
An example of preconditioning

Let A and E be the n × n matrices

A =













2 −1

−1 2
. . .

. . .
. . . −1
−1 2













, E =











1
−1 1

. . .
. . .

−1 1











.

We have
Ã = E−1AE−T = I + eeT , e = [1 1 . . . 1]T .

The eigenvalues of the matrix Ã are: 1 n − 1 times, and 1 + eT e = n + 1. So,
the condition number of Ã (in norm 2) is n + 1.

Let us compute the condition number of A. The eigenvalues of A are known
in explicit form: 2 − 2 cos jπ

n+1 , j = 1, . . . , n. Thus,

µ2(A) =
2 − 2 cos nπ

n+1

2 − 2 cos π
n+1

=
1 + cos π

n+1

1 − cos π
n+1

=
1 + cos(2 π

2(n+1) )

1 − cos(2 π
2(n+1) )

=
2 cos2 π

2(n+1)

2 sin2 π
2(n+1)

=
1

tg 2 π
2(n+1)

.

Since limn→+∞( π
2(n+1) )

2/ tg 2 π
2(n+1) = 1, we can conclude that µ2(A) = O(n2).

It follows that, in order to solve a system Ax = b where the coefficient matrix
A is as above, it is convenient to apply the linear systems solver at disposal to
the equivalent system E−1AE−T ET x = E−1b, i.e. compute x̃ = ET x.

Proof that a DFT of order n can be reduced to two DFT of order n/2

y =











y0

y1

...
yn−1











=











1 1 · · · 1
1 ω · · · ωn−1

...
...

...

1 ωn−1 · · · ω(n−1)(n−1)





















z0

z1

...
zn−1











= Wz

(ω = ωn, W = Wn). Then, for i = 0, . . . , n − 1,

yi =
∑n−1

j=0 ωijzj =
∑m−1

p=0 ωi(2p)z2p +
∑m−1

p=0 ωi(2p+1)z2p+1

=
∑m−1

p=0 (ω2)ipz2p + ωi
∑m−1

p=0 (ω2)ipz2p+1 =
∑m−1

p=0 ωip
mz2p + ωi

n

∑m−1
p=0 ωip

mz2p+1, (1)

(ω2
n = ωm, m = n/2) and, for i = 0, . . . , m − 1,

ym+i =
∑m−1

p=0 ω
(m+i)p
m z2p + ωm

n ωi
n

∑m−1
p=0 ω

(m+i)p
m z2p+1

=
∑m−1

p=0 ωip
mz2p − ωi

n

∑m−1
p=0 ωip

mz2p+1. (2)

Formulas (1), i = 0, . . . , m − 1, and (2) in matrix form become:











y0

y1

...
ym−1











= Wm











z0

z2

...
zn−2











+











1
ωn

. . .

ωm−1
n











Wm











z1

z3

...
zn−1











,

1













ym

ym+1

...
yn−1











= Wm











z0

z2

...
zn−2











−











1
ωn

. . .

ωm−1
n











Wm











z1

z3

...
zn−1











.

It follows that

y = Wnz =

[

Wm DWm

Wm −DWm

]





























z0

z2

...
zn−2

z1

z3

...
zn−1





























=

[

I D
I −D

][

Wm 0
0 Wm

]

Qz

where the permutation matrix Q is defined in an obvious way.

The real part of λ(A)) > 0 vs λ(Ah) > 0, also for A real

A ∈ Cn×n, Ah = 1
2 (A + A∗), Aah = 1

2 (A − A∗).
Definition: Ah is p.d. iff z∗Ahz > 0, ∀ z ∈ Cn, z 6= 0.
Then

z∗Az = z∗Ahz + z∗Aahz,
z∗Az = (zR − izI)

T (AR + iAI)(zR + izI)
= zT

RARzR + zT
I ARzI − zT

R(AI − AT
I )zI

+i[zT
R(AR − AT

R)zI + zT
RAIzR + zT

I AIzI ]

where z = zR + izI , A = AR + iAI . Note that z∗Ahz is real and z∗Aahz is
purely immaginary.

