
CG method

Assume A, the coefficient matrix of our system Ax = b, positive definite
(recall that A and b are real). In the general scheme choose H = A, d0 = r0 =
b−Ax0, dk = rk + βk−1dk−1, k = 1, 2, . . ., (rk = b−Axk) where βk−1 is such
that

(dk,dk−1)A = 0

(dk conjugate to dk−1). Here below is the algorithm we obtain:

x0 ∈ R
n, r0 = b − Ax0, d0 = r0.

For k = 0, 1, . . . , {
τk =

d
T

k
rk

dT

k
Adk

xk+1 = xk + τkdk

rk+1 = b − Axk+1 = rk − τkAdk

βk = − r
T

k+1Adk

dT

k
Adk

dk+1 = rk+1 + βkdk

}

known as Conjugate Gradient (CG) algorithm.
Remarks. Note that

0 = (x − xk+1)
T Hdk = (x − xk+1)

T Adk = r
T
k+1dk, r

T
k+1dk+1 = ‖rk+1‖2

2.

As a consequence, if at step s we have rs = b − Axs 6= 0, then ds 6= 0, τs is
well defined and not zero . . .: the algorithm works.

If r0, . . ., rm−1 are non null and rm = 0, then βm−1 = 0, dm = 0, τm cannot
be defined, but it doen’t matter since xm = A−1

b. This hypothesis is effectively
verified, in fact there exists m ≤ n = the order of A, such that rm = 0 (see
below).

Alternative expressions for τk and βk hold:

τk =
d

T
k rk

dT
k Adk

=
r

T
k rk

dT
k Adk

(dk = rk + βk−1dk−1, r
T
k dk−1 = 0),

βk = − r
T

k+1Adk

dT

k
Adk

= − r
T

k+1τ−1

k
(rk−rk+1)

dT

k
τ−1

k
(rk−rk+1)

=
−r

T

k+1rk+r
T

k+1rk+1

dT

k
rk

=
r

T

k+1rk+1

rT

k
rk

.

The latter identity uses the result

r
T
k+1rk = 0

(residual at step k + 1 is orthogonal to residual at step k, exactly as in the
Gradient method) which is not obvious:

r
T
k+1rk = r

T
k+1(dk − βk−1dk−1) = −βk−1r

T
k+1dk−1

= −βk−1(rk − τkAdk)T
dk−1 = βk−1τkd

T
k Adk−1 = 0.

First main result: If r0, r1, . . . , rp are non null, then

d
T
l Adj = 0, r

T
l rj = 0, 0 ≤ j < l ≤ p.

1



That is, each new residual (search direction) is orthogonal (conjugate) to all
previous residuals (search directions). As a consequence, the residual rm must
be null for some m ≤ n, or, equivalently, CG finds the solution of Ax = b in at
most n steps.

Proof. . . .

A useful representation of the residuals. If r0, r1, . . . , rk−1 are non null, then
there exist polynomials sk(λ), qk(λ) such that

rk = sk(A)r0, dk = qk(A)r0,
sk(λ) = (−1)kτ0τ1 · · · τk−1λ

k + . . . + 1, τ0τ1 · · · τk−1 6= 0.

Proof (by induction). The equality r0 = s0(A)r0 holds if s0(λ) = 1; d0 =
q0(A)r0 holds if q0(λ) = 1. Moreover,

rk+1 = rk − τkAdk = sk(A)r0 − τkAqk(A)r0 = sk+1(A)r0

if sk+1(λ) = sk(λ) − τkλqk(λ), and

dk+1 = rk+1 + βkdk = sk+1(A)r0 + βkqk(A)r0 = qk+1(A)r0

if qk+1(λ) = sk+1(λ) + βkqk(λ). Finally, since

sk+1(λ) = sk(λ) − τkλ(sk(λ) + βk−1qk−1(λ)),

the coefficient of λk+1 in sk+1(λ) is −τk times the coefficient of λk in sk(λ).
Thus, by the inductive assumption, it must be (−1)k+1τ0τ1 · · · τk−1τk . Also,
the coefficient of λ0 in sk+1(λ) is equal to the coefficient of λ0 in sk(λ), which
is 1 by the inductive assumption.

