A new matrix algebra ?

Let $T_i(x)$ be the Chebycev polynomials

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_k(x) = 2T_{k-1}(x)x - T_{k-2}(x)$, $k = 2, 3, \dots$

and recall their alternative representation in [-1, 1]

$$T_k(x) = \cos(k \arccos x), \quad x \in [-1, 1].$$

Some of them: $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$, $T_4(x) = 8x^4 - 8x^2 + 1$, ...

Let X be a $n \times n$ matrix with the property that the set \mathcal{L} of all polynomials in X has dimension n (i.e. maximum dimension, since by Cayley-Hamilton theorem if $p_X(\lambda)$ is the characteristic polynomial of X then $p_X(X) = 0$). Usually an X with such property is called non-derogatory. Consider the Chebycev basis of \mathcal{L} :

$$J_1 = T_0(X) = I, \quad J_2 = T_1(X) = X,$$

 $J_{k+1} = T_k(X) = 2T_{k-1}(X)X - T_{k-2}(X), \quad k = 2, 3, \dots, n-1.$

We are interested in cases where $A = \sum_k a_k J_k$ means $\mathbf{v}^T A = [a_1 \ a_2 \ \cdots \ a_n]$ for some vector \mathbf{v} .

For instance, choose

$$X = \left[\begin{array}{ccc} 0 & 1 & 0 \\ a & b & c \\ 0 & d & e \end{array} \right].$$

Then

$$J_{1} = I, \ J_{2} = X = \begin{bmatrix} 0 & 1 & 0 \\ a & b & c \\ 0 & d & e \end{bmatrix},$$

$$J_{3} = T_{2}(X) = 2T_{1}(X)X - T_{0}(X) = 2X^{2} - I$$

$$= 2 \begin{bmatrix} a & b & c \\ ba & a + b^{2} + cd & bc + ce \\ da & db + ed & dc + e^{2} \end{bmatrix} - I.$$

Note that the first row of J_3 is $[2a-1\ 2b\ 2c]$ and thus is equal to $[0\ 0\ 1]$ iff $a=\frac{1}{2},\,b=0,\,c=\frac{1}{2}.$ So, for these particular choices of a,b,c we have $\mathbf{e}_1^TJ_k=\mathbf{e}_k^T,\,k=1,2,3,$ i.e. $A=\sum_{k=1}^3 a_kJ_k$ means $\mathbf{e}_1^TA=[a_1\ a_2\ a_3].$ Moreover, since $a=\frac{1}{2},\,b=0,\,c=\frac{1}{2}$ imply

$$J_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & d & e \\ d & 2ed & d - 1 + 2e^2 \end{array} \right],$$

we can say that the counter-identity matrix J is in \mathcal{L} if d = 1 and e = 0. We rewrite the J_k in this case:

$$J_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ J_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}, \ J_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Note that the eigenvalues of $J_2 = X$ must be real and distinct (see the theory on eigenstructure of tridiagonal matrices). It is easy to obtain them: -1, 0, 1.

Let us generalize this example. Let X be a generic non-derogatory tridiagonal matrix with $\mathbf{e}_2^T = [0 \ 1 \ 0 \ \cdots \ 0]$ as first row. Then the following result holds:

If $\mathbf{e}_1^T J_s = \mathbf{e}_s^T$, $s = 1, \dots, k$, then $\mathbf{e}_1^T J_{k+1} = \mathbf{e}_{k+1}^T$ iff the k-th row of X is $[\cdots 0 \frac{1}{2} 0 \frac{1}{2} 0 \cdots]$ In fact.

$$\mathbf{e}_1^T J_{k+1} = \mathbf{e}_1^T T_k(X) = \mathbf{e}_1^T (2T_{k-1}(X)X - T_{k-2}(X)) = \mathbf{e}_1^T (2J_k X - J_{k-1})$$
$$= 2\mathbf{e}_k^T X - \mathbf{e}_{k-1}^T = [\cdots \ 0 \ 2x_{kk-1} - 1 \ 2x_{kk} \ 2x_{kk+1} \ 0 \ \cdots].$$

