Preconditioned finite elements method

Let \mathcal{V} be a Hilbert space, $(\cdot, \cdot)_{\mathcal{V}}$ an inner product on \mathcal{V} and $\|\cdot\|_{\mathcal{V}}$ the corresponding induced norm. Let a be a coercive, continuous, bilinear form on \mathcal{V} , that is, $a: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ and there exist $m, M, 0 < m \leq M$ such that for all $u, v, w \in \mathcal{V}, \alpha, \beta \in \mathbb{R}$,

 $a(\alpha u + \beta v, w) = \alpha a(u, w) + \beta a(v, w), \ a(u, \alpha v + \beta w) = \alpha a(u, v) + \beta a(u, w)$ (bilinearity),

 $|a(u,v)| \le M ||u||_{\mathcal{V}} ||v||_{\mathcal{V}} \text{ (continuity)},$

 $a(v,v) \ge m \|v\|_{\mathcal{V}}^2$ (coercivity).

- Let \mathcal{V}' be the set of all continuous, linear forms on \mathcal{V} . Then the following Lax-Milgran results hold:
- (LM1) For any $\mathcal{F} \in \mathcal{V}'$, there exists a unique element $u = u_{\mathcal{F}} \in \mathcal{V}$ such that $a(u, v) = \mathcal{F}(v), \forall v \in \mathcal{V}.$
- (LM2) If, moreover, \mathcal{V}_h is a finite-dimensional subspace of \mathcal{V} , then to \mathcal{F} we can also associate an element $u_h \in \mathcal{V}_h$ such that $a(u_h, v_h) = \mathcal{F}(v_h), \forall v_h \in \mathcal{V}_h$, which is uniquely defined too.

Approximating u by u_h

Intuitively, such element u_h can be used as an approximation of u if \mathcal{V}_h belongs to a family of subspaces $\{\mathcal{V}_h\}_{h\to 0}$ of increasing dimension, such that the closure of $\bigcup_{h\to 0} \mathcal{V}_h$ coincides with \mathcal{V} . In fact, it can be shown that an hypothesis of *consistency* on $\{\mathcal{V}_h\}_{h\to 0}$ (implying the latter property) yields the result:

$$h \to 0 \Rightarrow ||u - u_h||_{\mathcal{V}} \to 0.$$
 (conv)

Consistency of $\{\mathcal{V}_h\}_{h\to 0}$ in \mathcal{V} . $\{\mathcal{V}_h\}_{h\to 0}$, $\mathcal{V}_h \subset \mathcal{V}$, is said to be consistent in \mathcal{V} if there exist $\mathbb{V} \subset \mathcal{V}$ dense in \mathcal{V} (with respect to $\|\cdot\|_{\mathcal{V}}$) and an operator $\mathcal{R}_h: \mathbb{V} \to \mathcal{V}_h$ such that for any $v \in \mathbb{V}$, $\|\mathcal{R}_h(v) - v\|_{\mathcal{V}} \to 0$ as $h \to 0$ (\mathcal{R}_h might be an interpolation operator).

Let us show that the consistency of $\{\mathcal{V}_h\}_{h\to 0}$ implies (conv). First we prove that the error $||u - u_h||_{\mathcal{V}}$ is proportional to the minimal error we can have with \mathcal{V}_h . Note that

$$a(u, v_h) = F(v_h), \quad a(u_h, v_h) = F(v_h) \implies a(u - u_h, v_h) = 0 \ \forall v_h \in \mathcal{V}_h$$

and this remark implies

$$m\|u - u_h\|_{\mathcal{V}}^2 \le a(u - u_h, u - u_h) = a(u - u_h, u - v_h) \le M\|u - u_h\|_{\mathcal{V}}\|u - v_h\|_{\mathcal{V}},$$
$$\|u - u_h\|_{\mathcal{V}} \le \frac{M}{m} \inf_{v_h \in \mathcal{V}_h} \|u - v_h\|_{\mathcal{V}}.$$
 (cea)

Now we can prove (conv). Let $v \in \mathbb{V}$ be such that $||v - u||_{\mathcal{V}} < \varepsilon$. By (cea) and the consistency hypothesis, if $h < h_{\varepsilon}$ (*h* is suitably small), then

$$\|u-u_h\|_{\mathcal{V}} \leq \frac{M}{m} \|u-\mathcal{R}_h(v)\|_{\mathcal{V}} \leq \frac{M}{m} (\|u-v\|_{\mathcal{V}} + \|v-\mathcal{R}_h(v)\|_{\mathcal{V}}) < \frac{M}{m} 2\varepsilon.$$

How to compute u_h

Let N_h be the dimension of \mathcal{V}_h , and φ_i , $i = 1, \ldots, N_h$, a basis for \mathcal{V}_h . Then $u_h = \sum_{j=1}^{N_h} (u_h)_j \varphi_j$ and the condition $a(u_h, v_h) = F(v_h)$, $v_h \in \mathcal{V}_h$, can be rewritten as follows:

$$\sum_{j=1}^{N_h} (u_h)_j a(\varphi_j, \varphi_i) = F(\varphi_i), \quad i = 1, \dots, N_h.$$

So the $(u_h)_j$ defining u_h can be obtained by solving a linear system $A\mathbf{x} = \mathbf{b}$, being $a_{ij} = a(\varphi_j, \varphi_i), b_i = F(\varphi_i), 1 \leq i, j \leq N_h$. It is important to notice that the symmetric part of the coefficient matrix A is positive definite, that is $\mathbf{z}^T A \mathbf{z} > 0, \forall \mathbf{z} \in \mathbb{R}^n \mathbf{z} \neq \mathbf{0}$. In fact, by the coercivity of a, we have

$$\mathbf{z}^T A \mathbf{z} = \sum_{ij} z_i a(\varphi_j, \varphi_i) z_j = a(\sum z_j \varphi_j, \sum z_i \varphi_i) \ge m \|\sum z_i \varphi_i\|_{\mathcal{V}}^2 > 0$$

unless the z_i are all null (the φ_i are assumed linearly independent).

