Preconditioned finite elements method

Let V be a Hilbert space, (-,-)y an inner product on V and || - ||y the cor-
responding induced norm. Let a be a coercive, continuous, bilinear form on V,
that is, @ : ¥V x V — R and there exist m, M, 0 < m < M such that for all
u,v,w €V, o, €R,

alau+ Bv,w) = aa(u, w) + Pfa(v, w), a(u, av + fw) = aa(u,v) + fa(u, w)
(bilinearity),

|a(u, v)| < M|lullv|[v]ly (continuity),
a(v,v) > m||v||} (coercivity).

Let V' be the set of all continuous, linear forms on V.
Then the following Lax-Milgran results hold:

(LM1) For any F € V', there exists a unique element © = uxr € V such that
a(u,v) = F(v), Yo € V.

(LM2) If, moreover, V}, is a finite-dimensional subspace of V, then to F we can
also associate an element uy, € V, such that a(up,vy) = F(vp), Vo, € Vh,
which is uniquely defined too.

Approzimating u by up,

Intuitively, such element u;, can be used as an approximation of w if Vp
belongs to a family of subspaces {Vi}n—o of increasing dimension, such that
the closure of Up_.oV; coincides with V. In fact, it can be shown that an
hypothesis of consistency on {V3}r—o (implying the latter property) yields the
result:

h—0 = |lu—ua|ly — 0. (conv)

Consistency of {Vi}h—o in V. {Vnh}tn—o, Vin C V, is said to be consistent in
V if there exist V C V dense in V (with respect to || - |y) and an operator
Ry V — Vy, such that for any v € V, ||Rp(v) —v||y — 0 as h — 0 (Ry, might
be an interpolation operator).

Let us show that the consistency of {V}}n—o implies (conv). First we prove
that the error ||u — up||y is proportional to the minimal error we can have with
Vi. Note that

a(u,vp) = F(vp), alup,vp) = F(up) = alu—up,vp) =0V, €V
and this remark implies

mllu =} < alu—un,u—up) = alu — up,u =) < Mu = upllyllu— vy,

M
- <= inf fu—uvplly.
lu —unlly < - inf lu—onlly (cea)

Now we can prove (conv). Let v € V be such that ||v — u|ly < e. By (cea) and
the consistency hypothesis, if h < h. (h is suitably small), then

M M M
- < |u-R < (Ju- -R 2.
= wnlly < =l = Ra()lv < (= vllv + o = Ra(@)lv) < 2¢



How to compute up,

Let Nj, be the dimension of V,, and ¢;, i = 1,..., Ny, a basis for V. Then
up = Z;V:hl (un)je; and the condition a(up,vy) = F(vp), v € Vi, can be
rewritten as follows:

Np,
> (un)jales, ) = Fpi), i=1,...,Np.

j=1

So the (up); defining uj can be obtained by solving a linear system Ax = b,
being a;; = ale;,¢:), bi = F(p:i), 1 < 4,57 < Nj. It is important to notice
that the symmetric part of the coefficient matrix A is positive definite, that is
z7Az > 0,Vz € R" z # 0. In fact, by the coercivity of a, we have

2T Az = zalps, i)z = oY 205, ) zipi) 2 ml Yz} > 0

i
unless the z; are all null (the ¢; are assumed linearly independent).

Example: a differential problem solved by the finite element method
Assume that u : Q — R is the unique solution of the differential problem

—V(aVu) +pBVu+yu=f, z€Q,
u=¢, x€l'p,
P =y, zely.

Here (2 is an open set in I%d, I'p and 'y are open subsets of 92 such that
N=TpUl'y,a: Q=R , 3:Q—=R% ~ f: Q=R
Then, for all v, v|r, =0,

a(u,v) ::/aVqu+/BVuv+/fyuU:/fv+ Yodo.
Q Q Q Q 'y

If we set u = uy +w with ug,w : @ — R, u,|r, = ¢ and w|r, = 0, then the
latter equation becomes:

a(w,v)z/ﬁfv—}— g Yodo — alug,v) =: F(v).

So, we have the following

Problem. Find w, w|r, = 0 such that a(w,v) = F(v), Vv, v|r, = 0.
Moreover, the functions w, v must be also such that a(w,v) and F(v) are well
defined, that is we also require w,v € H'() where

HY(Q) = {v e L%(Q) : Dy € L2(Q)}
(Div e L*(Q) iff 3g; € L*(Q)| [ 900 = — [qvDip¥ o € C5°(Q) (Div := gi)).