So, for

$$X = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & & & \\ & \ddots & & \ddots & & \\ & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & a & b \end{bmatrix}$$

we have $\mathbf{e}_1^T J_k = \mathbf{e}_k^T$, k = 1, ..., n, i.e. $A = \sum_{k=1}^n a_k J_k$ means $\mathbf{e}_1^T A = [a_1 \ a_2 \ ... \ a_n]$. Moreover, J is a polynomial in X or, equivalently, $J_n = J$ iff a = 1, b = 0 (proof: use the identity JX = XJ).

Now assume a = 1, b = 0. In this case the J_k have the form:

$$J_k = \begin{bmatrix} & & & 1 & & & & \\ & & \frac{1}{2} & 0 & \frac{1}{2} & & & & \\ & \ddots & \ddots & \frac{1}{2} & \ddots & \ddots & & \\ \frac{1}{2} & 0 & \ddots & & \ddots & \ddots & \frac{1}{2} & & \\ & \frac{1}{2} & & & \frac{1}{2} & 0 & \frac{1}{2} & & \\ & & \ddots & & & 0 & \frac{1}{2} & & \\ & & & \ddots & & & 1 & & \end{bmatrix}.$$

Moreover, the eigenvalues of $J_2 = X$ must be real and distinct (see the theory on eigenstructure of tridiagonal matrices). By using this fact one can obtain them in explicit form. They are $\cos(j\pi/(n-1))$, $j=0,\ldots,n-1$.

Let us see why. Since $T_{n-1}(X) = J_n = J$ we have the equality $T_{n-1}(X)^2 = I$. Now, if $X\mathbf{v} = \lambda \mathbf{v}$ then $\mathbf{v} = T_{n-1}(X)^2 \mathbf{v} = T_{n-1}(\lambda)^2 \mathbf{v}$, in other words the eigenvalues λ of X must be zeros of the algebraic equation $T_{n-1}(x)^2 = 1$. For $x \in [-1,1]$ this equation becomes $\cos^2((n-1)\arccos x) = 1$ whose zeros are: $x = \cos(2k\pi/(n-1))$ and $x = \cos((2k+1)\pi/(n-1))$, $k \in \mathbb{Z}$.

Eigenvectors of X? Look for x_i such that

$$x_2 = \cos \frac{j\pi}{n-1} x_1$$

$$\frac{1}{2}(x_1 + x_3) = \cos \frac{j\pi}{n-1} x_2$$
...
$$\frac{1}{2}(x_{n-2} + x_n) = \cos \frac{j\pi}{n-1} x_{n-1}$$

$$x_{n-1} = \cos \frac{j\pi}{n-1} x_n$$

The eigenvectors of 1 and -1 are $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & -1 & 1 & \cdots & (-1)^{n-1} \end{bmatrix}$,

respectively. For n = 3 and n = 4:

$$\begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \frac{1}{2} & -\frac{1}{2} & -1 \\ 1 & -\frac{1}{2} & -\frac{1}{2} & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \frac{1}{2} & -\frac{1}{2} & -1 \\ 1 & -\frac{1}{2} & -\frac{1}{2} & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{2} \\ -\frac{1}{2} \\ -1 \end{bmatrix}$$

For a generic n?

How Chebycev polynomials arise

Set $y(x) = x^n - p_{n-1}(x)$ where p_{n-1} is the unique degree-(n-1) polynomial solving the minimum problem $\min_{p \in \mathbb{P}_{n-1}} \max_{[-1,1]} |x^n - p(x)|$. If $\mu = \max_{[-1,1]} |y(x)|$ then y(x) assumes the values μ and $-\mu$ alternately in n+1 successive points $\{x_i\}_{i=0}^n$ of [-1,1], $-1 \le x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n \le 1$ (see min-max approximation theory []). Obviously $y'(x_i) = 0$, $i = 1, \ldots, n-1$, whereas $y'(x_0)y'(x_n) \ne 0$ since y'(x) is a polynomial of degree n-1. Thus $x_0 = -1$, $x_n = 1$. Consider now the function $y(x)^2 - \mu^2$. It is zero in all the x_i and its derivative, 2y(x)y'(x), is zero in $x_1, x_2, \ldots, x_{n-1}$. It follows that $y(x)^2 - \mu^2 = c(x^2 - 1)y'(x)^2$ for some real constant c. Noting that the coefficient of x^{2n} is on the left 1 and on the right cn^2 we conclude that