Moreover

zT
RAzR + zT

I AzI ( if A is real) =
(z∗Az)R = z∗Ahz = (zR − izI)

T [(AR)S + i(AI)AS ](zR + izI)
= zT

R(AR)SzR + zT
I (AR)SzI + 2zT

I (AI)ASzR

+i[zT
R(AI)ASzR + zT

I (AI)ASzI ]
= ( if A is real) zT

RAszR + zT
I ASzI ,

(z∗Az)R = zT
RARzR + zT

I ARzI − zT
R(AI − AT

I )zI

= ( if A is real) zT
RAzR + zT

I AzI .

Consequences:

1. Ah is p.d. iff (z∗Az)R > 0, ∀ z ∈ C
n, z 6= 0

2. For any eigenvalue λ(A) there exists z, ‖z‖2 = 1, such that (λ(A))R =
z∗Ahz ≥ min λ(Ah) [it is the vector z in Az = λ(A)z]

3. For any eigenvalue λ(Ah) there exists y, ‖y‖2 = 1, such that λ(Ah) =
(y∗Ay)R [it is the vector y in Ahy = λ(Ah)y]

4. Assume A real. Then the following assertions are equivalent
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• Ah = AS is p.d. (z∗Ahz > 0, ∀ z ∈ Cn, z 6= 0)

• ξT Aξ > 0, ∀ ξ ∈ Rn, ξ 6= 0

• ξT ASξ > 0, ∀ ξ ∈ Rn, ξ 6= 0 (ξT Aξ = ξT ASξ if ξ ∈ Rn and A is real)

Further results:
Ah p.d. (λ(Ah) > 0) ⇒ (λ(A))R > 0 (consequence of 2.)
(λ(A))R > 0 & A normal ⇒ Ah p.d.
(λ(A))R > 0 does not imply Ah p.d. (see Example with a2 ≥ 4)
There exist non normal matrices A with (λ(A))R > 0 for which Ah is p.d.

(see Example with 0 < a2 < 4)
Perhaps (λ(A))R “much” positive would imply λ(Ah) > 0 (Ah p.d.)
EXAMPLE.

A =

[

1 a
0 1

]

, a ∈ R,

[x y]

[

1 a
0 1

] [

x
y

]

= [x xa + y]

[

x
y

]

= x2 + axy + y2,

x2 + axy + y2 > 0, ∀x, y, (x, y) 6= (0, 0) iff a2 < 4

i.e. the hermitian part of A is p.d. iff a2 < 4. Also observe that A is normal iff
a = 0. So, a ∈ R, 0 < a2 < 4 ⇒ A satisfies the coditions: A real, Ah = AS p.d.,
A is not normal, (λ(A))R = λ(A) = 1 > 0.

We know that Ah p.d. implies <(λ(A)) > 0 . . . <(λ(A)) > 0 ⇒ Ah p.d. ?
If A is normal, yes; otherwise a stronger hypothesis of kind <(λ(A)) > q ≥ 0 is
sufficient to obtain the p.d. of Ah. The aim is to find a q as small as possible.
A question is “q can be zero for a class of not normal matrices ?”

Let A be a generic n × n matrix. It is known that AX = XT , with X =
[x1 x2 . . . xn] unitary and T upper triangular

T =













λ1 t12 · · · t1n

0 λ2
. . .

...
...

. . .
. . . tn−1n

0 · · · 0 λn













with the eigenvalues of A as diagonal entries (Schur theorem). Equivalently, we
have

Axj = λjxj + t1jx1 + . . . + tj−1jxj−1, j = 1, . . . , n.