Briefly, find w € Hj p_(Q) | a(w,v) = F(v), Vv € Hjp_ ().

Under suitable conditions on the data 092, «, 3,7, ¢, 1, the space V = H&FD (Q)
is a Hilbert space with respect to the inner product (u,v)y = (u,v)10 =
(u,v)r2(Q) + D im1. q(Diu, Div) 12 (q), and the forms a and I’ are well defined
and satisfy the conditions required by the Lax-Milgran results (LM1) and (LM2)
to hold. So, the w of the problem is well defined, and for any finite-dimensional



subspace Vj, of V = H&FD (Q) is well defined a function wy, € V), such that
a(wh,vh) = F(Uh), Yo € V.

Definition of wy, convergent to w

In order to yield functions wy convergent to w as h — 0, we only have to
define V, such that {V4}n—o is consistent in H&FD (). Let us do this in the
case d = 2, () = polygon, by using the finite element method.

Let 7, be a triangulation of 2 of diameter h, that is a set of triangles T" such
that

eTcr,=T=TcCQand diam (T) =: hy < h := maxre,, hr,
L4 UTGT}LT = ﬁy

e 11,175 € 7, = T1 N1, is a common vertex, a common side, the whole
triangle T7 = T5 or the empty set.

To any T in the following we need to associate also the number pr, the
diameter of the circle enclosed in T'. Let S, be the set of all functions p : 2 — R
such that p|r is a degree-1 polynomial (in 1 and x2) and set V' = S, N C°(Q).
Let i = 1,2,..., N;f be the nodes of the triangulation 7, (the verteces of the
triangles of 7,) and denote by ¢; the elements of V}' satisfying the identities
0i(§) = dij,4,5=1,2,...,N;. Obviously any element v of V} can be expressed
as v = 0% v(i)gi.

Choose V), = Vi N H&FD (Q) = Span{e1,...,¢n,} where 1,..., N} are
the nodes of the triangulation 7, which are not on Tp. We want to show
that {Vy}n—o is consistent in Hjp (), so that the well defined functions
wp, = ijlmNh (wn)jp; € Vi such that a(wn,vn) = F(vi), Yor € Vi, strongly
converge to w as h — 0, i.e. ||lw —wp|y — 0.

First we introduce the space V.= Hj . (Q)N H?2(Q), contained and dense in
Y = H&FD Q) (H?*(Q) = {ve H'(Q) : Dj;v € L2(Q)}, (u,v)20 = (u,v)1,0 +
> (Diju, Dijv)o., w30 = > | Divll§ o). Now let v be an element of such
V. Notice that v € C°(Q) (...), thus the function v = Zilihl v(i)p; of Vp,
interpolating v in the nodes of the triangulation, is well defined. Moreover, I1v
is a function of H1(Q) and one can measure the interpolating error using the
norm of V:

lv — povll1,0 < ceh|v]a,n, ce constant.

The latter inequality holds if the family of triangulations {7}, is chosen
regular, that is there exists a constant ¢, such that hy/pr < ¢, for all T € 7,
and h. Thus we have the operator R}, : V — V), required by the consistency
hypothesis, it is the interpolating operator ITj,.

Observe that in case the function w is in H2()) we can say more: [w —
wp|ly — 0 at least at the same rate of h. In fact,

M M
[w —wally < —[lw =Thw|y < —cchlwls,o.
m m

Computation of wy,
In order to compute wp, = Zjvz"l (wn);p; one has to solve the linear system

Ax =b, a;j =alpj,@i), bi=F(p).