$$\frac{n^2}{1-x^2} = \frac{y'(x)^2}{\mu^2 - y(x)^2}, \quad \frac{n}{\sqrt{1-x^2}} = \pm \frac{y'(x)}{\sqrt{\mu^2 - y(x)^2}},$$

 $y(x) = \mu \cos(n \arccos x + c)$. Finally, $y(1) = \pm \mu \Rightarrow c = k\pi \Rightarrow$

$$y(x) = x^n - p_{n-1}(x) = \pm \mu \cos(n \arccos x) =: \pm \mu T_n(x).$$

Properties of Chebycev polynomials

- $T_k(\lambda)|_{[-1,1]} = \cos(k \arccos \lambda)$
- $T_k(\lambda) = \frac{1}{2}[(\lambda \sqrt{\lambda^2 1})^k + (\lambda + \sqrt{\lambda^2 1})^k]$
- $|T_k(\lambda)| < 1, \lambda \in [-1, 1]$
- $T_k(\cos\frac{i\pi}{k}) = (-1)^i, i = 0, 1, \dots, k$
- $T_k(\cos\frac{(2j+1)\pi}{2k}) = 0, j = 0, 1, \dots, k-1$
- $T_k(\lambda) \geq \lambda^k, \lambda \geq 1$
- $T_k(\frac{\lambda+1}{\lambda-1}) = \frac{1}{2} \left[\left(\frac{\sqrt{\lambda}+1}{\sqrt{\lambda}-1} \right)^k + \left(\frac{\sqrt{\lambda}-1}{\sqrt{\lambda}+1} \right)^k \right], \ \lambda > 1$
- $T_k(\frac{\lambda+1}{\lambda-1}) > \frac{1}{2}(\frac{\sqrt{\lambda}+1}{\sqrt{\lambda}-1})^k, \ \lambda > 1$
- $0 < a < b \text{ and } t_k(\lambda) = T_k((b+a-2\lambda)/(b-a))/T_k((b+a)/(b-a))$ imply

$$\min \max_{[a,b]} |p_k(\lambda)| = \max_{[a,b]} |t_k(\lambda)| = \frac{1}{T_k((b+a)/(b-a))}$$

where the min is taken on all polynomials of type $a_k \lambda^k + \ldots + a_1 \lambda + 1$, $a_k \neq 0$

- $T_{k+j}(\lambda) + T_{|k-j|}(\lambda) = 2T_k(\lambda)T_j(\lambda)$
- $\int_{-1}^{1} \frac{1}{\sqrt{1-\lambda^2}} T_k(\lambda) T_j(\lambda) d\lambda = \pi, \pi/2, 0, j = k = 0, j = k > 0, j \neq k$

 $Chebycev\ as\ characteristic\ polynomials$

Write a semi-infinite matrix $X = [x_{ij}]_{i,j=1}^{+\infty}$ with the property: for all n the characteristic polynomial $p_n(\lambda)$ of the upper left $n \times n$ submatrix of X (X_n) is $T_n^*(\lambda) = T_n(\lambda)/(2^{n-1})$ where $T_n(\lambda)$ is the degree n Chebycev polynomial defined by ().

