1,...,n.
Moreover, if the roots of p have negative real parts, then a; > 0,i=1,...,n.
(Check this well known result!).

For example, set p(z) = 2% + 2322 + 202z + 840. The corresponding matrix
M,

23 840 0
My=|1 202 o0 [,
0 23 840

has positive diagonal entries, so the necessary condition is verified. Moreover,
A1 =23>0, A, =23-202—2840-1 > 0, A3 = 840A5 > 0, thus the roots of
the polynomial p have negative real parts.

O Set p(z) = 2* 4+ 223 + 322 + 42 + a, a € R. Find the values of a for which
the roots of p have negative real parts.



Write the matrix M,:

M, =

S =N
=N W
Wk Q O
QO OO

0

In order to verify the necessary condition, the parameter a must be positive.
Moreover, A1 =2 >0, A2 =2-3—-4-1=2>0, A3 =4-2—4a, Ay = als.
So, the roots of the polynomial p have negative real parts iff 0 < a < 2.

However the above criterium does not seem to be useful in our case because
the coefficients of p4(\) cannot be easily written (for n generic).

O Is there a necessary and sufficient condition on the entries of A (instead
of on the coefficients of p4(A)) in order to establish that the eigenvalues of A
have negative real parts ?

0 Given a polynomial p it is easy to write a matrix whose characteristic
polynomial is p. Given a matrix A, how to write a polynomial whose roots are
the the eigenvalues of A 7

Some other remarks on the Abate matriz A
Remark 1. Set D,,_1 = D and C,,_1 = C. Then
0

1
-2 07 -1

_ Dn72 + I 0 _ Cn—2
Dn—l - OT M —2 ) Cn—l -

It follows that

0
A= An—l = Dn—lcn—l = (Dn—Q * I)On—Q 2n—3

—22n—-2) 0T  —(2n-2) |

0
_ An—Q + Cn—2 on — 3

-2(2n—2) 07  —(2n-—2) |

Remark 2. The matrix C' can be written as the product of two matrices
whose eigenvalues are known. For example, if n = 5 then

-3 1 1 -3 1
-2 -1 1 111 1 -2 1
-2 -1 1 11101 1 -2 1
-2 -1 11 11 1 =2
For n generic:
-3 1 1 -3 1
-2 -1 1 1 1 1 -2 1
—2 1 1 11 - 1 1 -2 1
-2 -1 11 -+ 1 1 1 -2



O Find the eigenvalues/eigenvectors of the tridiagonal matrix on the right.

Another decomposition of C' is obtained here below. Note that

-3 1 10 1 1

-2 -1 1 1 =2 701

—2 -1 1 |~ 1 -2 1 11 1
—2 ~1 1 -1 13 1 1 1

(We have found this decomposition by imposing that the nonzero non diagonal
entries of the tridiagonal matrix and the diagonal entries of the triangular matrix
are equal to 1). Moreover, for n generic:

-3 1 —a 1 “i;zl .
1
—2 -1 1 1 -2 1 my
) -1 1 1 -2 1 ;
Unp—3 1 1
—9 —1 1 -1 P

where the latter equality holds if the following conditions are satisfied: ug = 1,
U =a—3, Uy = 2Uj—1 —Uj—2 — 2,1 =2,...,0— 2, Up_o2 = Up_3 + 2. Let us
find the general solution of the difference equation

Ui — ZUi_l + Uj_g = —2. (de)

Characteristic equation: 22 — 2z + 1 = 0. General solution of the homogeneous
equation associated to (de): a+gi, a, B € R. Particular solution of the equation
(de): —i?. General solution of (de): a+ 3i—i?, a, 3 € R. The initial conditions
imply « =1, 8 =a—3. Set u; = 1+ (a — 3)i —i%: then u, o = u,_3 + 2 iff
a = 2n.

So, the claimed decomposition is obtained:

-3 1 —2n 1
-2 -1 1 1 -2 1
-2 -1 1 1 -2 1
—2 -1 1 -1
_ ) i
U1 1
1+ ui —4° 1 1 ’
L1+ui(n—2)—(n-2* 1 -~ 1 - 1|

uy = 2n — 3.