Now let λ(Ah) be a generic eigenvalue of Ah = 1
2 (A + A∗), the hermitian part

of A. Then there exists y 6= 0 such that

λ(Ah) =
y∗Ahy

y∗y
=

y∗Ay

y∗y
−

y∗Aahy

y∗y

and, since λ(Ah) is real and y∗Aahy purely immaginary, we have the formula:

λ(Ah) =
<(y∗Ay)

y∗y
. (1)
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Let us obtain, using (1), an expression of λ(Ah) in terms of the eigenvalues λi

of A. There exist αi ∈ C for which y =
∑

i αixi (recall that y is an eigenvector
of the λ(Ah) we are considering), thus y∗y =

∑

i |αi|
2 and

y∗Ay =
∑

i αix
∗
i

∑

j αjAxj

=
∑

i αix
∗
i

∑

j αj(λjxj +
∑j−1

k=1 tkjxk)

=
∑

i |αi|
2λi +

∑

i αix
∗
i

∑n
j=2 αj(

∑j−1
k=1 tkjxk)

=
∑

i |αi|
2λi +

∑

i αix
∗
i

∑n−1
k=1 (

∑n
j=k+1 αjtkj)xk

=
∑

i |αi|
2λi + f({αi}

n
i=1, {tij}i<j)

where

f({αi}
n
i=1, {tij}i<j) =

n
∑

i=1

αi

n
∑

j=i+1

αjtij =

n
∑

j=1

αj

j−1
∑

i=1

αitij .

It follows that

λ(Ah) =

∑

i |αi|
2<(λi)

∑

i |αi|2
+

<(f({αi}
n
i=1, {tij}i<j))

∑

i |αi|2
. (2)

Remark. Since AX = XT implies AhX = XTh, Th == 1
2 (T + T ∗), we have:

minα(k) , Xα(k) indip. eigenvectors of Ah

<(f({αi}
n
i=1,{tij}i<j))

P

i
|αi|2

= minα(k), α(k) indip. eigenvectors of Th

<(f({αi}
n
i=1,{tij}i<j))

P

i
|αi|2

.

Let us see some consequences of (2):

1 If tij = 0 ∀ i < j (i.e. if A is normal), then

min<(λi) ≤ λ(Ah) =

∑

i |αi|
2<(λi)

∑

i |αi|2
≤ max<(λi).

So, if A is normal and <(λ(A)) > 0, then Ah is p.d. (all eigenvalues of Ah

are positive)

2 Since |<(f)| ≤ |f |, in order to obtain bounds for <(f)/
∑

i |αi|
2 in (2) we

look for bounds for |f |:

|f | = |
∑n

i=1 αi

∑n
j=i+1 αjtij | ≤

∑n
i=1 |αi|

∑n
j=i+1 |αj ||tij |

≤
√

∑n
i=1 |αi|2

√

∑n
i=1(

∑n
j=i+1 |αj ||tij |)2

≤
√

∑n
i=1 |αi|2

√

∑n
i=1(

∑n
j=i+1 |αj |2)(

∑n
j=i+1 |tij |

2

≤
√

∑n
i=1 |αi|2

√

∑n
i=1 |αi|2

√

∑n
i=1

∑n
j=i+1 |tij |

2

=
∑n

i=1 |αi|
2
√

∑n
i=1

∑n
j=i+1 |tij |

2,

|f | ≤ max
i<j

|tij |

n
∑

i=1

|αi|

n
∑

j=i+1

|αj | ≤ max
i<j

|tij |x

n
∑

i=1

|αi|
2, x ≤

n − 1

2
.

So we can say that

|<(f)|
∑

i |αi|2
≤ min{

√

√

√

√

n
∑

i=1

n
∑

j=i+1

|tij |2,
n − 1

2
max
i<j

|tij |}. (3)
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Note how the min changes when passing from a matrix T with |tij | con-
stant (for i < j) to a T with tij = 0 for all but one (i, j), i < j.