In fact, (wy); = (A7'b);. More specifically, in our example, if s(g) denotes the
set supp (g), then the entries of A and b are:

Ui = Jupnsie) VIV [ nsten BV T Jonsten 190
bi = fs(%‘) feoi+ fFNﬂs(w) Ypido — Jte(«p,;)ﬁs(u(p) aVu, Ve,
= Jteonstun) PV 8Pi = Juonns(u,) VePis

1 < 4,5 < Nj. Here the ¢; are the Lagrange basis of V, (¢;(j) = d;5). So,
the (wp); are the values of wy, in the nodes j ((wp); = wp(j)) and the matrix
A is sparse, in fact for any fixed 4, the number of j such that the measure of
s(j)Ns(p;) is not zero is smaller than a constant (with respect to h) dependent
upon the regularity parameter ¢, of the triangulations (such constant is a bound
for the number of nodes j linked directly to i). But these properties are far from
to be essential: in particular, more important would be to know that the matrix
A is well conditioned. Unfortunately, even in case the differential problem is
simply the Poisson problem (o = I, 8 =0, v =0, I'y = ) the matrix A has
a condition number growing as (1/h)?2, if the Lagrange functions are used to
represent wy. (This estimate of the condition number holds more in general for
the convection-diffusion problem, if the triangulations are quasi-uniform (i.e.
hr > ¢,h, VT € 7, ¥V h) and regular).

So, consider an arbitrary basis {@;} of Vj,, and represent wy, in terms of this
basis: wy, = Zjvz"l (wn);@;. Then, (wp,); = (A~'b); where

aij = a(@j, Pi), bi=F (),

Qij :/ anij@iJr/ 5Vs5js5i+/ Y5 Pis
s(;)Ns(Bi) s(@5)Ns(pi) s(¢;)Ns(@i)

bi = Jigo 01t Jrynsian Y9190 = Jugonstuy) @V e Vi
= Jtgonste) BVUPi = [yansu,) TiePic

If the @; are such that us(A) < p2(A) (...), then we can solve the system
Ax = B, better conditioned than Ax = b, and then, if needed, recover w;, =
(wh(j))j-\f:”’1 = A~'b solving the system Swj, = Wy, = ((wh)j)j\;”l = A~'b. (Of
course, all this is convenient if S is a matrix of much lower complexity than A).

Let us prove this assertion in detail. Let v;, be a generic element of V), and
let S be the matrix such that v, = Svy, being v, = [(vn)1--- (v)n,]T and
Vi = [(vn)1- - (vn) N, )T such that v, € Vy,

Np, Ny, -
Z(Uh)ﬂpj =V = Z (vn); P
7j=1 j=1
Then we have
Ny,
WSZZ[ST]S_]@_% 8_17 aNha
j=1

and therefore

(0 [ST)jrPrs Eomes [S limBm) = X [ST lima(Br, B ) [S)y
Zr,m[ST]im&mr[S]rj = [STAS]ija

aij



Nh Nh
bi =F(O_[S")i¢5) = >_[S"1:F(#;) = [S"Ds.
j=1 j=1
Thus, the equalities A = STAS and b = STb must hold, and the thesis follows.

In the Poisson case, —Au = f, z € Q, u = ¢, x € 9, a basis {@;} for V),
can be introduced yielding a matrix A whose condition number 12 (fl) grows
like (logy(1/h))?. (An analogous result in the convection-diffusion case (a not
symmetric) in 1995 was not known!). We now see (not in all details) that this
is possible by using a particular family of triangulations 7y,.

Let 79 be a rada triangulation of €). Let us define 71. For each triangle T of
79 draw the triangle whose verteces are the middle points of the sides of T'. The
four triangles you see (similar to T") are the triangles of 7. Note that if k¢ is the
diameter of 79 (hg = max{hy : T € 79}), then hj, the diameter of 71, is equal
to 271hg. Note also that the nodes of 7y are nodes of 7;; the new nodes of 7;
are the middle points of the sides of 75. We can continue in this way, and define
the triangulations 72, 73, ..., 75, ... (obviously, 7; is an abbreviation for 7).
The diameter of the generic 7; is h; = 277hg, and the family of triangulations
{7} ;;08 is regular and quasi-uniform.

To each 7; we can associate the space V; = V; N H} () of the functions
which are continuous, null on 09, and degree-1 polynomials in each 17" € 7;.
Note that V; C Vj41.

Let zjx, k € Z; = {1,...,N;} C{1,..., N/}, denote the generic inner node
of the triangulation 7;, and {¢;x : k € Z;} the Lagrange basis of V;, ;i (z;1) =
O, k,1 € Z;. Obviously, any v € V; can be represented as v = Zkte v(Zjk) ik,
and, if II; is the interpolating operator, then '

veC’(Q) — I(v) = Z V(T )Pk
keT;

Instead of v(x;,) we will write shortly vjy.
Now that all is defined, consider a function v € V;11 and observe that

Y vk =0 = v =T+ (v —Iv) = Y v + (0 — o).
kE€Tj11 keZ;
Now the question is: what must we add to V; in order to obtain V;;; 7 This
question can be reduced to: what elements of {114 : k € Zj41} are needed
to represent v — Ilv ?