For the following choices of X,

$$X = \begin{bmatrix} 0 & 1/\sqrt{2} & 0 & 0 & \cdots \\ 1/\sqrt{2} & 0 & 1/2 & 0 & \cdots \\ 0 & 1/2 & 0 & \ddots & \\ 0 & 0 & \ddots & \ddots & \\ \vdots & \vdots & & & \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 1/2 & 0 & 1/2 & 0 & \cdots \\ 0 & 1/2 & 0 & \ddots & \\ 0 & 0 & \ddots & \ddots & \\ \vdots & \vdots & & & \end{bmatrix},$$

$$X = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 1/2 & 0 & 1 & 0 & \cdots \\ 0 & 1/4 & 0 & \cdots \\ 0 & 0 & \ddots & \ddots & \\ \vdots & \vdots & & & \end{bmatrix},$$

we have $p_0(\lambda) = 1$, $p_1(\lambda) = \lambda = T_1(\lambda)$, $p_2(\lambda) = \lambda^2 - \frac{1}{2} = \frac{1}{2}(2\lambda^2 - 1) = \frac{1}{2}T_2(\lambda)$, $p_3(\lambda) = \lambda(\lambda^2 - \frac{1}{2}) - \frac{1}{4}\lambda = \lambda^3 - \frac{3}{4}\lambda = \frac{1}{4}(4\lambda^3 - 3\lambda) = \frac{1}{4}T_3(\lambda)$, ..., $p_n(\lambda) = \lambda p_{n-1}(\lambda) - \frac{1}{4}p_{n-2}(\lambda) = \frac{1}{2^{n-1}}T_n(\lambda)$, ...

Proof: By induction:

$$\begin{array}{rcl} \frac{1}{2^{n-1}}T_n(\lambda) & = & \frac{1}{2^{n-1}}(2T_{n-1}(\lambda)\lambda - T_{n-2}(\lambda)) = \frac{1}{2^{n-1}}(2\cdot 2^{n-2}p_{n-1}(\lambda)\lambda - 2^{n-3}p_{n-2}(\lambda)) \\ & = & p_{n-1}(\lambda)\lambda - 2^{-2}p_{n-2}(\lambda) = p_n(\lambda) \end{array}$$

Notice that the third choice of X implies $\mathbf{e}_1^T p_k(X_n) = \mathbf{e}_{k+1}^T$, $k = 0, \dots, n-1$... for all three choices of X_n we refer to \mathcal{L} , the set of all polynomials in X_n , as Chebycev algebras ... Each X is equal to DXD^{-1} for another X; since $p(DXD^{-1}) = Dp(X)D^{-1}$ from the eigenvectors \mathbf{v} of one algebra we have easily the eigenvectors of the other algebras, they are $D\mathbf{v}$

SVD of $A \in \mathbb{C}^{n \times n}$ and how to compute the singular values of $A \in \mathbb{R}^{n \times n}$ If A is a $n \times n$ normal matrix then there exist matrices U, D, U unitary, $D = \operatorname{diag}(\lambda_i)$ with $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n| \geq 0$, such that $A = UDU^*$. It follows that A admits the following singular value decomposition

$$A = U \operatorname{diag}(|\lambda_i|) \operatorname{diag}(e^{\mathbf{i} \operatorname{arg}(\lambda_i)}) U^* = U \sigma V^*,$$

$$\sigma = \operatorname{diag}(\sigma_i), \ \sigma_i = |\lambda_i|, \ V = U \operatorname{diag}(e^{-\mathbf{i} \operatorname{arg}(\lambda_i)}).$$

However, any $n \times n$ matrix A admits a singular value decomposition, i.e. there exist unitary matrices U, V and $\sigma = \operatorname{diag}(\sigma_i)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$ such that $A = U\sigma V^*$. The σ_i are the singular values of A.

Example. For n = 1 we have $a_{11} = 1 \cdot |a_{11}| (e^{-i \arg(a_{11})})^*$.

Proof ...