For example, if n = 4:

-3 1 -8 1 1
cC=| -2 -1 1 = 1 -2 1 5 1
—2 -1 1 -1 7 1 1



Recall that we have to check the sign of the real part of the eigenvalues of
A= DC = DC,Cs, where C1,C5 can be taken from the above decompositions.
Note that CoDC; and C1Cs D have the same eigenvalues of A ...

Solving the exercise on p.3
Ifz;,i=3,...,n— 1, are such that

_ 2n—i42 .
xi——n+i72xi,1+2m1, 1=3,4,...,n—1,

n—1
Tp—1 = 4n—+2$17

where x5 = 0, x1 is an arbitrary nonzero number, and x = [z1 z3 --- xn,l]T,
then Ax = —3nx.
Let us see if such z;, i = 3,...,n — 1, exist. It is clear that they exist iff

they are of type a;x1 with the «;, i = 3,...,n — 1, satisfying the identities

2n—i+42 ;
a1:—£+7T2a7_1+27 12374,...77’),_1,
n—1
n+2’

Ap—1 = 4

where as = 0.
Now, first we show that there exist and are uniquely determined a; € R,

i=3,...,n — 1, satisfying the difference equation
2n—1+42
= —————Yi1+ 2, 1 =3,4,.... d
Y n+i—2y 144 (de)

and the condition yo = 0. Second we observe that they satisfy the condition
Qp_1 = 42—;; if and only if n is even.
If we look for a solution of type y; = 1i + s, 7, s € R, of the equation

m+i—2)y;+Cn—i+2)yi_1=2(n+1:—2)

then we obtain the conditions r = 2/(3n+ 1), s = 2(n — 1)/(3n + 1). So, we
have a particular solution of (de):

_ 2 L 2]

C3n+1 3n+1°

Yi

Now consider the homogeneous equation associated to (de):

2n — i+ 2

YT i U

1-

We need its general solution. Observe that

- 2n—1)2
Yz = —%yh Ys = —2£+1192 = ((Zﬂgnnyh
__ 2n—2 _ (2n—2)(2n—1)2n
Y4= 02 Y3 T T 2)mrn YL o

Thus,
2n—i+2)---(2n—1)2n

n+i—2)--(n+1)n
Finally, the general solution of (de) is obtained by addition:

y; = c(—=1)"! , ceR.

2n—i+2)---(2n—1)2n 2 ; 2(n—1) .
(n+i—2)---(n+1)n In+1 3n+1"

yi =c(—1)""" eR.



Among these, we are interested the one satisfying the condition yo = 0, which
is obtained for ¢ = (n +1)/(3n + 1). So, the first step is complete:
2n—i+2)---(2n—1)2n 2 2(n-1)

(n+i—2)---(n+1)n 3n+12+ In+1° ()

1 )
a; = n+ (_1)1—1

T 3n+1

For the second step note that the latter expression for ¢ = n — 1 implies

_ n—2 n+l (n+3)---(2n—1)2n 2 2(n—1)
Op—-1 = (_1) 237;;1 (2n—3)--(n+1)n + 3n+1 (n— 1)+ 3n+1
4(n=1)(n+2+(=1)""2(2n—1))
- (Bn+1)(n+2) :
Thus the further condition «,,_1 = 42—;; is satisfied if and only if n is even.
Remarks
The first a;:
= 9 = 2(4—n) o — 2(3n? — 6n + 18)
P T T2 T T+ 2)(n+3)

A formula for the «; alternative to (*):

2 (n42)-(n+i—2)(n+i—1)+(=1) "1 (2n—i+2)---(2n—2)(2n—1)
3n+1 (n+2)-(n+i—2)

_ 2pi—3(n) .
= m,z—&...,n—l,

Q; =

where the polynomials p;(n) are defined by po(n) = 1, pi—s(n) = (n + 10 —
Dpi—a(n)+(=1)"1(2n—i+3)---(2n—1),i = 4,...,n—1. (Note that p,,_4(n) =
2(n—1)(n+3)---(2n — 3) if n is even). The latter equality can be shown by
induction: assume it true for i = k, i.e.