The case n = 2:

|<(α1α2t12)|

|α1|2 + |α2|2
≤

|α1||α2||t12|

|α1|2 + |α2|2
≤

1

2
|t12|

Theorem. We have

min<(λi) − g({tij}i<j) ≤ λ(Ah) ≤ max<(λi) + g({tij}i<j)

whenever |<(f)|
P

i
|αi|2

≤ g({tij}i<j). So, if <(λ(A)) > g({tij}i<j), then Ah is

p.d.

Examples of functions g({tij}i<j) are given in (3). Notice, however, that the
functions g({tij}i<j) in Theorem should be easily computable from the entries
of A; in fact they should depend directly on the entries aij :

∑

i<j

|tij |
2 = ‖T‖2

F −
∑

i

|λi|
2 = ‖A‖2

F −
∑

i

|λi|
2 ≤ ‖A‖2

F − n min λ(A∗A) . . .

(Avi = λivi, ⇒ v∗
i A∗Avi = |λi|

2v∗
i vi . . . )

Eigenstructure of normal matrices

If A is normal and Ax = λx, then also A∗x (besides x) is eigenvector of A
corresponding to λ.

If A is normal, Ax = λx and λ is a simple eigenvalue, then there exists µ
such that A∗x = µx. Note that µ must be an eigenvalue of A. (The eigenvalues
of A∗ are the complex conjugates of the eigenvalues of A).

If A is normal, Axi = λixi, i = 1, . . . , n, and all the λi are simple eigenvalues
(so A has n distinct eigenvalues) , then there exist µi such that A∗xi = µixi,
i = 1, . . . , n. Note that µi must be equal to an eigenvalue λj of A

If A is normal then Axi = λixi, x∗
i xj = δij , 1 ≤ i, j ≤ n, AA∗xi = A∗Axi =

λiA
∗xi ⇒ {A∗xi} are eigenvectors of A (as {xi}). Moreover

(A∗xi)
∗(A∗xj) = x∗

i AA∗xj = x∗
i A

∗Axj = (Axi)
∗(Axj)

= (λixi)
∗(λjxj) = λiλjx

∗
i xj = |λi|

2δij .

So, if A is also non singular, then { 1
λi

A∗xi} are orthonormal eigenvectors of A
(as {xi}).

Circulant-type matrix algebras

Let

A =





0 a 0
0 0 b
c 0 0



 .

We have:

• A3 = I iff abc = 1

A2 =





0 0 ab
bc 0 0
0 ca 0



 , A3 =





abc 0 0
0 bca 0
0 0 cab



 .
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• the characteristic polynomial of A is λ3 − abc, so, if abc = 1 then the
eigenvalues of A are: 1, ω3, ω2

3 , where ω3 = e−i2π/3.

• A is normal iff |a| = |b| = |c|.

• A is unitary iff |a| = |b| = |c| = 1.

By imposing the identity




0 a 0
0 0 b
c 0 0









x
y
z



 = ωi





x
y
z





for i = 0, i = 1, i = 2, and therefore by requiring, respectively, the conditions
abc = 1, abc = 1 & ω3 = 1, abc = 1 & ω6 = 1, one obtains the equalities:





0 a 0
0 0 b
c 0 0









1
bc
c



 = 1





1
bc
c



 ,





0 a 0
0 0 b
c 0 0









1
bcω
cω2



 = ω





1
bcω
cω2



 ,





0 a 0
0 0 b
c 0 0









1
bcω2

cω4



 = ω2





1
bcω2

cω4



 .

So, if abc = 1 and Q = diag (1, bc, c)F , where F is the 3 × 3 Fourier matrix,
then AQ = Qdiag (1, ω3, ω2

3).
Note that Q is unitary iff |a| = |b| = |c| = 1 (iff A is unitary).
Exercise. Consider the n × n case.