By knowing the SVD of A we can do many things. In particular we have

- $(0) |\det(A)| = \prod_{i=1}^{n} \sigma_i$
- (1) $\sigma_{r+1} = \|A \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^*\|_2 = \min\{\|A B\|_2 : \operatorname{rank}(B) \le r\}$

(2)
$$\sqrt{\sum_{j=r+1}^{n} \sigma_j^2} = \|A - \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^*\|_F = \min\{\|A - B\|_F : \operatorname{rank}(B) \le r\}$$

- (3) $\sigma_n = \|A \sum_{i=1}^{n-1} \sigma_i \mathbf{u}_i \mathbf{v}_i^*\|_2 = \min\{\|A B\|_2 : \operatorname{rank}(B) \le n 1\} = \min\{\|A B\|_2 : \det(B) = 0\}$
- (4) $||A||_2 = \sigma_1$, $||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$
- (5) $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$ are the eigenvalues of A^*A
- (6) $\det(A) \neq 0 \Rightarrow ||A^{-1}||_2 = 1/\sigma_n, \ \mu_2(A) = \sigma_1/\sigma_n, \ \mu_2(A^*A) = \mu_2(A)^2$
- (7) If λ_i are the eigenvalues of A, then $\sigma_n \leq |\lambda_i| \leq \sigma_1$. If A is normal then $\sigma_i = |\lambda_i|$
- (8) If $\sigma_1 \geq \ldots \geq \sigma_k > 0 = \sigma_{k+1} = \ldots = \sigma_n$ then the kernel and the image of A can be represented as follows: $\{\mathbf{x} \in \mathbb{C}^n : A\mathbf{x} = \mathbf{0}\} = \operatorname{Span}\{\mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}, \{A\mathbf{x} : \mathbf{x} \in \mathbb{C}^n\} = \operatorname{Span}\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$

How to compute U, σ, V such that $A = U\sigma V^*$? An algorithm that works for A real (note that in this case U, V can be chosen real unitary (orthonormal)) consists in the following two steps (1) and (2):

Step (1). Transform A into a bidiagonal matrix

by using orthonormal transforms Q and Z.

For
$$n = 1$$
: $1 \cdot a_{11} \cdot 1 = a_{11}$.
For $n = 2$, if $\alpha = a_{11}/\sqrt{a_{11}^2 + a_{21}^2}$, $\beta = -a_{21}/\sqrt{a_{11}^2 + a_{21}^2}$, then

$$\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha a_{11} - \beta a_{21} & \alpha a_{12} - \beta a_{22} \\ \beta a_{11} + \alpha a_{21} & \beta a_{12} + \alpha a_{22} \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{a_{11}^2 + a_{21}^2} & \frac{a_{11}a_{12} + a_{21}a_{22}}{\sqrt{a_{11}^2 + a_{21}^2}} \\ 0 & \frac{-a_{21}a_{12} + a_{11}a_{22}}{\sqrt{a_{11}^2 + a_{21}^2}} \end{bmatrix}.$$

For n > 2 ... example, n = 4:

$$S_{13}^{T}(S_{12}^{T}A) = \begin{bmatrix} \Box & \Box & \Box & \Box \\ 0 & \Box & \Box & \Box \\$$

Thus B = QAZ, $Q = S_{34}^{\prime T} S_{24}^{\prime T} S_{23}^{\prime T} S_{14}^{T} S_{13}^{T} S_{12}^{T}$, $Z = S_{23} S_{24} S_{34}$ ($Q^{T} = Q^{-1}$, $Z^{T} = Z^{-1}$). Note that the Givens transformations (plane rotations)

$$S_{ij} = S_{ji} = \begin{bmatrix} I & & & & \\ & \alpha & & \beta & \\ & & I & & \\ & -\beta & & \alpha & \\ & & & & I \end{bmatrix}, \quad \alpha^2 + \beta^2 = 1,$$

used to liquidate the not-on-bidiagonal-part entries are chosen so that they leave unchanged the previously posed zeros. Moreover, S_{ij} is used to liquidate (i,j), i > j, when multiplying on the left, and S_{i+1j} is used to liquidate (i,j), i < j-1, when multiplying on the right.

Exercise (Elisa Sallicandro). Transform the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

into a bidiagonal matrix B.

