
August 21, 2009: I succeed in proving a thing I have believed:
√

2
n+1 [sin πij

n+1 ]

is unitary!

Consider the Fourier matrix of order 2(n + 1):

F2(n+1) =
1

√

2(n + 1)
[ωij

2(n+1)]
2(n+1)−1
i,j=0 , ω2(n+1) = e−i

2π

2(n+1) = e−i
π

n+1 .

Note that, if on =
√

2/(n + 1), then

F2(n+1) = 1
2 (C − iS),

cij = on cos ijπ
n+1 , sij = on sin ijπ

n+1 , i, j = 0, . . . , 2(n + 1) − 1.

Since S and C are real symmetric matrices, we have

I = F ∗
2(n+1)F2(n+1) =

1

2
(C + iS)

1

2
(C − iS) =

1

4
[(C2 + S2) + i(SC − CS)],

Q = F 2
2(n+1) =

1

2
(C − iS)

1

2
(C − iS) ==

1

4
[(C2 − S2) − i(CS + SC)],

being

Q =









1
J

1
J









, J n × n counter-identity.

As a consequence

C2 + S2 = 4I
C2 − S2 = 4Q
CS = SC = 0

⇒ S2 = 2(I − Q) = 2









0
I −J

0
−J I









.

Now let S11, S12, S22 be the n × n matrices defined by the equality

S =









0
S11 S12

0
ST

12 S22









,

that is,

(S11)rs = on sin rsπ
n+1 , (S12)rs = on sin r(n+1+s)π

n+1 ,

(S22)rs = on sin (n+1+r)(n+1+s)π
n+1 , 1 ≤ r, s ≤ n.

Observe that S11 and S22 are real symmetric and related by the identity S22 =
JS11J ; moreover S12 is persymmetric, i.e. S12J = JST

12. (Recall that S11 is the
(sine) transform diagonalizing the algebra τ of all polynomials in

X =

















1
1 1

1
. . .

. . . 1
1
















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).
Since

S2 =









0
S2

11 + S12S
T
12 S11S12 + S12S22

0
ST

12S11 + S22S
T
12 ST

12S12 + S2
22









,

we obtain four identities which in fact reduce to the following only two:

S2
11 + S12S

T
12 = 2I, S11S12J + S12JS11 = −2I. (1)

The sum of them yields 0 = S11(S11+S12J)+S12J(S11+S12J) = (S11+S12J)2,
but this can happen only if

S11 + S12J = 0, S12 = −S11J (2)

(a real symmetric matrix with all the eigenvalues equal to 0 must be null).
Now we are near the thesis. In fact, by (2) the first identity in (1) becomes

2I = S2
11 + (−S11J)(−S11J)T = 2S2

11, and so S2
11 = I .

Remark. From the equality F2(n+1) = 1
2 (C − iS) it follows that S =

i(F2(n+1) − F ∗
2(n+1)) = i(I − Q)F2(n+1). So, the sine transform of z n × 1,

S11z, can be computed via a discrete Fourier transform of order 2(n + 1):

i(I − Q)F2(n+1)









0
z

0
0









=









0
S11 −S11J

0
−JS11 JS11J

















0
z

0
0









=









0
S11z

0
−JS11z









.

� Investigate the four submatrices of C, perhaps they also can be expressed
in terms of only one and this one is a transform diagonalizing some algebra of
matrices . . .

The matrix

A =

[

3 2
1 2

]

does not satisfy the equation A∗A = AA∗, thus there is no unitary matrix
diagonalizing A. However, T−1AT is diagonal for a suitable T :

D−1AD =

[

3
√

2√
2 2

]

, D =

[ √
2 0

0 1

]

,

[

α −β
β α

][

3
√

2√
2 2

][

α β
−β α

]

=

[

1 0
0 4

]

, α =
1√
3
, β =

√

2

3
,

T =
1√
3

[ √
2 0

0 1

] [

1
√

2

−
√

2 1

]

=
1√
3

[ √
2 2

−
√

2 1

]

.