Proof of Axi = λiAxi, A = [t|i−j|], A GStrang

Let A be the real symmetric Toeplitz matrix [t|i−j|]ni,j=1 and A be the
GStrang circulant matrix associated with A. Assume n even, set m = n/2
and consider the m × m matrices

S =











1 t · · · tm−1

t
...

tm−1











, R =











tm tm+1 · · · tn−1

tm−1

...
t











,

Q =











tm tm−1 · · · t
tm−1

...
t











, J =













0 · · · 0 1
... 1 0

0
...

1 0 · · · 0













(S, R, Q are Toeplitz). Observe that

A =

[

S R
RT S

]

, SJ = JS, RJ = JRT , A =

[

S Q
Q S

]

, QJ = JQ.

Obviously we have the identities Aem = Aem and Aem+1 = Aem+1.
Moreover, if x is the m × 1 vector [t 0 · · · 0 − tm]T , then

Sx =











t − tn−1

t2 − tn−2

...
tm − tm











, QJx =











−tn + t2

−tn−1 + t3

...
−tm+1 + tm+1











, RJx =











−tn + tn

−tn−1 + tn−1

...
−tm+1 + tm+1











= 0.
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⇒ Sx ± RJx =











t − tn−1

t2 − tn−2

...
tm − tm











, Sx ± QJx =











(t − tn−1)(1 ± t)
(t2 − tn−2)(1 ± t)

...
(tm − tm)(1 ± t)











⇒
1

1 ± t
(Sx ± QJx) = Sx± RJx. (1)

⇒ SJJx± RJx = 1
1±t (SJJx ± QJx)

⇒ JSJx± JRT x = 1
1±t (JSJx ± JQx)

⇒ SJx± RT x = 1
1±t (SJx ± Qx)

⇒ ± SJx + RT x =
1

1 ± t
(±SJx + Qx). (2)

Equalities (1) and (2) imply
[

S R
RT S

] [

x

±Jx

]

=
1

1 ± t

[

S Q
Q S

][

x

±Jx

]

, i.e.

A





































t
0
...
0

−tm

∓tm

0
...
0
±t





































=
1

1 ± t
A





































t
0
...
0

−tm

∓tm

0
...
0
±t





































.

Finally, let y be any m×1 vector [y0 y1 · · · ym−1]
T satisfying the following two

linear equations:

(a) y0 + y1t + . . . + yjt
j + . . . + ym−1t

m−1 = 0,

(b) ym−1 + ym−2t + . . . + yj−1t
m−j + . . . + y0t

m−1 = 0.

Multiplying (a) by tm, tm−1, . . . , t and (b) by t, t2, . . . , tm, one obtains the
identities:

Ry =











tm tm+1 · · · tn−1

tm−1

...
t





















y0

y1

...
ym−1











= 0, RT y =











tm tm−1 · · · t
tm+1

...
tn−1





















y0

y1

...
ym−1











= 0

⇒ A

[

y

±y

]

=

[

S R
RT S

] [

y

±y

]

=

[

Sy

±Sy

]

. (1)

On the other side we also have:

tmSy = tm











1 t · · · tm−1

t
...

tm−1





















y0

y1

...
ym−1











= −











tm tm−1 · · · t
tm−1

...
t





















y0

y1

...
ym−1











= −Qy.
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In fact, for j = 0, 1, . . . , m− 1 the (j +1)-row in the left is equal to (use (b) and
(a), respectively)

[tm+j · · · tm+1 tm tm+1 · · · t2m−1−j ]











y0

y1

...
ym−1











= (tm+jy0 + tm+j−1y1 + . . . + tm+1yj−1) + (tmyj + tm+1yj+1 + . . . + t2m−1−jym−1)
= (−ym−1 − ym−2t . . . − yjt

m−j−1)tj+1 + (−y0 − y1t . . . − yj−1t
j−1)tm−j

= −[tm−j · · · tm−1 tm tm−1 · · · tj+1]











y0

y1

...
ym−1











which is the (j + 1)-row in the right. Thus

A

[

y

±y

]

=

[

Sy ± Qy

Qy ± Sy

]

=

[

Sy ∓ tmSy

−tmSy ± Sy

]

= (1 ∓ tm)

[

Sy

±Sy

]

. (2)

From (1) and (2) it follows that

A

[

y

±y

]

=
1

1 ∓ tm
A

[

y

±y

]

, ∀y |

[

1 t · · · tm−1

tm−1 · · · t 1

]

y =

[

0
0

]

.