Example: a differential problem solved by the finite element method Assume that $u: \Omega \to \mathbb{R}$ is the unique solution of the differential problem

$$-\nabla(\alpha \nabla u) + \beta \nabla u + \gamma u = f, \quad x \in \Omega,$$

$$u = \varphi, \quad x \in \Gamma_D,$$

$$\frac{\partial u}{\partial \mathbf{r}} = \psi, \quad x \in \Gamma_N.$$

Here Ω is an open set in \mathbb{R}^d , Γ_D and Γ_N are open subsets of $\partial\Omega$ such that $\partial\Omega = \overline{\Gamma_D} \cup \overline{\Gamma_N}, \alpha: \Omega \to \mathbb{R}^{d^2}, \beta: \Omega \to \mathbb{R}^d, \gamma, f: \Omega \to \mathbb{R}$.

Then, for all $v, v|_{\Gamma_D} = 0$,

$$a(u,v) := \int_{\Omega} \alpha \nabla u \nabla v + \int_{\Omega} \beta \nabla u v + \int_{\Omega} \gamma u v = \int_{\Omega} f v + \int_{\Gamma_N} \psi v d\sigma.$$

If we set $u = u_{\varphi} + w$ with $u_{\varphi}, w : \Omega \to \mathbb{R}, u_{\varphi}|_{\Gamma_D} = \varphi$ and $w|_{\Gamma_D} = 0$, then the latter equation becomes:

$$a(w,v) = \int_{\Omega} fv + \int_{\Gamma_N} \psi v d\sigma - a(u_{\varphi},v) =: F(v).$$

So, we have the following

Problem. Find w, $w|_{\Gamma_D} = 0$ such that a(w, v) = F(v), $\forall v, v|_{\Gamma_D} = 0$. Moreover, the functions w, v must be also such that a(w, v) and F(v) are well defined, that is we also require $w, v \in H^1(\Omega)$ where

$$\begin{aligned} H^1(\Omega) &= \{ v \in L^2(\Omega) : D_i v \in L^2(\Omega) \} \\ (D_i v \in L^2(\Omega) \quad \text{iff} \ \exists g_i \in L^2(\Omega) \mid \int_\Omega g_i \varphi = -\int_\Omega v D_i \varphi \,\forall \, \varphi \in C_0^\infty(\Omega) \ (D_i v := g_i)). \end{aligned}$$

Briefly, find $w \in H^1_{0,\Gamma_D}(\Omega) \mid a(w,v) = F(v), \forall v \in H^1_{0,\Gamma_D}(\Omega).$

Under suitable conditions on the data $\partial\Omega$, α , β , γ , φ , ψ , the space $\mathcal{V} = H^1_{0,\Gamma_D}(\Omega)$ is a Hilbert space with respect to the inner product $(u, v)_{\mathcal{V}} = (u, v)_{1,\Omega} = (u, v)_{L^2(\Omega)} + \sum_{i=1...d} (D_i u, D_i v)_{L^2(\Omega)}$, and the forms *a* and *F* are well defined and satisfy the conditions required by the Lax-Milgran results (LM1) and (LM2) to hold. So, the *w* of the problem is well defined, and for any finite-dimensional subspace \mathcal{V}_h of $\mathcal{V} = H^1_{0,\Gamma_D}(\Omega)$ is well defined a function $w_h \in \mathcal{V}_h$ such that $a(w_h, v_h) = F(v_h), \forall v_h \in \mathcal{V}_h.$

Definition of w_h convergent to w

In order to yield functions w_h convergent to w as $h \to 0$, we only have to define \mathcal{V}_h such that $\{\mathcal{V}_h\}_{h\to 0}$ is consistent in $H^1_{0,\Gamma_D}(\Omega)$. Let us do this in the case d = 2, $\Omega =$ polygon, by using the finite element method.

Let τ_h be a triangulation of Ω of diameter h, that is a set of triangles T such that

- $T \in \tau_h \Rightarrow T = \overline{T} \subset \overline{\Omega}$ and diam $(T) =: h_T \leq h := \max_{T \in \tau_h} h_T$,
- $\cup_{T \in \tau_h} T = \overline{\Omega},$
- $T_1, T_2 \in \tau_h \Rightarrow T_1 \cap T_2$ is a common vertex, a common side, the whole triangle $T_1 = T_2$ or the empty set.

To any T in the following we need to associate also the number ρ_T , the diameter of the circle enclosed in T. Let S_h be the set of all functions $p: \Omega \to \mathbb{R}$ such that $p|_T$ is a degree-1 polynomial (in x_1 and x_2) and set $\mathcal{V}_h^* = S_h \cap C^0(\overline{\Omega})$. Let $i = 1, 2, \ldots, N_h^*$ be the nodes of the triangulation τ_h (the verteces of the triangles of τ_h) and denote by φ_i the elements of \mathcal{V}_h^* satisfying the identities $\varphi_i(j) = \delta_{ij}, i, j = 1, 2, \ldots, N_h^*$. Obviously any element v of \mathcal{V}_h^* can be expressed as $v = \sum_{i=1}^{N_h^*} v(i)\varphi_i$.