Let  be a point of Q and let T be a triangle of 7; including x. Let us
observe the above quantities and, in particular, the function v —II;v on T'. Call
Tjky, Tjks, Tjks (k1,k2,ks € I;) the verteces of T. Note that they are nodes
also of 741, thus x5, = @11 ,4,), for some p(k;) € Z9,, = {k € Zj41 :
Tjt1,k is anode of 75}, Call Tj1 o(ky k), O(k1k2) € I7y = Tj41\I74, the
middle point of the side Tjx, Tj&, of T, which is a new node, a node of 741, but
not of 7;. Draw the restrictions to 7" of the functions v and IIjv. Then it is
clear that, on T,

V=ILv = [Uji100kiks) — 5 Uik T Vjiko)]Pj41,0(kk2)
+[vj+1,cr(k2k3) - _(Uj,kz + Uj7k3)]¢j+1,a(k2k3)
+[Uj+1,a(k:3k1) - §(Uj,ks + Uj,kl)]¢j+1,a(k3k1)
= Ujo(kike) Pitlo(kiks) T Ujio(kaks) Pitlo(kaks) T Ujo(ksks)Pitl,0(kak)
kezy,, VikPi+lk



where

~ 1
ik = Uik = 5 (i + i), k€ Ti,

and k', k" € Z; are such that @i = o411 5(k'), Tjkr = Tj41,p(k) are the extreme
points of the side of 7; having x ;41 as middle point. Thus, if ¥;i := @jt1,k =
Pit1ok' k) k €T, then

veVip = v= § Uj+1,k90j+1,k=§ VjikPik + § V5t k-
k€ZLjt1 keZ; keTr

It follows that Vj41 = V; + W;, W; == Span{¢yx : k € I}, and the set
{ojk = k€ ;3 U{¢ : k € I},,} is an alternative basis of V;1. So, the
answer to the question is: the Lagrangian functions of V;11 corresponding to
the new nodes.

Observe that the vji, k € Z;, and the v;x, k € Z7, 4, can be computed from
the vjq1k, k € Zj41, via the formulas

Vjk = Vj41,p(k)> ke Zj
Vi = V5 ——[U‘ N+ v N] kel? .
-k J+LE T 2Vi+1,p(k) J+1,p(k")1s j+1
Viceversa, the vjy1 %, kK € Z;41, can be computed from the v;i, k € Z;, an from

the v;, k € I7' 4, via the formulas:

Vit1,p(k) = Uik, K €T

~ 1 3
Vit1,k = Uk + gvjw +oien], k€I

These formulas can be written in matrix form:

Vik Vjt1,p(k) Yi+1,p(k)
keZ; | [Iz, 0 ke kel | _ | g
Uji B iz ]| vierk | ULk -
keTi, kel R i

where each row of B has only two nonzero elements, both equal to — %

Now let J be a positive integer. We are ready to introduce a basis ¢, k €
Zj, of the space V; yielding a matrix A, ars = a(Pys, Par), s € Ly, whose
condition number in the Poisson case grows like O((logy(1/hy))?) = O((J +
log,(1/ho))?), and thus is smaller than the condition number of the matrix A,
ars = a(@rs,0ir), 7,8 € Ly, yielded by the Lagrange basis ¢, k € Z; of V;
(recall that us(A) = O((1/hs)?) = O((27 /ho)?))-

Observe that if v € V; then

> oker, Vakpar = v =110 =1v + %:j%ol(ﬂjﬂv —II,v)
ZkeIo VokPok + Zj:O ZkeI_;l_H Vjks ks

mn

Vit = @itk k€TPy, j=0,....J—-1

It follows that V; admits the representation

Vi=Via4+Wia=Vio4+Wio+Wr 1 =Vo+Wo+...+ W51

Iizp,.|

|

Vjk
ke Ij
Vjk
keIl



and the set {(;JJC ke ZJ} = {(pok ke I()}U{’(/)O,k ke If}U . 'U{wJ_Lk :
k € I%} is an alternative basis of V;.