So we have:

- m − 2 eigenvectors of type

[

y

y

]

corresponding to the eigenvalue 1
1−tm

- m− 2 eigenvectors of type

[

y

−y

]

corresponding to the eigenvalue 1
1+tm

- two eigenvectors em and em+1 corresponding to the eigenvalue 1

- one eigenvector

[

x

Jx

]

corresponding to the eigenvalue 1
1+t

- one eigenvector

[

x

−Jx

]

corresponding to the eigenvalue 1
1−t

where x = [t 0 · · · 0 − tm]T and the vectors y are m − 2 linearly independent
solutions of the system:

[

1 t · · · tm−1

tm−1 · · · t 1

]

y =

[

0
0

]

.

We have proved the equality Axi = λiAxi for n (eigenvalues,eigenvectors)
(λi,xi). Why the xi are linearly independent ?

Let A, B be n × n (non null) matrices with complex entries. Assume that
Ax = λBx, Ay = µBy for non null vectors x and y where λ, µ ∈ C, λ 6= µ.
Then x and y are linearly independent.
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If B is non singular, then we have the equations B−1Ax = λx and B−1Ay =
µy, and the thesis follows as in the classic eigenvalue problem case (but B−1A
takes the role of A).

If A is non singular and both λ and µ are non zero (the case of GStrang)
then we have the equations A−1Bx = 1

λx and A−1By = 1
µy, and the proof is

very similar to the classic eigenvalue problem case (but A−1B takes the role of
A).

If B is singular, A is non singular and λ = 0 (or µ = 0), then we have the
equation Ax = 0 (Ay = 0) which implies x = 0 (y = 0), which is against our
hypothesis.

If B and A are singular . . . is the thesis true ?

Proof of eigenvalue minmax representation for a hermitian matrix A (and
of the interlace theorem)

(1) Axi = λixi, x∗
i xj = δij , λ1 ≤ λ2 ≤ . . . ≤ λn (recall that normal matrices

can be diagonalized via unitary transforms). Let Vj ⊂ Cn be a generic space
of dimension j. Then for any x 6= 0, x ∈ Vj ∩ Span {xj , . . . ,xn}, we have
x =

∑n
i=j αixi with αi not all zeroes, and

x∗Ax
x∗x

=
(
P

i
αixi)

∗A(
P

k
αkxk)

(
P

i
αixi)∗(

P

k
αkxk) =

(
P

αix
∗

i )(
P

αkλkxk)
(
P

αix
∗

i
)(

P

αkxk)

=
P

n
i=j

|αi|
2λi

P

n
i=j

|αi|2
≥ λj .

Thus λj ≤ maxx∈Vj
(x∗Ax/x∗x).

Moreover, we have (x∗
j Axj/x

∗
jxj) = λj , and for any x =

∑j
i=1 βixi, with βi

not all zeroes,

x∗Ax

x∗x
=

∑j
i=1 |βi|

2λi
∑j

i=1 |βi|2
≤ λj .

It follows that for Vj = Span {x1 . . .xj} it holds maxx∈Vj

x∗Ax
x∗x

= λj .

(2) A, B, C hermitian, αi, βi, γi their eigenvalues in non-decreasing order,
C = A + B: proof of the interlace theorem

γj = minVj
maxx∈Vj

x∗Cx
x∗x

= minVj
maxx∈Vj

(

x∗Ax
x∗x

+ x∗Bx
x∗x

)

≤ minVj
maxx∈Vj

(

x∗Ax
x∗x

+ βn

)

= minVj
maxx∈Vj

x∗Ax
x∗x

+ βn = αj + βn,

αj = minVj
maxx∈Vj

x∗Ax
x∗x

= minVj
maxx∈Vj

(

x∗Cx
x∗x

− x∗Bx
x∗x

)

≤ minVj
maxx∈Vj

(

x∗Cx
x∗x

− β1

)

= minVj
maxx∈Vj

x∗Cx
x∗x

− β1 = γj − β1.