Choose $\mathcal{V}_h = \mathcal{V}_h^* \cap H^1_{0,\Gamma_D}(\Omega) = \operatorname{Span} \{\varphi_1, \ldots, \varphi_{N_h}\}$ where $1, \ldots, N_h$ are the nodes of the triangulation τ_h which are not on $\overline{\Gamma_D}$. We want to show that $\{\mathcal{V}_h\}_{h\to 0}$ is consistent in $H^1_{0,\Gamma_D}(\Omega)$, so that the well defined functions $w_h = \sum_{j=1...N_h} (w_h)_j \varphi_j \in \mathcal{V}_h$ such that $a(w_h, v_h) = F(v_h), \forall v_h \in \mathcal{V}_h, strongly$ converge to w as $h \to 0$, i.e. $||w - w_h||_{\mathcal{V}} \to 0$.

First we introduce the space $\mathbb{V} = H^1_{0,\Gamma_D}(\Omega) \cap H^2(\Omega)$, contained and dense in $\mathcal{V} = H^1_{0,\Gamma_D}(\Omega) \ (H^2(\Omega) = \{v \in H^1(\Omega) : D_{ij}v \in L^2(\Omega)\}, \ (u,v)_{2,\Omega} = (u,v)_{1,\Omega} + \sum_{ij}(D_{ij}u, D_{ij}v)_{0,\Omega}, \ |v|^2_{2,\Omega} = \sum_i \|D_{ii}v\|^2_{0,\Omega}).$ Now let v be an element of such \mathbb{V} . Notice that $v \in C^0(\overline{\Omega})$ (...), thus the function $\Pi_h v = \sum_{i=1}^{N_h} v(i)\varphi_i$ of \mathcal{V}_h , interpolating v in the nodes of the triangulation, is well defined. Moreover, $\Pi_h v$ is a function of $H^1(\Omega)$ and one can measure the interpolating error using the norm of \mathcal{V} :

 $||v - \Pi_h v||_{1,\Omega} \le c_e h |v|_{2,\Omega}, \quad c_e \text{ constant.}$

The latter inequality holds if the family of triangulations $\{\tau_h\}_{h\to 0}$ is chosen regular, that is there exists a constant c_r such that $h_T/\rho_T \leq c_r$ for all $T \in \tau_h$ and h. Thus we have the operator $\mathcal{R}_h : \mathbb{V} \to \mathcal{V}_h$ required by the consistency hypothesis, it is the interpolating operator Π_h .

Observe that in case the function w is in $H^2(\Omega)$ we can say more: $||w - w_h||_{\mathcal{V}} \to 0$ at least at the same rate of h. In fact,

$$\|w - w_h\|_{\mathcal{V}} \leq \frac{M}{m} \|w - \Pi_h w\|_{\mathcal{V}} \leq \frac{M}{m} c_e h |w|_{2,\Omega}.$$

Computation of w_h

In order to compute $w_h = \sum_{j=1}^{N_h} (w_h)_j \varphi_j$ one has to solve the linear system

$$A\mathbf{x} = \mathbf{b}, \quad a_{ij} = a(\varphi_j, \varphi_i), \quad b_i = F(\varphi_i).$$

In fact, $(w_h)_j = (A^{-1}\mathbf{b})_j$. More specifically, in our example, if s(g) denotes the set supp (g), then the entries of A and **b** are:

$$\begin{aligned} a_{ij} &= \int_{s(\varphi_j) \cap s(\varphi_i)} \alpha \nabla \varphi_j \nabla \varphi_i + \int_{s(\varphi_j) \cap s(\varphi_i)} \beta \nabla \varphi_j \varphi_i + \int_{s(\varphi_j) \cap s(\varphi_i)} \gamma \varphi_j \varphi_i, \\ b_i &= \int_{s(\varphi_i)} f \varphi_i + \int_{\Gamma_N \cap s(\varphi_i)} \psi \varphi_i d\sigma - \int_{s(\varphi_i) \cap s(u_\varphi)} \alpha \nabla u_\varphi \nabla \varphi_i \\ &- \int_{s(\varphi_i) \cap s(u_\varphi)} \beta \nabla u_\varphi \varphi_i - \int_{s(\varphi_i) \cap s(u_\varphi)} \gamma u_\varphi \varphi_i, \end{aligned}$$

 $1 \leq i, j \leq N_h$. Here the φ_i are the Lagrange basis of \mathcal{V}_h ($\varphi_i(j) = \delta_{ij}$). So, the $(w_h)_j$ are the values of w_h in the nodes j ($(w_h)_j = w_h(j)$) and the matrix A is sparse, in fact for any fixed i, the number of j such that the measure of $s(\varphi_j) \cap s(\varphi_i)$ is not zero is smaller than a constant (with respect to h) dependent upon the regularity parameter c_r of the triangulations (such constant is a bound for the number of nodes j linked directly to i). But these properties are far from to be essential: in particular, more important would be to know that the matrix A is well conditioned. Unfortunately, even in case the differential problem is simply the Poisson problem ($\alpha = I$, $\beta = 0$, $\gamma = 0$, $\Gamma_N = \emptyset$) the matrix A has a condition number growing as $(1/h)^2$, if the Lagrange functions are used to represent w_h . (This estimate of the condition number holds more in general for the convection-diffusion problem, if the triangulations are quasi-uniform (i.e. $h_T \geq c_u h, \forall T \in \tau_h \forall h$) and regular).