The condition number of T (in the 2-norm), µ2(T ) = ‖T‖2‖T−1‖2, is greater
than 1:

T ∗T =
1

3

[

4
√

2√
2 5

]

⇒ ‖T‖2 =
√

ρ(T ∗T ) =
√

2,

2



T−1 =

√
3

3
√

2

[

1 −2√
2

√
2

]

, (T−1)∗(T−1) =

[

1
2 0
0 1

]

⇒ ‖T−1‖2 = 1.

So, µ2(T ) =
√

2. Since ‖T‖∞ =
√

2+2√
3

, ‖T−1‖∞ =
√

3√
2
, we have µ∞(T ) = 1+

√
2.

Can a non-unitary matrix T have condition number equal to 1 ?

If yes, then, by the Bauer-Fike theorem, the eigenvalue problem would be
optimally conditioned for a class of matrices A larger than normal (the A diag-
onalized by T , µ2(T ) = 1).

A n × n matrix A is said reducible if there exists I ⊂ N = {1, 2, . . . , n},
I 6= ∅, N , such that aik = 0 for all i ∈ I, k ∈ N\I. Equivalently, A is reducible
if there exists a permutation matrix P such that

P T AP =

[

�n−i ∗
0 �i

]

, �k k × k matrices, i 6= 0, n

(i = |I|, n − i = |N\I|).
Set

Ci = {z ∈ C : |z − aii| <

n
∑

j=1,j 6=i

|aij |}.

It is well known that the subset ∪n
i=1Ci of C includes all the eigenvalues of A

(Gershgorin first theorem).
If A is not reducible then we can say something more:

If A is a irreducible n×n matrix and Ci are the inner parts of the Gershgorin

disks, then the set (∪n
i=1Ci) ∪ (∩n

i=1∂Ci) includes all the eigenvalues of A.

Proof. If λ is an eigenvalue of A, then
∑

j aijxj = λxi,
∑

j,j 6=i aijxj =
(λ − aii)xi,

|λ − aii||xi| ≤
∑

j,j 6=i

|aij ||xj |, ∀ i.

Set I = {j : |xj | = ‖x‖∞}. Assume I 6= N and let i ∈ I, k ∈ N\I such that
aik 6= 0. Then

|λ − aii||xi| ≤ ∑

j,j 6=i |aij ||xj |
=

∑

j∈I,j 6=i |aij ||xj | + |aik||xk | +
∑

j∈N\I,j 6=k |aij ||xj |
<

∑

j∈I,j 6=i |aij ||xi| + |aik||xi| +
∑

j∈N\I,j 6=k |aij ||xi|
=

∑

j,j 6=i |aij ||xi|,

|λ − aii| <
∑

j,j 6=i |aij |, i.e. λ ∈ Ci.
Assume now I = N , that is all entries of the eigenvector x have the same

absolute value. In this case:

|λ − aii||xi| ≤
∑

j,j 6=i

|aij ||xj | =
∑

j,j 6=i

|aij ||xi|, ∀ i,

|λ − aii| ≤
∑

j,j 6=i |aij |, ∀ i, therefore either λ ∈ Cs for some s or λ ∈ ∂Ci ∀ i.

� Use the result obtained to prove that any irreducible weakly diagonal
dominant n × n matrix A is non singular

� ρ(A) ≤ ‖A‖∞.
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By the Gershgorin first theorem, for any eigenvalue λ of A there exists i such
that |λ| = |λ − aii + aii| ≤ |λ − aii| + |aii| ≤