Step (2). Set $A_1 := B$ and define a sequence of matrices $\{A_j\}_{j=1}^{+\infty}$ via the rule: for $k = 2, 4, 6, \ldots$

$$A_{k-1} = \begin{bmatrix} a_1^{k-1} & b_1^{k-1} & & & \\ 0 & a_2^{k-1} & \ddots & & \\ & & \ddots & b_{n-1}^{k-1} \\ & & & a_n^{k-1} \end{bmatrix} \rightarrow A_k = A_{k-1} Z_{k-1} = \begin{bmatrix} a_1^k & & & \\ b_1^k & a_2^k & & & \\ & \ddots & \ddots & & \\ & & b_{n-1}^k & a_n^k \end{bmatrix}$$

 (Z_{k-1}) is the product of the n-1 plane rotations used to liquidate the entries (i, i+1) of A_{k-1} ,

$$A_k \to A_{k+1} = Q_k A_k = \begin{bmatrix} a_1^{k+1} & b_1^{k+1} & & \\ 0 & a_2^{k+1} & \ddots & \\ & & \ddots & b_{n-1}^{k+1} \\ & & & a_n^{k+1} \end{bmatrix}$$

 $(Q_k$ is the product of the n-1 plane rotations used to liquidate the entries (i+1,i) of A_k).

Then $b_i^j \to 0$ if $j \to +\infty$ (i = 1, ..., n - 1). (Question: one should also prove that the a_i^j , i = 1, ..., n, have non-negative limit)

Proof: Let us show that $b_{n-1}^j \to 0$ if $j \to +\infty$.

The euclidean norm of the *i*-th column of A_k is equal to the euclidean norm of the *i*-th column of A_{k+1} . Thus

$$a_1(k)^2 + b_1(k)^2 = a_1(k+1)^2$$

$$b_2(k)^2 + a_2(k)^2 = a_2(k+1)^2 + b_1(k+1)^2$$
...
$$a_n(k)^2 = a_n(k+1)^2 + b_{n-1}(k+1)^2$$

Moreover, the euclidean norm of the n-th row of A_{k-1} is equal to the euclidean norm of the n-row of A_k . Thus

$$||B||_F^2 = ||A_{k+1}||_F^2 \ge a_n(k+1)^2 = a_n(k-1)^2 - b_{n-1}(k+1)^2 - b_{n-1}(k)^2$$
$$= \dots = a_n(1)^2 - \sum_{j=2}^{k+1} b_{n-1}(j)^2 \ge 0.$$

But this implies $\sum_{j=1}^{+\infty} b_{n-1}(j)^2 < +\infty$, and we have the thesis.

 $(b_{n-2}^j \to 0)$: The euclidean norm of the (n-1)-th row of A_{k-1} is equal to the euclidean norm of the (n-1)-th row of A_k . Thus

$$a_{n-1}(k+1)^2 = a_{n-1}(1)^2 + \sum_{j=1}^k b_{n-1}(j)^2 - \sum_{j=2}^{k+1} b_{n-2}(j)^2$$

$$\Rightarrow \sum_{j=1}^{+\infty} b_{n-2}(j)^2 < +\infty \Rightarrow b_{n-2}(j) \to 0 \text{ if } j \to \infty. \ldots$$

Step (2) for n = 2 (convergence)

$$A_{k-1} = \begin{bmatrix} a_1^{k-1} & b_1^{k-1} \\ 0 & a_2^{k-1} \end{bmatrix} \rightarrow A_k = A_{k-1} Z_{k-1} = \begin{bmatrix} a_1^k & 0 \\ b_1^k & a_2^k \end{bmatrix} \rightarrow A_{k+1} = Q_k A_k = \begin{bmatrix} a_1^{k+1} & b_1^{k+1} \\ 0 & a_2^{k+1} \end{bmatrix},$$

$$\|A_k \mathbf{e}_i\|_2 = \|A_{k+1} \mathbf{e}_i\|_2 \Rightarrow$$

$$a_1(k)^2 + b_1(k)^2 = a_1(k+1)^2,$$

$$a_2(k)^2 = b_1(k+1)^2 + a_2(k+1)^2,$$

$$\|A_{k-1}^T \mathbf{e}_2\|_2 = \|A_k^T \mathbf{e}_2\|_2 \Rightarrow$$

$$a_2(k-1)^2 = b_1(k)^2 + a_2(k)^2.$$

Thus

$$||B||_F^2 = ||A_{k+1}||_F^2 \ge a_2(k+1)^2 = a_2(k-1)^2 - b_1(k)^2 - b_1(k+1)^2$$