So, consider an arbitrary basis $\{\tilde{\varphi}_i\}$ of \mathcal{V}_h , and represent w_h in terms of this basis: $w_h = \sum_{j=1}^{N_h} (\tilde{w_h})_j \tilde{\varphi}_j$. Then, $(\tilde{w_h})_j = (\tilde{A}^{-1} \tilde{\mathbf{b}})_j$ where

$$\begin{split} \tilde{a}_{ij} &= a(\tilde{\varphi}_j, \tilde{\varphi}_i), \quad b_i = F(\tilde{\varphi}_i), \\ \tilde{a}_{ij} &= \int_{s(\tilde{\varphi}_j) \cap s(\tilde{\varphi}_i)} \alpha \nabla \tilde{\varphi}_j \nabla \tilde{\varphi}_i + \int_{s(\tilde{\varphi}_j) \cap s(\tilde{\varphi}_i)} \beta \nabla \tilde{\varphi}_j \tilde{\varphi}_i + \int_{s(\tilde{\varphi}_j) \cap s(\tilde{\varphi}_i)} \gamma \tilde{\varphi}_j \tilde{\varphi}_i, \\ \tilde{b}_i &= \int_{s(\tilde{\varphi}_i)} f \tilde{\varphi}_i + \int_{\Gamma_N \cap s(\tilde{\varphi}_i)} \psi \tilde{\varphi}_i d\sigma - \int_{s(\tilde{\varphi}_i) \cap s(u_{\varphi})} \alpha \nabla u_{\varphi} \nabla \tilde{\varphi}_i \\ &- \int_{s(\tilde{\varphi}_i) \cap s(u_{\varphi})} \beta \nabla u_{\varphi} \tilde{\varphi}_i - \int_{s(\tilde{\varphi}_i) \cap s(u_{\varphi})} \gamma u_{\varphi} \tilde{\varphi}_i. \end{split}$$

If the $\tilde{\varphi}_i$ are such that $\mu_2(\tilde{A}) < \mu_2(A)$ (...), then we can solve the system $\tilde{A}\mathbf{x} = \tilde{\mathbf{b}}$, better conditioned than $A\mathbf{x} = \mathbf{b}$, and then, if needed, recover $\mathbf{w}_h = (w_h(j))_{j=1}^{N_h} = A^{-1}\mathbf{b}$ solving the system $S\mathbf{w}_h = \tilde{\mathbf{w}}_h = ((\tilde{w}_h)_j)_{j=1}^{N_h} = \tilde{A}^{-1}\tilde{\mathbf{b}}$. (Of course, all this is convenient if S is a matrix of much lower complexity than A).

Let us prove this assertion in detail. Let v_h be a generic element of \mathcal{V}_h and let S be the matrix such that $\tilde{\mathbf{v}}_h = S\mathbf{v}_h$, being $\mathbf{v}_h = [(v_h)_1 \cdots (v_h)_{N_h}]^T$ and $\tilde{\mathbf{v}}_h = [(\tilde{v_h})_1 \cdots (v_h)_{N_h}]^T$ such that $v_h \in \mathcal{V}_h$

$$\sum_{j=1}^{N_h} (v_h)_j \varphi_j = v_h = \sum_{j=1}^{N_h} (\tilde{v_h})_j \tilde{\varphi}_j.$$

Then we have

$$\varphi_s = \sum_{j=1}^{N_h} [S^T]_{sj} \tilde{\varphi}_j, \quad s = 1, \dots, N_h,$$

a 7

and therefore

$$\begin{array}{ll} a_{ij} & = & a(\sum_{r=1}^{N_h} [S^T]_{jr} \tilde{\varphi}_r, \sum_{m=1}^{N_h} [S^T]_{im} \tilde{\varphi}_m) = \sum_{r,m} [S^T]_{im} a(\tilde{\varphi}_r, \tilde{\varphi}_m) [S]_{rj} \\ & = & \sum_{r,m} [S^T]_{im} \tilde{a}_{mr} [S]_{rj} = [S^T \tilde{A}S]_{ij}, \end{array}$$

$$b_i = F(\sum_{j=1}^{N_h} [S^T]_{ij} \tilde{\varphi}_j) = \sum_{j=1}^{N_h} [S^T]_{ij} F(\tilde{\varphi}_j) = [S^T \tilde{\mathbf{b}}]_i.$$

Thus, the equalities $A = S^T \tilde{A}S$ and $\mathbf{b} = S^T \tilde{\mathbf{b}}$ must hold, and the thesis follows.

In the Poisson case, $-\Delta u = f$, $x \in \Omega$, $u = \varphi$, $x \in \partial\Omega$, a basis $\{\tilde{\varphi}_i\}$ for \mathcal{V}_h can be introduced yielding a matrix \tilde{A} whose condition number $\mu_2(\tilde{A})$ grows like $(\log_2(1/h))^2$. (An analogous result in the convection-diffusion case (a not symmetric) in 1995 was not known!). We now see (not in all details) that this is possible by using a particular family of triangulations τ_h .