∑

j |aij | ≤ ‖A‖∞
� If A is irreducible and

∑

j |asj | < ‖A‖∞ for some s, then ρ(A) < ‖A‖∞.
Given an eigenvalue λ of A, the Gershgorin first theorem for irreducible

matrices implies either ∃ i | |λ| = |λ − aii + aii| ≤ |λ − aii| + |aii| <
∑

j |aij | ≤
‖A‖∞ or |λ| = |λ− aii + aii| ≤ |λ− aii|+ |aii| =

∑

j |aij |, ∀ i, also for i = s, for
which we know that

∑

j |asj | < ‖A‖∞
(Jacobi method is able to solve linear systems Ax = b with A weakly diag-

onal dominant because in this case the Jacobi iteration matrix J satisfies the
conditions ∃ s | ∑

j |[J ]sj | < ‖J‖∞ and ‖J‖∞ = 1, thus, by the result of the
Exercise, ρ(J) < 1).

Proof of the existence of the SVD of A ∈ C
n×n

A n× n ⇒ ∃U, σ, V , U, V unitary, σ = diag (σi) with σ1 ≥ σ2 . . . ≥ σn such
that A = UσV ∗.

Proof. Let v1, ‖v1‖2 = 1, be such that ‖A‖2 = ‖Av1‖2 and set u1 =
Av1/‖Av1‖2 (‖u1‖2 = 1 and Av1 = ‖A‖2u1). Let ũi, ṽi ∈ Cn be such that
U = [u1|ũ2| · · · |ũn] and V = [v1|ṽ2| · · · |ṽn] are unitary. Then

U∗AV =









u∗
1

ũ∗
2

· · ·
ũ∗

n









A[v1|ṽ2| · · · |ṽn] =









u∗
1

ũ∗
2

· · ·
ũ∗

n









[‖A‖2u1|Aṽ2| · · · |Aṽn] =

[ ‖A‖2 w∗

0 Â

]

,

‖A‖2 = ‖U∗AV ‖2 = supv 6=0

‖





‖A‖2 w∗

0 Â



v‖2

‖v‖2

≥
‖





‖A‖2 w∗

0 Â









‖A‖2

w



‖2

‖





‖A‖2

w



‖2

≥ ‖A‖2
2+‖w‖2

2√
‖A‖2

2+‖w‖2
2

=
√

‖A‖2
2 + ‖w‖2

2

⇒ w = 0 ⇒

‖A‖2 = ‖U∗AV ‖2 = sup
v 6=0

‖





‖A‖2 0∗

0 Â



v‖2

‖v‖2

≥ sup
v̂6=0

‖





‖A‖2 0∗

0 Â









0
v̂



‖2

‖





0
v̂



‖2

= ‖Â‖2

⇒ U∗AV =

[ ‖A‖2 0∗

0 Â

]

with Â such that ‖Â‖2 ≤ ‖A‖2.

The thesis follows if we assume it true for matrices of order n − 1.

On SVD: best rank-r approximation of A.

A n × n, A = UσV ∗ =
∑n

1 σiuiv
∗
i , Ar =

∑r
1 σiuiv

∗
i ⇒

min{‖A − B‖2 : rank(B) ≤ r} = ‖A − Ar‖2 = σr+1

4



Proof. Let B be a n × n matrix with complex entries whose rank is no more
than r and set L = {v : Bv = 0}. Observe that

‖A − B‖2 = sup
v

‖(A − B)v‖2

‖v‖2
≥ sup

v∈L

‖Av‖2

‖v‖2
.

Set M = Span {v1,v2, . . . ,vr+1}. Since dimM + dimL ≥ n + 1, there exists
z 6= 0, z ∈ M∩L,

‖A − B‖2 ≥ ‖Az‖2

‖z‖2
≥ σr+1

(first: z ∈ L; second: z ∈ M ⇒ z =
∑r+1

1 αivi ⇒ Az =
∑r+1

1 αiσiui).
Moreover,

‖A − Ar‖2 = ‖U diag (0, . . . , 0, σr+1, . . . , σn)V ∗‖2 = ‖diag (. . .)‖2 = σr+1

and rank(Ar) ≤ r.
Remark. We also have:

min{‖A − B‖F : rank(B) ≤ r} = ‖A − Ar‖F =

√

√

√

√

n
∑

r+1

σ2
j

In functional analysis for compact operators . . . (linear banded operators on
Hilbert spaces) use * as a definition of singular values, approximate an object
with something of finite dimension

On SVD: kernel and image of A.