(B3n4+1)pr_3(n) = (n+2) - (n+k—2)(n+k—1)+(=1)* "1 (2n—k+2) - - - (2n—2)(2n—1),

then prove it for ¢ = k 4+ 1 (note that it is true for i = 0).

Deflation: a matrixz whose eigenvalues are the remaining eigenvalues of A

We have proved that, if n is even, then there exist as, ..., a,_1 such that
X1 Z1
0 0
Ax=A Q3T = -3n Q31 = —3nx,
Qp—121 Qp—121

where x; can be an arbitrary nonzero number. Thus, if n is even, —3n is
eigenvalue of the (n — 1) x (n — 1) matriz A.

Observe that the matrix W = A — %‘f?{xw*, for any vector w such that
w*x # 0, has the same eigenvalues of A except —3n which is replaced with 0.
In particular, this is true for the matrix W = A — ixeTA (choose w* = el A:

w*x = —3nz; # 0). Let us write such matrix W.
Since (1/z1)x=[10a3 --- ap_1]T andefA=[-3n n 0 --- 0], we have
—3n n _3n n
—2(n+1) —(n+1) n+1 0 0 0
W= —-2(n+2) —(n42) . _ —3nas nos
2n —3 : :
—2(2n —2) —(2n—2) —3nan-1 noan—1



0 0 0 0

—2(n+1) —(n+1) n+1
= —2(n+ 2) + 3nas —nas —(n+2)
: : 2n — 3
—2(2n — 2) + 3nan—1 —Nan—1 —(2n—2)

It follows that the remaining eigenvalues of the matriz A are the eigenvalues of
the following (n — 2) x (n — 2) matriz B:

—(n+1) n+1

B= _T%O@ —(n+2) , n even,
: 2n — 3
—NQy_1 —(2n — 2)
o — 9 s =9 —-n o — 3n? — 6n+ 18
3 = bl 4 — n+27 5 — (n+2)(n+3)7
L, on® 4337 —34n 406 1in' = 77n® + 304n® — 208n + 600
ST 42 +3)mn+4) T T m+2)n+3)(n+4)n+5)
i—1 (2n—i+2)-(2n—1 .
o = g (O ESRES vt 1)

— 2pi—3(n) —
= W,Z—&...,n—l,

po(n) =1, pi(n) =4 —n, pa(n) =3n* —6n+18, ...
pios(n) = (+i— Dpia(n) + (—1) 7 2n—i+3)-- 20— 1),
i=4,...,n—1, pp_ga(n)=2(n—-1)(n+3)---(2n — 3).

Now observe that if the matrix

2(n+1) n-1 noy e noy,—1
n—1 2n+2) —(n+2)
—(B+ B*) = nouy —(n+2) 2(n+3)
. —(2n — 3)
Ny —1 —(Qn - 3) 2(2n — 2)

is p.d., then R(A(—B)) would be positive, that is, the remaining eigenvalues of
A would have negative real part (and the conjecture of Abate would be proved).

Let us check for small even values of n if —(B + B*)is effectively p.d.. For
n = 4 we have:

o= 2 S)-[3 5] e [Y 5]

(as = 2). It is clear that —(B + B*) is p.d.. (Note, on the contrary, that the
matrix —(A + A*) for n = 4 is not p.d.:

~12 4 24 6 12
A=| -10 =5 5 |, —(A+49=] 6 10 —5 |).
~12 —6 12 -5 12



For n = 6 the matrix B becomes:

-7 7 -7 7

p_| 6 -8 8 | -12 -8 8
—6ay 0 -9 9 30 -9 9
—6a5 0 0 —10 15 0 0 -10

(g3 =2, ag = —1/2, a5 = 5/2). Thus,

14 5 =3 15
5 16 -8 0
-3 -8 18 -9
15 0 =9 20

—(B+ B*) =

Note that the determinants of the upper left ¢ x ¢ submatrices of —(B+ B*) are
positive for ¢ = 1,2, 3, but det(—(B + B*)) < 0, so it is not p.d..
For n = 8 the matrix B becomes:

-9 9 -9 9
—8az —10 10 ~16  —10 10

p_| B 0 -1 1 B 32/5 0 -—11 11

Tl 8as 0 0 —12 12 T | —1206/55 0 0 —12 12
—8a 0 0 0 —13 13 416/55 0 0 0 —13 13
—8a7; 0 ~14 ~112/5 0 —14

(044 = —4/5, a5 = 162/55, Qe = —52/55, Q7 = 14/5) Thus,

18 7 —32/5 1206/55 —416/55 112/5
7 20  —10
| o-s25 -0 22 -1
“(BHB) =1 1996/55 11 24 12
416/55 12 26 —13
112/5 13 928

It can be seen that —(B + B*) is not p.d..

Is the (n — 1) x (n — 1) matrix —(A+ A*) p.d. for all odd values of n ? No,
in fact, for n = 5 we have

15 5 30 7 14 16
~12 -6 6 Wl 7T o120 =6
A=\ o | @A=L

—16 -8 16 -7 16

and the determinant of the 3 x 3 upper left submatrix of the latter matrix is
negative.

So, the conjecture of Abate remains a conjecture :(

An appendiz on the Abate matriz A

In toe_lh, in the case n even, we have introduced a (n — 2) x (n — 2) matrix
B such that the eigenvalues of the (n —1) x (n —1) Abate matrix A are {—3n}U
{eigenvalues of B}.

10



Here we show that, by multiplying B on the left by a diagonal matrix, one
obtains a matrix C’ of type

-1 1 ]
B3 -1

6n/2+1 -1

L 5.3 -1

We first observe this fact in the cases n = 4,6,8:

el [3 5] A

1/7 -7 7 -1 1
1/8 -12 -8 8 | -3/2 -1 1
1/9 3 -9 9 | | 1/3 -1 1
1/10 —-15 —-10 —-3/2 -1
3 -9 9
5 -16  —-10 10
= 2 -1 11
1 _4§*27 i
12 —FE 12 12
1 32x13 _13 13
13 1 214
L — & —14
S -
-8 1 1
s}
= -1 1
- e -1 1
35
3
5 -1 1
L 5 -1

Then we prove it for each n (even), by the following two steps:

L —(n+1) n+1
) 1
D-1p.— 2 —naz  —(n+2)
' ) : . 2n-3
2n—2 —Np—1 —(2n —2)
-1 1
— ;L”-l‘ra; _1 = C/'
: 1
= -1

(2) observe that

Q; Ap—i+2 .
nti—1 om—i+1 2"

11



Thus (1) can be rewritten as follows

—(n+1) n+1
—nas —(n+2) n+2
1 —Nnoy
n+1
1
— n+2
Dl 1B —
—NAp /241
1 .
2n—2
2n—3
—noy 7:+3
2n—2
—nas 7’;”
- 1 1 _
—nosg _
n+2 1
— . .Y
= R 1 =: C".
n+34
—Nnos _
L n+2 1 i

~(n+3)

2n—3
~(2n—2) |

So, a decomposition for the matrix B, B = D’C’, analogous to the decomposi-

tion of A, A = DC, holds:

[ -1 1
n+1 5 -1
n+2 .
B - *”a;z/2+1 1
n+y
2n — 2
L
_ on+i-l i—1 (2n—i+2)--(2n—1)
@i 2505 ((—1) Gt T 1)
_ 2pi— (”) . n
= iy =3 s T L
po(n) =1, |
pi-3(n) = (n+i—1)pi—a(n) + (=1)""1(2n —i+3)--- (2n - 1),
i=4,...,5+1,
pi(n) =4 —n,
pa(n) = 3n? — 6n + 18,

(n)
p3(n) = —5n3 + 33n? — 34n + 96,
(n) = 11n* — 77n3 + 304n2 — 208n + 600,
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