Let τ_0 be a rada triangulation of Ω . Let us define τ_1 . For each triangle T of τ_0 draw the triangle whose verteces are the middle points of the sides of T. The four triangles you see (similar to T) are the triangles of τ_1 . Note that if h_0 is the diameter of τ_0 ($h_0 = \max\{h_T : T \in \tau_0\}$), then h_1 , the diameter of τ_1 , is equal to $2^{-1}h_0$. Note also that the nodes of τ_0 are nodes of τ_1 ; the new nodes of τ_1 are the middle points of the sides of τ_0 . We can continue in this way, and define the triangulations $\tau_2, \tau_3, \ldots, \tau_j, \ldots$ (obviously, τ_j is an abbreviation for τ_{h_j}). The diameter of the generic τ_j is $h_j = 2^{-j}h_0$, and the family of triangulations $\{\tau_i\}_{i=0}^{+\infty}$ is regular and quasi-uniform.

To each τ_j we can associate the space $\mathcal{V}_j = \mathcal{V}_{h_j}^* \cap H_0^1(\Omega)$ of the functions which are continuous, null on $\partial\Omega$, and degree-1 polynomials in each $T \in \tau_j$. Note that $\mathcal{V}_j \subset \mathcal{V}_{j+1}$.

Let $x_{jk}, k \in \mathcal{I}_j = \{1, \ldots, N_j\} \subset \{1, \ldots, N_j^*\}$, denote the generic inner node of the triangulation τ_j , and $\{\varphi_{jk} : k \in \mathcal{I}_j\}$ the Lagrange basis of $\mathcal{V}_j, \varphi_{jk}(x_{jl}) = \delta_{kl}, k, l \in \mathcal{I}_j$. Obviously, any $v \in \mathcal{V}_j$ can be represented as $v = \sum_{k \in \mathcal{I}_j} v(x_{jk})\varphi_{jk}$, and, if Π_j is the interpolating operator, then

$$v \in \mathcal{C}^0(\overline{\Omega}) \to \Pi_j(v) = \sum_{k \in \mathcal{I}_j} v(x_{jk}) \varphi_{jk}.$$

Instead of $v(x_{ik})$ we will write shortly v_{ik} .

Now that all is defined, consider a function $v \in \mathcal{V}_{i+1}$ and observe that

$$\sum_{k \in \mathcal{I}_{j+1}} v_{j+1,k} \varphi_{j+1,k} = v = \prod_{j+1} v = \prod_j v + (v - \prod_j v) = \sum_{k \in \mathcal{I}_j} v_{jk} \varphi_{jk} + (v - \prod_j v).$$

Now the question is: what must we add to \mathcal{V}_j in order to obtain \mathcal{V}_{j+1} ? This question can be reduced to: what elements of $\{\varphi_{j+1,k} : k \in \mathcal{I}_{j+1}\}$ are needed to represent $v - \prod_j v$?

Let x be a point of Ω and let T be a triangle of τ_j including x. Let us observe the above quantities and, in particular, the function $v - \prod_j v$ on T. Call $x_{jk_1}, x_{jk_2}, x_{jk_3}$ $(k_1, k_2, k_3 \in \mathcal{I}_j)$ the verteces of T. Note that they are nodes also of τ_{j+1} , thus $x_{jk_i} = x_{j+1,\rho(k_i)}$, for some $\rho(k_i) \in \mathcal{I}_{j+1}^o = \{k \in \mathcal{I}_{j+1} : x_{j+1,k} \text{ is a node of } \tau_j\}$. Call $x_{j+1,\sigma(k_1k_2)}, \sigma(k_1k_2) \in \mathcal{I}_{j+1}^n = \mathcal{I}_{j+1} \setminus \mathcal{I}_{j+1}^o$, the middle point of the side $\overline{x_{jk_1} x_{jk_2}}$ of T, which is a *new node*, a node of τ_{j+1} , but not of τ_j . Draw the restrictions to T of the functions v and $\prod_j v$. Then it is clear that, on T,

$$\begin{split} v - \Pi_{j} v &= [v_{j+1,\sigma(k_{1}k_{2})} - \frac{1}{2}(v_{j,k_{1}} + v_{j,k_{2}})]\varphi_{j+1,\sigma(k_{1}k_{2})} \\ &+ [v_{j+1,\sigma(k_{2}k_{3})} - \frac{1}{2}(v_{j,k_{2}} + v_{j,k_{3}})]\varphi_{j+1,\sigma(k_{2}k_{3})} \\ &+ [v_{j+1,\sigma(k_{3}k_{1})} - \frac{1}{2}(v_{j,k_{3}} + v_{j,k_{1}})]\varphi_{j+1,\sigma(k_{3}k_{1})} \\ &= \tilde{v}_{j,\sigma(k_{1}k_{2})}\varphi_{j+1,\sigma(k_{1}k_{2})} + \tilde{v}_{j,\sigma(k_{2}k_{3})}\varphi_{j+1,\sigma(k_{2}k_{3})} + \tilde{v}_{j,\sigma(k_{3}k_{1})}\varphi_{j+1,\sigma(k_{3}k_{1})} \\ &= \sum_{k \in \mathcal{I}_{j+1}^{n}} \tilde{v}_{jk}\varphi_{j+1,k} \end{split}$$

where

$$\tilde{v}_{jk} = v_{j+1,k} - \frac{1}{2}(v_{j,k'} + v_{j,k''}), \quad k \in \mathcal{I}_{j+1}^n,$$

and $k', k'' \in \mathcal{I}_j$ are such that $x_{jk'} = x_{j+1,\rho(k')}, x_{jk''} = x_{j+1,\rho(k'')}$ are the extreme points of the side of τ_j having $x_{j+1,k}$ as middle point. Thus, if $\psi_{jk} := \varphi_{j+1,k} = \varphi_{j+1,\sigma(k'k'')}, k \in \mathcal{I}_{j+1}^n$, then

$$v \in \mathcal{V}_{j+1} \Rightarrow v = \sum_{k \in \mathcal{I}_{j+1}} v_{j+1,k} \varphi_{j+1,k} = \sum_{k \in \mathcal{I}_j} v_{jk} \varphi_{jk} + \sum_{k \in \mathcal{I}_{j+1}^n} \tilde{v}_{jk} \psi_{j,k}$$