A n × n, A = UσV ∗, σ1 ≥ . . . ≥ σk > 0 = σk+1 = . . . = σn ⇒
(1) {x ∈ Cn : Ax = 0} = Span {vk+1, . . . ,vn}
(2) {Ax : x ∈ C

n} = Span {u1, . . . ,uk}
(3) rank(A) = k = #{σi : σi > 0}

Proof. (1): Ax = 0 iff σV ∗x = 0 iff SkV ∗
k x = 0,

Sk =







σ1

. . .

σk






, Vk =





v∗
1

· · ·
v∗

k



 ,

iff V ∗
k x = 0 iff x is orthogonal to v1, . . . ,vk iff x is a linear combination of

vk+1, . . . ,vn.
(2):

Ax = [Uk �]

[

Sk 0
0 0

][

V ∗
k

�

]

= Uk(SkV ∗
k x), Uk = [u1 · · ·uk]

⇒ Ax ∈ Span {u1, . . . ,uk} ⇒ {Ax : x ∈ Cn} ⊂ Span {u1, . . . ,uk}. Now let us
show that for any z ∈ Ck there exists x ∈ Cn, Ukz = Ax:

∃x |Ax = Ukz iff
∃x |UkSkV ∗

k x = Ukz iff
∃x |SkV ∗

k x = z iff
∃x |V ∗

k x = S−1
k z.
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Since rank(V ∗
k ) = k, the latter system admits solution.

On SVD: exercises

�

A =
1

81





−65 76 104
76 −206 8
104 8 109



 = UDU∗,

U =
1

9





−4 4 7
8 1 4
1 8 −4



 , D =





−3
2

−1



 .

Write the SVD of A.
� λi eigenvalues of A ⇒ σn ≤ |λi| ≤ σ1.
(Ax = λx, A = UσV ∗ ⇒ y∗σ2y = x∗A∗Ax = |λ|2‖x‖2

2 . . .).

On SVD: how to compute the rank of a matrix, Gram-Schmidt vs SVD

Let a1, a2, . . . , am, . . . be a sequence of non null n× 1 vectors and set Am =
[a1 a2 · · · am], m = 1, 2, . . .. There follows an algorithm which computes ma-
trices Qm = [q1 q2 · · · qm], n × m, and Rm, upper triangular m × m, such
that

(1) Am = QmRm, m = 1, 2, . . .

(2) {q1} ∪ {qk : 2 ≤ k ≤ m, ak /∈ Span {a1, . . . , ak−1}} is an orthonormal
basis of the space Span {a1, . . . , am}

(3) if ak, 2 ≤ k ≤ m is linearly dependent from a1, . . . , ak−1, then the k-row
of Rm is null and qk can be chosen arbitrarily (for instance, qk = 0 or
such that Q∗

mQm = I)

(4) The rank of Am is the number of non null rows of Rm

Set q̂1 = a1 and q1 = q̂1/‖q̂1‖2. Then a1 = ‖q̂1‖2q1, i.e.

[

a1

]

=
[

q1

]

[‖q̂1‖2].

Set q̂2 = a2 − r12q1, r12 such that q∗
1q̂2 = 0 (r12 = q∗

1a2) and, if q̂2 6= 0,
q2 = q̂2/‖q̂2‖2. Then a2 = r12q1 + ‖q̂2‖2q2, i.e.



 a1 a2



 =



 q1 q2





[

‖q̂1‖2 r12

0 ‖q̂2‖2

]

.