Second main result: rk = 0 for some k ≤ #{distinct eigenvalues of A}.
Proof. Let µ1, µ2, . . . , µm be the distinct eigenvalues of A (m ≤ n = order of

A). Assume that CG requires more than m steps to converge. So, the vectors
r0, r1, . . . , rm are non null, and, by the First main result, orthogonal (⇒ linearly
independent). Let V be an orthonormal matrix whose columns are eigenvectors
of A, thus V T = V −1 and AV = V D for D diagonal with the eigenvalues of A
as diagonal entries. Observe that there is a degree-m polynomial which is null
in A,

m
∏

j=1

(A−µjI) =

m
∏

j=1

(V DV T−µjI) =

m
∏

j=1

V (D−µjI)V T == V

m
∏

j=1

(D−µjI)V T = 0.

As a consequence the matrices A0 = I , A, . . ., Am are linearly dependent. But
this implies that the dimension of the space

Sm+1(r0) = Span {r0, Ar0, . . . , A
m

r0} = Span {r0, r1, . . . , rm}

is smaller than m + 1, which is absurd. It follows that one of the vectors ri,
i = 0, . . . , m, must be null.

Let Π1
k be the set of all polynomials of degree exactly k whose graphic

pass through (0, 1). We now see that the polynomial sk(λ) in the expression
rk = sk(A)r0 is a very particular polynomial in the class Π1

k: it makes the norm
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of the vector pk(A)r0, pk ∈ Π1
k, minimum (for a suitable choice of the norm).

This result let us give estimates of the rate of convergence of CG, as precise as
good is the knowledge about the location of the eigenvalues of A. For example,
if it is known that the eigenvalues of A cluster around 1, then CG must converge
with a superlinear rate of convergence (see toe 1a).

Notice that rk = sk(A)r0 = r0 + ĥk, for a particular vector ĥk in the space
M = Span {Ar0, A

2
r0, . . . , A

k
r0}. Take a generic vector hk in this space. Then

‖r0 + hk‖2
A−1 = ‖r0 + ĥk + hk − ĥk‖2

A−1

= ‖r0 + ĥk‖2
A−1 + ‖hk − ĥk‖2

A−1 + 2(r0 + ĥk,hk − ĥk)A−1 .

Now observe that the latter inner product is null, in fact, for j = 0, . . . , k − 1,
0 = r

T
k rj = r

T
k A−1Arj = (rk , Arj)A−1 , that is, rk is A−1-orthogonal to the

space Span {Ar0, Ar1, . . . , Ark−1}, but this space is exactly M. The thesis

follows since hk − ĥk ∈ M. So we have:

‖r0 + hk‖2
A−1 = ‖r0 + ĥk‖2

A−1 + ‖hk − ĥk‖2
A−1 ≥ ‖r0 + ĥk‖2

A−1 .

In other words,

‖rk‖2
A−1 = ‖r0 + ĥk‖2

A−1 = min{‖r0 + hk‖2
A−1 : hk ∈ M}

= min{‖pk(A)r0‖2
A−1 : pk ∈ Π1

k}.
(m)

Comparison with GMRES. Notice that for any hk ∈ M we have

r0 + hk = b−A(x0 + z), z = −A−1
hk ∈ Sk(r0) = Span {r0, Ar0, . . . , A

k−1
r0}.

Thus, the vector xk generated by the CG method is of type x0 + ẑ where ẑ

solves the problem

‖b− A(x0 + ẑ)‖A−1 = min{‖b− A(x0 + z)‖A−1 : z ∈ Sk(r0)} (p)

(Sk(r0) is known as Krilov space). GMRES is a method able to solve Ax = b

in at most n steps under the only assumption det(A) 6= 0. (Like CG, GMRES
in order to be competitive must be used as an iterative method, i.e. less than
n steps must be sufficient to give a good approximation of x). In the k-th step
of GMRES it is defined a vector xk of type x0 + ẑ where ẑ solves exactly the
problem (p) but the norm involved is the euclidean one. So, CG is a minimal
residual algorithm different from GMRES|A pd.

It is easy to see that the condition (m) can be rewritten as follows:

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A.

Now we give a bound for the quantity ‖pk(A)(x − x0)‖2
A, pk ∈ Π1

k, which can
be evaluated if (besides A,b) also some information about the location of the
eigenvalues λi of A is given. Let vi 6= 0 be such that Avi = λivi, v

T
i vj = δij .

Then

‖pk(A)(x − x0)‖2
A = (x − x0)

T Apk(A)2(x − x0) = (
∑

αivi)
T
∑

αiApk(A)2vi

= (
∑

αivi)
T
∑

αiApk(λi)
2
vi = (

∑

αivi)
T
∑

αiλipk(λi)
2
vi

=
∑

α2
i λipk(λi)

2 ≤ maxi |pk(λi)|2‖x− x0‖2
A.