It follows that $\mathcal{V}_{j+1} = \mathcal{V}_j + \mathcal{W}_j$, $\mathcal{W}_j := \text{Span} \{\psi_{jk} : k \in \mathcal{I}_{j+1}^n\}$, and the set $\{\varphi_{jk} : k \in \mathcal{I}_j\} \cup \{\psi_{j,k} : k \in \mathcal{I}_{j+1}^n\}$ is an alternative basis of \mathcal{V}_{j+1} . So, the answer to the question is: the Lagrangian functions of \mathcal{V}_{j+1} corresponding to the new nodes.

Observe that the v_{jk} , $k \in \mathcal{I}_j$, and the \tilde{v}_{jk} , $k \in \mathcal{I}_{j+1}^n$, can be computed from the $v_{j+1,k}$, $k \in \mathcal{I}_{j+1}$, via the formulas

$$\begin{aligned} v_{jk} &= v_{j+1,\rho(k)}, \quad k \in \mathcal{I}_j \\ \tilde{v}_{j,k} &= v_{j+1,k} - \frac{1}{2} [v_{j+1,\rho(k')} + v_{j+1,\rho(k'')}], \quad k \in \mathcal{I}_{j+1}^n. \end{aligned}$$

Viceversa, the $v_{j+1,k}$, $k \in \mathcal{I}_{j+1}$, can be computed from the v_{jk} , $k \in \mathcal{I}_j$, an from the \tilde{v}_{jk} , $k \in \mathcal{I}_{j+1}^n$, via the formulas:

These formulas can be written in matrix form:

$$\begin{bmatrix} v_{jk} \\ k \in \mathcal{I}_j \\ \tilde{v}_{jk} \\ k \in \mathcal{I}_{j+1}^n \end{bmatrix} = \begin{bmatrix} I_{|\mathcal{I}_j|} & 0 \\ B & I_{|\mathcal{I}_{j+1}^n|} \end{bmatrix} \begin{bmatrix} v_{j+1,\rho(k)} \\ k \in \mathcal{I}_j \\ v_{j+1,k} \\ k \in \mathcal{I}_{j+1}^n \end{bmatrix}, \quad \begin{bmatrix} v_{j+1,\rho(k)} \\ k \in \mathcal{I}_j \\ v_{j+1,k} \\ k \in \mathcal{I}_{j+1}^n \end{bmatrix} = \begin{bmatrix} I_{|\mathcal{I}_j|} & 0 \\ -B & I_{|\mathcal{I}_{j+1}^n|} \end{bmatrix} \begin{bmatrix} v_{jk} \\ k \in \mathcal{I}_j \\ \tilde{v}_{jk} \\ k \in \mathcal{I}_{j+1}^n \end{bmatrix}$$

where each row of B has only two nonzero elements, both equal to $-\frac{1}{2}$.

Now let J be a positive integer. We are ready to introduce a basis $\tilde{\varphi}_{J,k}$, $k \in \mathcal{I}_J$, of the space \mathcal{V}_J yielding a matrix \tilde{A} , $\tilde{a}_{r,s} = a(\tilde{\varphi}_{J,s}, \tilde{\varphi}_{J,r})$, $r, s \in \mathcal{I}_J$, whose condition number in the Poisson case grows like $O((\log_2(1/h_J))^2) = O((J + \log_2(1/h_0))^2)$, and thus is smaller than the condition number of the matrix A, $a_{r,s} = a(\varphi_{J,s}, \varphi_{J,r})$, $r, s \in \mathcal{I}_J$, yielded by the Lagrange basis $\varphi_{J,k}$, $k \in \mathcal{I}_J$ of \mathcal{V}_J (recall that $\mu_2(A) = O((1/h_J)^2) = O((2^J/h_0)^2)$).

Observe that if $v \in \mathcal{V}_J$ then

$$\sum_{k \in \mathcal{I}_J} v_{Jk} \varphi_{Jk} = v = \Pi_J v = \Pi_0 v + \sum_{j=0}^{J-1} (\Pi_{j+1} v - \Pi_j v)$$

= $\sum_{k \in \mathcal{I}_0} v_{0k} \varphi_{0k} + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{I}_{j+1}^n} \tilde{v}_{jk} \psi_{j,k},$
 $\psi_{jk} = \varphi_{j+1,k}, \quad k \in \mathcal{I}_{j+1}^n, \quad j = 0, \dots, J-1.$

It follows that \mathcal{V}_J admits the representation

$$\mathcal{V}_J = \mathcal{V}_{J-1} + \mathcal{W}_{J-1} = \mathcal{V}_{J-2} + \mathcal{W}_{J-2} + \mathcal{W}_{J-1} = \mathcal{V}_0 + \mathcal{W}_0 + \ldots + \mathcal{W}_{J-1}$$

and the set $\{\tilde{\varphi}_{J,k}: k \in \mathcal{I}_J\} := \{\varphi_{0k}: k \in \mathcal{I}_0\} \cup \{\psi_{0,k}: k \in \mathcal{I}_1^n\} \cup \cdots \cup \{\psi_{J-1,k}: k \in \mathcal{I}_J^n\}$ is an alternative basis of \mathcal{V}_J .