= $a_2(1)^2 - \sum_{j=2}^{k+1} b_1(j)^2 \Rightarrow b_1(j) \to 0.$

Step (2) for n=2 (details and example). Given an upper triangular (bidiagonal) 2×2 matrix

$$A = \left[\begin{array}{cc} a_1 & b_1 \\ 0 & a_2 \end{array} \right],$$

write an algorithm to compute its singular values σ_1, σ_2 . (Notice however that σ_1, σ_2 are simply the squaring roots of the eigenvalues of

$$\begin{bmatrix} \overline{a_1} & 0 \\ \overline{b_1} & \overline{a_2} \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ 0 & a_2 \end{bmatrix} = \begin{bmatrix} |a_1|^2 & \overline{a_1}b_1 \\ \overline{b_1}a_1 & |b_1|^2 + |a_2|^2 \end{bmatrix}, i.e.$$

$$\sqrt{\frac{1}{2}(|a_1|^2 + |a_2|^2 + |b_1|^2 \pm \sqrt{(|a_1|^2 + |a_2|^2 + |b_1|^2)^2 - 4|a_1|^2|a_2|^2)}}$$

).

Solution. Set $A_1 = A$ and, for k = 2, 4, ...

$$Z_{k-1} = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}, \quad \alpha = \frac{a_1}{\sqrt{a_1^2 + b_1^2}}, \quad \beta = \frac{-b_1}{\sqrt{a_1^2 + b_1^2}}.$$

Then

$$A_k = A_{k-1} Z_{k-1} = \left[\begin{array}{cc} a_1 \alpha - b_1 \beta & a_1 \beta + b_1 \alpha \\ -a_2 \beta & a_2 \alpha \end{array} \right] = \left[\begin{array}{cc} \sqrt{a_1^2 + b_1^2} & 0 \\ \frac{a_2 b_1}{\sqrt{a_1^2 + b_1^2}} & \frac{a_2 a_1}{\sqrt{a_1^2 + b_1^2}} \end{array} \right].$$

Now set

$$Q_k = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}, \quad \alpha = \frac{\sqrt{a_1^2 + b_1^2}}{\sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}}, \quad \beta = \frac{\frac{-a_2 b_1}{\sqrt{a_1^2 + b_1^2}}}{\sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}}.$$

Then

$$\begin{array}{lcl} A_{k+1} & = & Q_k A_k = Q_k A_{k-1} Z_{k-1} \\ & = & \begin{bmatrix} \alpha \sqrt{a_1^2 + b_1^2} - \beta \frac{a_2 b_1}{\sqrt{a_1^2 + b_1^2}} & -\beta \frac{a_2 a_1}{\sqrt{a_1^2 + b_1^2}} \\ \beta \sqrt{a_1^2 + b_1^2} + \alpha \frac{a_2 b_1}{\sqrt{a_1^2 + b_1^2}} & \alpha \frac{a_2 a_1}{\sqrt{a_1^2 + b_1^2}} \end{bmatrix} \\ & = & \begin{bmatrix} \sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}} & \frac{a_2^2 a_1 b_1}{(a_1^2 + b_1^2) \sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}} \\ 0 & \frac{a_2 a_1}{\sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}} \end{bmatrix}. \end{array}$$