3



So, we obtain the following
Third main result: If xk is the k-th vector generated by CG when applied

to solve the pd linear system Ax = b, then

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A ≤ max

i
|pk(λi)|2‖x− x0‖2

A, ∀ pk ∈ Π1
k.

So, if S ⊂ R, pk ∈ Π1
k, Mk ∈ R are known such that λi ∈ S ∀ i and |pk(λ)| ≤ Mk

∀λ ∈ S, then ‖x − xk‖A ≤ Mk‖x− x0‖A.

Let us see two applications of the latter result. As consequences of the
first application we observe that CG (considered as an iterative method) has
a linear rate of convergence, is in general faster than G, and is competitive
(f.i. with direct methods) if λmax and λmin are comparable. However, as a
consequence of the second application, the latter condition is not necessary: the
rate of convergence of CG remains high (so, CG remains competitive) if most

of the eigenvalues are in [λmin, λ̂] with λmin and λ̂ comparable. Further useful
applications of the Third main result hold. In particular, as a consequence of
one of these (see toe 1a), it can be stated that CG has a superlinear rate of
convergence if most of the eigenvalues of A are in the interval S = [1− ε, 1 + ε]
(. . .).

(1)

S = [λmin, λmax], pk(x) =
Tk

(

λmax+λmin−2x
λmax−λmin

)

Tk

(

λmax+λmin

λmax−λmin

) ⇒

‖x− xk‖A < 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)k

‖x− x0‖A, µ2(A) =
λmax

λmin
.

(2)

S = [λmin, λ̂] ∪ {λi : λi > λ̂}, rλ̂ = #{i : λi > λ̂},

pk(x) = Πi: λi>λ̂

(

1 − x

λi

) Tk−r
λ̂

(

λ̂+λmin−2x

λ̂−λmin

)

Tk−r
λ̂

(

λ̂+λmin

λ̂−λmin

) ⇒

‖x− xk‖A < 2





√

λ̂/λmin − 1
√

λ̂/λmin + 1





k−r
λ̂

‖x − x0‖A, k ≥ rλ̂.

The applications (1) and (2) of the Third main result suggest an idea. When
λmin and λmax are not comparable and the eigenvalues of A are uniformly dis-
tributed in the interval [λmin, λmax] (in this case all n steps of CG are required
in order to give a good approximation of x), replace the given system Ax = b

with an equivalent system Ãx̃ = b̃, Ã = E−1AE−T , x̃ = ET
x, b̃ = E−1

b,
det(E) 6= 0, where the matrix E is such that µ2(Ã) < µ2(A) and has one of the
following properties

• µ2(Ã) << µ2(A)

• Ã has much less distinct eigenvalues than A
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• Ã has the eigenvalues much more clustered (around 1) than A

Then apply CG to Ãx̃ = b̃.
If such matrix E can be found, then the pd matrix P = EET is said pre-

conditioner.
Note that E−T ÃET = P−1A, so one could look directly for a pd matrix P

such that the (real positive) eigenvalues of P−1A have the required properties.
For example, in order to obtain something of type P−1A ≈ I (which would result
in a very high increase of the CG rate of convergence) one could choose P as
an approximation A of A. We shall see that applying CG to Ãx̃ = b̃ requires,
for each step, a surplus of computation: solve a system of type Pz = hk.
This computation must not make CG slow, in other words P must be a lower
complexiy matrix than A. Also notice that E1 and E2, E1 6= E2, E1E

T
1 = E2E

T
2 ,

define matrices Ã1 = E−1
1 AE−T

1 and Ã2 = E−1
2 AE−T

2 , Ã1 6= Ã2, with the same
spectrum. For this reason one prefers to call preconditioner P instead of E.

A final remark. The vector x = A−1
b we are looking for is also the minimum

point of the function F (z) = 1
2z

T Az − z
T
b. Analogously, x̃ = Ã−1

b̃ is the

minimum point of the function F̃ (z) = 1
2z

T Ãz − z
T
b̃. The preconditioning

technique replaces the (sections of the) contours of F with the more spherical
(sections of the) contours of F̃ , and this results in a more efficient minimization
when using gradient-type methods.

Let us write the preconditioned version of the CG algorithm, well defined
once that A, b and the preconditioner P are given.

Let us apply CG to the system Ãx̃ = b̃:

x̃0 ∈ R
n, r̃0 = b̃ − Ãx̃0, d̃0 = r̃0.