Remark. Observe that if

$$\mathbf{v}_J = (v_{J,k})_{k \in \mathcal{I}_J}, \\ \tilde{\mathbf{v}}_J = (\tilde{v}_{J,k})_{k \in \mathcal{I}_J} = ((v_{0,k})_{k \in \mathcal{I}_0} \ (\tilde{v}_{0,k})_{k \in \mathcal{I}_1^n} \ \cdots \ (\tilde{v}_{J-1,k})_{k \in \mathcal{I}_J^n}),$$

then $\tilde{\mathbf{v}}_J = S\mathbf{v}_J = E_0 P_0 E_1 P_1 \cdots E_{J-1} P_{J-1} \mathbf{v}_J$ where the P_k are permutation matrices, the E_k are matrices of the form

$$E_{0} = \begin{bmatrix} I_{|\mathcal{I}_{0}|} & 0 \\ B_{0} & I_{|\mathcal{I}_{1}^{n}|} \\ & & I \end{bmatrix}, E_{1} = \begin{bmatrix} I_{|\mathcal{I}_{1}|} & 0 \\ B_{1} & I_{|\mathcal{I}_{2}^{n}|} \\ & & I \end{bmatrix}, \dots, E_{J-1} = \begin{bmatrix} I_{|\mathcal{I}_{J-1}|} & 0 \\ B_{J-1} & I_{|\mathcal{I}_{J}^{n}|} \end{bmatrix}$$

and the B_k , in the definition of the E_k , have only two nonzero elements for each row, both equal to $-\frac{1}{2}$. So, \mathbf{v}_J can be computed from $\tilde{\mathbf{v}}_J$ (as well as $\tilde{\mathbf{v}}_J$ can be computed from \mathbf{v}_J) with $2(|\mathcal{I}_J| - |\mathcal{I}_0|)$ divisions by 2.

The transform of \mathbf{v}_J into $\tilde{\mathbf{v}}_J$ is described in detail here below:

$$\mathbf{v}_{J} = \begin{bmatrix} v_{J,k} \\ k \in \mathcal{I}_{J} \end{bmatrix} \rightarrow P_{J-1} \mathbf{v}_{J} = \begin{bmatrix} v_{J,\rho(k)} \\ k \in \mathcal{I}_{J-1} \\ --- \\ v_{J,k} \\ k \in \mathcal{I}_{J}^{n} \end{bmatrix} \rightarrow E_{J-1} P_{J-1} \mathbf{v}_{J} = \begin{bmatrix} v_{J-1,k} \\ k \in \mathcal{I}_{J-1} \\ --- \\ \tilde{v}_{J-1,k} \\ k \in \mathcal{I}_{J}^{n} \end{bmatrix}$$

$$\rightarrow P_{J-2}E_{J-1}P_{J-1}\mathbf{v}_{J} = \begin{bmatrix} v & 1, p(k) \\ k \in \mathcal{I}_{J-2} \\ - & - \\ v_{J-1,k} \\ k \in \mathcal{I}_{J-1}^{n} \\ - & - \\ \tilde{v}_{J-1,k} \\ k \in \mathcal{I}_{J}^{n} \end{bmatrix} \rightarrow E_{J-2}P_{J-2}E_{J-1}P_{J-1}\mathbf{v}_{J} = \begin{bmatrix} v & 1, m \\ k \in \mathcal{I}_{J-2} \\ - & - \\ \tilde{v}_{J-2,k} \\ k \in \mathcal{I}_{J-1}^{n} \\ - & - \\ \tilde{v}_{J-1,k} \\ k \in \mathcal{I}_{J}^{n} \end{bmatrix}$$

$$\cdots \rightarrow E_0 P_0 \cdots E_{J-1} P_{J-1} \mathbf{v}_J = \begin{bmatrix} v_{0,k} \\ k \in \mathcal{I}_0 \\ --- \\ \tilde{v}_{0,k} \\ k \in \mathcal{I}_1^n \\ --- \\ \cdots \\ \vdots \\ \tilde{v}_{J-1,k} \\ k \in \mathcal{I}_J^n \end{bmatrix}$$

Theorem. Let $\tau_j, \mathcal{V}_j, \Pi_j, j = 0, 1, \dots, J$, be the triangulations of Ω , the subspaces of $\mathcal{V} = H_0^1(\Omega)$ and the interpolating operators $C^0(\overline{\Omega}) \to \mathcal{V}_j$ defined above. For any $v \in \mathcal{V}_J$ set

$$\|v\|^2 = |\Pi_0 v|_{1,\Omega}^2 + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{I}_{j+1}^n} |(\Pi_{j+1} v - \Pi_j v)(x_{j+1,k})|^2 = |\Pi_0 v|_{1,\Omega}^2 + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{I}_{j+1}^n} |\tilde{v}_{j,k}|^2.$$

Then there exist two positive constants c_1, c_2 (depending only on the angles of τ_0) such that

$$c_1 \frac{\|v\|^2}{J^2} \le |v|_{1,\Omega}^2 \le c_2 \|v\|^2.$$

This inequality, involving the coefficients $\tilde{v}_{J,k}$ of $v \in \mathcal{V}_J$ with respect to the hierarchical basis $\tilde{\varphi}_{J,k}$, $k \in \mathcal{I}_J$, is due to Yserentant. It allows us to evaluate the condition number of \tilde{A} , $\tilde{a}_{r,s} = a(\tilde{\varphi}_{J,s}, \tilde{\varphi}_{J,r})$, $r, s \in \mathcal{I}_J$, in the Poisson case where $a(u, v) = \int_{\Omega} \nabla u \nabla v$.