Remark. Observe that if

vy = (Vik)keT,,

vy = (Usk)kez, = ((Vox)kezo (Vok)kezy -+ (Vs—1,k)kezn),

then vy = Svy; = EgPyE1P,---E;_1Pj_1v; where the P, are permutation
matrices, the E} are matrices of the form

Iy 0 Biz,) 0

1 0
EO = BO I‘If‘ Y El = Bl I‘Ig‘ g ey EJ*I = |: ‘BIJ*I‘ I . :|
1 I J-1 1731

and the By, in the definition of the Fj, have only two nonzero elements for each
row, both equal to —%. So, v can be computed from v (as well as v can be
computed from v ;) with 2(|Z;| — |Zo|) divisions by 2.

The transform of v; into v is described in detail here below:

VJj,p(k) Vj-1,k
v kel;_q kelj
T,k
VJ:|: heT } — Pjavy=| ——— — EjaPjavy=| ———
J VJk Vj-1,k
kely kely
Vj—1,p(k) Vj—-2,k
ke Ty o ke Tyj_o
P sE; 1P = | YLk Ej_oPj 2Es 1P = | P2k
i J—2 J—1 J—le - k E In — J—2L]-2 J—1 J—le - k 6 In
J—1 J—1
Vj_1k Vj—1,k
kely kelf

= EgRy---Ej 1 Pjavy =

Theorem. Let 7;, V5,11, j = 0,1,..

V0, k
kely

Vj—1,k
kelIy

.,J, be the triangulations of €2, the

subspaces of V = H}(Q2) and the interpolating operators C°(Q) — V; defined

above. For any v € V; set

[[v

J—-1 J—-1
17 =Mool o+ Y Y [(Mipv—T0) (101> = Movf o+ > > 5540

7=0 kET?,,




Then there exist two positive constants c1, ¢a (depending only on the angles of
7o) such that

lv H
C1—F—

< i g < callol”

This inequality, involving the coefficients 75 of v € V; with respect to the
hierarchical basis ¢ %, k € Zj, is due to Yserentant. It allows us to evaluate
the condition number of A, ars = a(@ys, Pir), 7,5 € Iy, in the Poisson case
where a(u,v) = [, VuVo.

First note that

|HOU|%,Q = | Zkelo o,k P07 Q= fQ Zkel’o V0,k%0,k) ° (Zkelo V0,k$0,k)
= 3 paz, Vokv0s Jo Vok Vepos,

thus the Yserentant inequality can be rewritten as follows:

- N 0 |.
V?;|:O I:|VJ
J2

where N = ([, Voo, - Vo,s)rsez, and M = ([, V@1, - VPis)rsez,. Note that
N and M are positive definite matrices. Note also that in case of the Poisson
differential problem —Au = f, z € Q, u = ¢, x € 09, the form a is simply
a(u,v) = [, VuVu, i.e. we have the continuous problem

c1 <VIMVy < V¥ [ N0 ] vy (Y)

weV==Hjpr,(Q) | / VwVu = / fo— / Vu,Vv, Vv eV =Hjp (Q)
Q Q Q

which is reduced first to the discrete problem
wy € Vy | / Vw;Vuvy = / f’UJ —/ VU@VUJ, YvyeVy
Q Q Q

and then, via the representation w; = Zkezj (w})k@],k, to the linear system

jbi: B; ~dr,s~: fQ VQEJ,TV@J,& Br = fQ f@J,r - fQ VU¢V¢J,T7
(wi)k = (A7)

Observe that the coefficient matrix A of this system is exactly the matrix M in
(Y). Now we prove that ps(M) = O((logy %)2)
Consider the Cholesky factorization of N, N = Ly L%, and note that

e[ ] e[ ]

Set z = LTv,;, v; = LTz By (Y), for all vectors z # 0 we have
1 2’ LML Tz
J? - zTz

Thus, if A is any eigenvalue of the positive definite matrix L='M L™, then

c1 < cs.

C1
ﬁg)\SCQa

and this result implies that the condition number of L=*M L~ is bounded by
%J 2. Since Ly is a small matrix and its dimension does not depend on J, it

follows that us (M) < cJ? = c(log, ,’;‘—3)2 for some constant c.