For k = 0, 1, . . . , {
τ̃k =

r̃
T

k
r̃k

d̃T

k
Ãd̃k

x̃k+1 = x̃k + τ̃kd̃k

r̃k+1 = b̃ − Ãx̃k+1 = r̃k − τ̃kÃd̃k

β̃k =
r̃

T

k+1r̃k+1

r̃T

k
r̃k

d̃k+1 = r̃k+1 + β̃kd̃k

}

Note that the convergence rate of the sequence {x̃k} can be evaluated by using
the following results

‖x̃ − x̃k‖Ã < 2





√

µ2(Ã) − 1
√

µ2(Ã) + 1





k

‖x̃ − x̃0‖Ã, µ2(Ã) =
λ̃max

λ̃min

,

‖x̃− x̃k‖Ã < 2





√

˜̂
λ/λ̃min − 1

√

˜̂
λ/λ̃min + 1





k−r˜̂
λ

‖x̃− x̃0‖Ã, k ≥ r˜̂
λ

:

if µ2(Ã) << µ2(A) or Ã has most of the eigenvalues λ̃i in [λ̃min,
˜̂
λ] and

˜̂
λ/λ̃min <<

λmax/λmin, then x̃k → x̃ = ET
x with a greater rate than xk → x.
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Now we obtain each row of the preconditioned CG method. Define xk =
E−T

x̃k , rk = b − Axk, and dk = E−T
d̃k. Then

r̃k = b̃− Ãx̃k = E−1
b− E−1AE−T (ET

xk)
= E−1

rk = ET E−T E−1
rk = ET

hk,hk = P−1
rk,

r̃
T
k r̃k = r

T
k E−T E−1

rk = r
T
k hk,

d̃
T
k Ãd̃k = d̃

T
k E−1AE−T

d̃k = d
T
k Adk.

Thus

τ̃k =
r

T
k hk

dT
k Adk

. (row1)

Moreover, we have

x̃k+1 = ET
xk+1 = ET

xk + τ̃kET
dk ⇒

xk+1 = xk + τ̃kdk,
(row2)

r̃k+1 = E−1
rk+1 = E−1

rk − τ̃kE−1AE−T ET
dk ⇒

rk+1 = rk + τ̃kAdk,
(row3)

β̃k =
r

T
k+1hk+1

rT
k hk

(row4)

(row3.5: hk+1 = P−1
rk+1),

d̃k+1 = ET
dk+1 = ET

hk+1 + β̃kET
dk ⇒

dk+1 = hk+1 + β̃kdk.
(row5)

Finally, in order to initialize the algorithm, set:

x0 = E−T
x̃0, r0 = b− Ax0,

d0 = E−T
d̃0 = E−T

r̃0 = E−T ET
h0 = h0.

(row0)

Regarding the convergence rate of the sequence {xk}, generated by the al-
gorithm row0 and, for k = 0, 1, . . ., rows1, 2, 3, 3.5, 4, 5, note that

‖x̃k − x̃‖2
Ã

= (x̃k − x̃)T Ã(x̃k − x̃) = (ET
xk − ET

x)T E−1AE−T (ET
xk − ET

x)

= (xk − x)T A(xk − x) = ‖xk − x‖2
A.

Thus the bounds for ‖x̃− x̃k‖Ã obtained above, can be rewritten as follows

‖xk−x‖A

‖x0−x‖A
≤ 2

(√
µ2(Ã)−1√
µ2(Ã)+1

)k

, µ2(Ã) = λ̃max

λ̃min

,

‖xk−x‖A

‖x0−x‖A
≤ 2

(

√

˜̂
λ/λ̃min−1

√

˜̂
λ/λ̃min+1

)k−r˜̂
λ

, k ≥ r˜̂
λ
.

Circulant and τ matrices and best approximations

� Find the nearest circulant matrix (in the Frobenius norm) to a symmetric
4 × 4 Toeplitz matrix A = [t|i−j|]

4
i,j=1 and call it A. Write A in the particular

case t0 = 2, t1 = −1, t2 = t3 = 0. Extend to the n × n case, noting that the
first row of A can be computed in O(n) arithmetic operations.
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The matrix A is the circulant matrix whose first row is

[t0 (3t1 + t3)/4 t2 (3t1 + t3)/4].

So, in the particular case,

A =
3

4









8/3 −1 0 −1
−1 8/3 −1 0
0 −1 8/3 −1
−1 0 −1 8/3









.

� Find the nearest τ matrix (in the Frobenius norm) to a symmetric 4 × 4
Toeplitz matrix A = [t|i−j|]

4
i,j=1 and call it A. Write A in the particular case

t0 = 2, t1 = −1, t2 = t3 = 0. Extend to the n×n case, noting that the first row
of A can be computed in O(n) arithmetic operations.