First note that

$$\begin{aligned} |\Pi_0 v|_{1,\Omega}^2 &= |\sum_{k \in \mathcal{I}_0} v_{0,k} \varphi_{0,k}|_{1,\Omega}^2 = \int_{\Omega} \nabla (\sum_{k \in \mathcal{I}_0} v_{0,k} \varphi_{0,k}) \cdot \nabla (\sum_{k \in \mathcal{I}_0} v_{0,k} \varphi_{0,k}) \\ &= \sum_{k,s\mathcal{I}_0} v_{0,k} v_{0s} \int_{\Omega} \nabla \varphi_{0k} \nabla \varphi_{0s}, \end{aligned}$$

thus the Yserentant inequality can be rewritten as follows:

$$c_{1} \frac{\tilde{\mathbf{v}}_{J}^{T} \begin{bmatrix} N & 0 \\ 0 & I \end{bmatrix} \tilde{\mathbf{v}}_{J}}{J^{2}} \leq \tilde{\mathbf{v}}_{J}^{T} M \tilde{\mathbf{v}}_{J} \leq c_{2} \tilde{\mathbf{v}}_{J}^{T} \begin{bmatrix} N & 0 \\ 0 & I \end{bmatrix} \tilde{\mathbf{v}}_{J}$$
(Y)

where $N = (\int_{\Omega} \nabla \varphi_{0r} \cdot \nabla \varphi_{0,s})_{r,s \in \mathcal{I}_0}$ and $M = (\int_{\Omega} \nabla \tilde{\varphi}_{J,r} \cdot \nabla \tilde{\varphi}_{J,s})_{r,s \in \mathcal{I}_J}$. Note that N and M are positive definite matrices. Note also that in case of the Poisson differential problem $-\Delta u = f, x \in \Omega, u = \varphi, x \in \partial\Omega$, the form a is simply $a(u, v) = \int_{\Omega} \nabla u \nabla v$, i.e. we have the continuous problem

$$w \in \mathcal{V} = H^1_{0,\Gamma_D}(\Omega) \mid \int_{\Omega} \nabla w \nabla v = \int_{\Omega} fv - \int_{\Omega} \nabla u_{\varphi} \nabla v, \quad \forall v \in \mathcal{V} = H^1_{0,\Gamma_D}(\Omega)$$

which is reduced first to the discrete problem

$$w_J \in \mathcal{V}_J \mid \int_{\Omega} \nabla w_J \nabla v_J = \int_{\Omega} f v_J - \int_{\Omega} \nabla u_{\varphi} \nabla v_J, \quad \forall v_J \in \mathcal{V}_J$$

and then, via the representation $w_J = \sum_{k \in \mathcal{I}_J} (w_J)_k \tilde{\varphi}_{J,k}$, to the linear system

$$\begin{split} \tilde{A}\mathbf{x} &= \tilde{\mathbf{b}}, \quad \tilde{a}_{r,s} = \int_{\Omega} \nabla \tilde{\varphi}_{J,r} \nabla \tilde{\varphi}_{J,s}, \quad \tilde{b}_{r} = \int_{\Omega} f \tilde{\varphi}_{J,r} - \int_{\Omega} \nabla u_{\varphi} \nabla \tilde{\varphi}_{J,r}, \\ \tilde{(w_{J})}_{k} &= (\tilde{A}^{-1} \tilde{\mathbf{b}})_{k}. \end{split}$$

Observe that the coefficient matrix \tilde{A} of this system is exactly the matrix M in (Y). Now we prove that $\mu_2(M) = O((\log_2 \frac{1}{h_I})^2)$.

Consider the Cholesky factorization of N, $N = L_N L_N^T$, and note that

$$L := \begin{bmatrix} L_N & \\ & I \end{bmatrix} \Rightarrow LL^T = \begin{bmatrix} N & \\ & I \end{bmatrix}.$$

Set $\mathbf{z} = L^T \tilde{\mathbf{v}}_J$, $\tilde{\mathbf{v}}_J = L^{-T} \mathbf{z}$. By (Y), for all vectors $\mathbf{z} \neq \mathbf{0}$ we have

$$c_1 \frac{1}{J^2} \le \frac{\mathbf{z}^T L^{-1} M L^{-T} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} \le c_2.$$

Thus, if λ is any eigenvalue of the positive definite matrix $L^{-1}ML^{-T}$, then

$$\frac{c_1}{J^2} \le \lambda \le c_2,$$

and this result implies that the condition number of $L^{-1}ML^{-T}$ is bounded by $\frac{c_2}{c_1}J^2$. Since L_N is a small matrix and its dimension does not depend on J, it follows that $\mu_2(M) \leq cJ^2 = c(\log_2 \frac{h_0}{h_J})^2$ for some constant c.