Else, if q̂2 = 0, or, equivalently, a2 = r12q1 ∈ Span {a1}, we can write



 a1 a2



 =



 q1 q2





[

‖q̂1‖2 r12

0 0

]

, q2 := q̂2 = 0 or arbitrary.

Assume that the first case occurs. Set q̂3 = a3−r13q1−r23q2, r13, r23 such that
q∗

1q̂3 = q∗
2q̂3 = 0 (r13 = q∗

1a3, r23 = q∗
2a3) and assume q̂3 = 0, or, equivalently,

6



a3 = r13q1 + r23q2 ∈ Span {a1, a2}. Then we can write:


 a1 a2 a3



 =



 q1 q2 q3









‖q̂1‖2 r12 r13

0 ‖q̂2‖2 r23

0 0 0



 ,

q3 := q̂3 = 0 or arbitrary.

Set q̂4 = a4 − r14q1 − r24q2, r14, r24 such that q∗
1q̂4 = q∗

2q̂4 = 0 (r14 =
q∗

1a4, r24 = q∗
2a4) and assume q̂4 = 0, or, equivalently, a4 = r14q1 + r24q2 ∈

Span {a1, a2}. Then we can write:



 a1 a2 a3 a4



 =



 q1 q2 q3 q4













‖q̂1‖2 r12 r13 r14

0 ‖q̂2‖2 r23 r24

0 0 0 0
0 0 0 0









,

q3 := q̂3 = 0, q4 := q̂4 = 0 or arbitrary.

Set q̂5 = a5 − r15q1 − r25q2, r15, r25 such that q∗
1q̂5 = q∗

2q̂5 = 0 (r15 = q∗
1a5,

r25 = q∗
2a5) and assume q̂5 6= 0. Set q5 = q̂5/‖q̂5‖2. Then a5 = r15q1+r25q2+

‖q̂5‖2q5, i.e.



 a1 a2 a3 a4 a5



 =



 q1 q2 q3 q4 q5

















‖q̂1‖2 r12 r13 r14 r15

0 ‖q̂2‖2 r23 r24 r25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 ‖q̂5‖2













,

q3,q4 null or arbitrary.

. . .

Remark. Since the calculator uses finite arithmetic, the check if q̂k, k ≥ 2,
is zero or nonzero must be replaced with something of type: ‖q̂k‖ is less than ε
or not? Moreover, take into account that even a very little perturbation in one
entry of a triangular matrix can change the value of its rank (see the following
example). These facts imply that the (Gram-Schmidt) algorithm illustrated
above may generate a numeric rank of Am which is different from the rank of
Am.

Example. Let R be the n × n upper triangular matrix

R =

















1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . . 1
. . .

...
...

. . .
. . . −1

0 · · · · · · 0 1

















.

The rank of R is n, but if the 0 in the (n, 1) entry is replaced with −22−n (which
for large n is a very little perturbation), then the rank of R becomes n−1. The
SVD of R predicts this observation. In fact, the singular value σn−1 of R for
n = 5, 10, 15 has more or less the same value, 1.5, whereas the smallest singular
value, σn, seems to tend to zero:

n = 5 : σ5 ≈ 1

10
, n = 10 : σ10 ≈ 1

100
, n = 15 : σ15 ≈ 1

10000
.
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So, by examining the singular values of R we see that even if det(R) = 1 (far
from zero) for all n, greater is n, smaller is the distance of R from a singular
matrix. (Note that R is not normal, in fact µ2(R) = σ1/σn ≈ 30, 2000, 105

> 1 = max |λi|/ min |λi|).
It is known that small perturbations on the entries of A imply at most

small perturbations on U, σ, V , A = UσV ∗ (SVD problem is well conditioned).
It follows that the algorithm for the computation of the SVD of A can give
accurate approximations of U, σ, V . Having an accurate approximation of σ we
can evaluate precisely the rank of A; we can even quantify how much A is far
from having a smaller rank. Thus it is preferable to compute the rank of a
matrix via SVD, instead via Gram-Schmidt.
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