Deflation

Le A be a n×n matrix. Denote by λi, i = 1, . . . , n, the eigenvalues of A and
by yi the corresponding eigenvectors. So, we have Ayi = λiyi, i = 1, . . . , n.

Assume that λ1,y1 are given and that λ1 6= 0. Choose w ∈ Cn such that
w∗y1 6= 0 (given y1 choose w not orthogonal to y1) and set

W = A −
λ1

w∗y1
y1w

∗.
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It is known that the eigenvalues of W are

0, λ2, . . . , λj , . . . , λn

i.e. they are the same of A except λ1 which is replaced with 0. Let w1, w2,
. . ., wj , . . ., wn be the corresponding eigenvectors (Ww1 = 0, Wwj = λjwj

j = 2, . . . , n). Is it possible to obtain the wj from the yj ?
First observe that

Ay1 = λ1y1 ⇒ Wy1 = 0 : w1 = y1. (a)

Then, for j = 2, . . . , n,

Wyj = Ayj −
λ1

w∗y1
y1w

∗yj = λjyj − λ1
w∗yj

w∗y1
y1. (1)

If we impose yj = wj + cy1, j = 2, . . . , n, then (1) becomes,

Wwj + cWy1 = λjwj + cλjy1 − λ1
w∗wj

w∗y1
y1 − cλ1y1

= λjwj + y1[cλj − λ1
w∗wj

w∗y1
− λ1c]

So, if λj 6= λ1 and

wj = yj −
λ1

λj − λ1

w∗wj

w∗y1
y1, (2)

then Wwj = λjwj . If, moreover, λj 6= 0, then w∗yj = w∗wj + λ1

λj−λ1
w∗wj ⇒

w∗yj = w∗wj
λj

λj−λ1
⇒ w∗wj =

λj−λ1

λj
w∗yj . So, by (2),

for all j ∈ {2 . . . n} | λj 6= λ1, 0 :
Ayj = λjyj ⇒

W (yj −
λ1

λj

w∗yj

w∗y1
y1) = λj(yj −

λ1

λj

w∗yj

w∗y1
y1) : wj = yj −

λ1

λj

w∗yj

w∗y1
y1.

(b)

Note that a formula for yj in terms of wj holds: see (2).
As regards the case λj = λ1, it is simple to show that

for all j ∈ {2 . . . n} | λj = λ1 :
Ayj = λjyj ⇒

W (yj −
w∗yj

w∗y1
y1) = λj(yj −

w∗yj

w∗y1
y1) : wj = yj −

w∗yj

w∗y1
y1.

(c)

Note that the vectors yj −
w∗yj

w∗y1
y1 are orthogonal to w. Is it possible to find

from (c) an expression of yj in terms of wj ?
It remains the case λj = 0: find ? in

for all j ∈ {2 . . . n} | λj = 0 :
Ayj = λjyj = 0 ⇒ W (?) = λj(?) = 0 : wj =?

(d?)

(yj = wj −
w∗wj

w∗y1
y1 ⇒ w∗yj = 0) . . .

Choices of w. Since y∗
1y1 6= 0 one can set w = y1. In this way, if A is

hermitian also W is hermitian. . . . . If i is such that (y1)i 6= 0 then eT
i Ay1 =

λ1(y1)i 6= 0. So one can set w∗ = eT
i A = row i of A. In this way the row i of W

is null and therefore we can introduce a matrix of order n−1 whose eigenvalues
are λ2, . . ., λn (the unknown eigenvalues of A).
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