The algebra τ . We recall that τ is the set of all polynomials in the Toeplitz
matrix X = [t|i−j|]

n
i,j=1, t1 = 1, ti = 0 i 6= 1. For n = 4 and n = 5 a basis for τ

is:

J1 = I, J2 =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









, J3 =









0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0









, J4 = J,

J1 = I, J2 =













0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0













, J3 =













0 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0













,

J4 =













0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 0 0













, J5 = J.

From these cases one easily deduces a basis for τ for n generic.
A n × n matrix A belongs to the space τ iff AX = XA iff its entries satisfy

the following cross-sum conditions:

ai,j−1 + ai,j+1 = ai−1,j + ai+1,j , 1 ≤ i, j ≤ n

where a0,j = an+1,j = ai,0 = ai,n+1 = 0, 1 ≤ i, j ≤ n.
Matrices from tau are diagonalized by the (unitary) sine transform, in fact

XS = S diag (2 cos
jπ

n + 1
, j = 1, . . . , n), S =

√

2

n + 1

[

sin
ijπ

n + 1

]n

i,j=1
.

It can be shown that the eigenvalues of A−1A cluster around 1 if A is the best
τ approximation (in the Frobenius norm) of A and A is a symmetric Toeplitz
matrix satisfying the hypothesis . . . (the same of the circulant case)
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� Given a 5 × 5 symmetric Toeplitz matrix A = [t|i−j|]
5
i,j=1, write it in the

form:

A = B +







0 · · · 0
... C

...
0 · · · 0







where B and C are τ matrices of order 5 and 3, respectively. Extend to the
n × n case.

How Richardson method arise

Perron theorem. Consider the following Cauchy problem

dx(t)

dt
= h(x(t)), t > 0, x(0) = x0

where h is a vectorial function, h : R
n → R

n, such that h(x̂) = 0, x̂ ∈ R
n, and

h ∈ C1 in a neighbourhood of x̂. Let Jh be the Jacobian matrix of h,

Jh =







∂h1

∂x1
· · · ∂h1

∂xn

...
...

∂hn

∂x1
· · · ∂hn

∂xn






.

If <(λ(Jh(x̂))) < 0, then

∃ δ > 0 | ‖x0 − x̂‖ < δ ⇒ x(t) → x̂, t → +∞

(δ = +∞ if <(λ(Jh(x))) < 0, ∀x ∈ R
n).

Example 1. Let f : R
n → R and x̂ be such that f(x̂) = min f(x). Notice

that in x̂ the gradient of f is null and the Hessian of f is pd (∇f(x̂) = 0, ∇2f(x̂)
pd). Set h = −∇f . Then the vector h(x̂) = −∇f(x̂) is null, and the matrix
Jh(x̂) = −∇2f(x̂) is negative definite. In particular, we have λ(Jh(x̂)) < 0. So,
if x0 ≈ x̂, then the solution x(t) of the problem

dx(t)

dt
= −∇f(x(t)), t > 0, x(0) = x0

tends to x̂ (as t → +∞). It follows that any Cauchy differential problem solver
can be used to minimize a function.

Example 2. Let A be a n × n real matrix and assume that <(λ(A)) > 0.
Set h(x) = b − Ax where b ∈ R

n. Note that h(A−1
b) = 0, h ∈ C1(Rn), and

the eigenvalues of Jh(A−1
b) = Jh(x) = −A have negative real parts. It follows

that x(t), the solution of

dx(t)

dt
= b − Ax(t), t > 0, x(0) = x0, (p)

tends to A−1
b (as t → +∞) for any choice of x0. Let us give a method to find

an approximation of such solution.
Fix a step ∆t > 0 and approximate the exact vectors x(ti), ti = i∆t, i =

1, 2, . . ., with the vectors η(ti) defined by

1
∆t [η(ti−1 + ∆t) − η(ti−1)] = b − Aη(ti−1),
η(ti) = η(ti−1 + ∆t), i = 1, 2, . . .
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Note that we are applying Euler method to the Cauchy differential problem
(p). We see that the method obtained, η(ti) = η(ti−1) + ∆t(b − Aη(ti−1)), is
the Richardson iterative method for solving linear systems Ax = b, which we
know to converge (for a sufficiently small positive ∆t) just under the assumption
<(λ(A)) > 0. Notice that such method is also called Richardson-Euler method,
and now we know the reason.

� Compare Example 2 with Example 1; more precisely, is the second example
a particular case of the first one ?
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