The algorithm

$$\begin{array}{l} 10 \ a_1 =? \ a_2 =? \ b_1 =? \\ 20 \ a_1^{new} = \sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}} \\ 30 \ a_2^{new} = \frac{a_2 a_1}{\sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}} \\ 40 \ b_1^{new} = \frac{a_2^2 a_1 b_1}{(a_1^2 + b_1^2) \sqrt{a_1^2 + b_1^2 + \frac{a_2^2 b_1^2}{a_1^2 + b_1^2}}} \\ 50 \ a_1 = a_1^{new}; \ a_2 = a_2^{new}; \ b_1 = b_1^{new}; \ \text{GOTO 20} \end{array}$$

should generate a sequence of b_1 convergent to 0, and sequences of a_1 and a_2 convergent to the singular values. (Note that $a_1^{k+1}a_2^{k+1}=|\det(A_{k+1})|=|\det(A_{k-1})|=|\det(A)|=\sigma_1\sigma_2=a_1a_2$).

An implementation of the algorithm:

$$a_{1} = ?; \ a_{2} = ?; \ b_{1} = ?$$

$$20 \quad x = a_{1}^{2} + b_{1}^{2}$$

$$y = a_{2}b_{1}$$

$$z = a_{2}a_{1}$$

$$b_{1}^{new} = y/x$$

$$a_{1}^{new} = \sqrt{x + y * b_{1}^{new}}$$

$$a_{2}^{new} = z/a_{1}^{new}$$

$$b_{1}^{new} = b_{1}^{new} * a_{2}^{new}$$

$$a_{1} = a_{1}^{new}; \ a_{2} = a_{2}^{new}; \ b_{1} = b_{1}^{new}; \ \text{GOTO 20}$$

Example. If $a_1 = a_2 = 1$, $b_1 = -1$, then

$$\sigma_1 = \sqrt{\frac{3+\sqrt{5}}{2}}, \quad \sigma_2 = \sqrt{\frac{3-\sqrt{5}}{2}}.$$

Let us do some steps of the proposed algorithm. (Note that $a_1^{k+1}a_2^{k+1} = |\det(A_{k+1})| = |\det(A_{k-1})| = |\det(A)| = \sigma_1\sigma_2 = 1$).

$$a_1 \quad 1 \qquad \sqrt{\frac{5}{2}} \qquad \sqrt{\frac{34}{13}}$$

$$a_2 \quad 1 \qquad \sqrt{\frac{2}{5}} \qquad \sqrt{\frac{13}{34}}$$

$$b_1 \quad -1 \qquad -\frac{1}{\sqrt{10}} \qquad -\frac{1}{\sqrt{13\cdot34}}$$

$$x = a_1^2 + b_1^2 \quad 2 \qquad \frac{13}{5} \qquad \frac{89}{34}$$

$$y = a_2b_1 \quad -1 \qquad -\frac{1}{5} \qquad -\frac{1}{34}$$

$$z = a_2a_1 \quad 1 \qquad 1 \qquad 1$$

$$b_1^{new} = y/x \quad -\frac{1}{2} \qquad -\frac{1}{13} \qquad -\frac{1}{89}$$

$$a_1^{new} = \sqrt{x + y * b_1^{new}} \qquad \sqrt{\frac{5}{2}} \qquad \sqrt{\frac{34}{13}} \qquad \sqrt{\frac{233}{89}}$$

$$a_2^{new} = z/a_1^{new} \qquad \sqrt{\frac{2}{5}} \qquad \sqrt{\frac{13}{34}} \qquad \sqrt{\frac{89}{233}}$$

$$b_1^{new} = b_1^{new} * a_2^{new} \qquad -\frac{1}{\sqrt{10}} \qquad -\frac{1}{\sqrt{13\cdot34}} \qquad -\frac{1}{\sqrt{89\cdot233}}$$

We should have $a_1 \to \sigma_1$, $a_2 \to \sigma_2$, $b_1 \to 0$, and this is the case: for instance we have $\frac{5}{2} = 2.5$, $\frac{34}{13} = 2.615$, $\frac{233}{89} = 2.6179$, ... $\to \sigma_1^2 = 2.61803$ ($\sqrt{5} \approx 2.23607$).