An example of preconditioning

Let A and E be the $n \times n$ matrices

$$A = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{bmatrix}.$$

We have

$$\tilde{A} = E^{-1}AE^{-T} = I + \mathbf{e}\mathbf{e}^{T}, \quad \mathbf{e} = [1 \ 1 \ \dots \ 1]^{T}.$$

The eigenvalues of the matrix \tilde{A} are: 1 n - 1 times, and $1 + \mathbf{e}^T \mathbf{e} = n + 1$. So, the condition number of \tilde{A} (in norm 2) is n + 1.

Let us compute the condition number of A. The eigenvalues of A are known in explicit form: $2 - 2 \cos \frac{j\pi}{n+1}$, j = 1, ..., n. Thus,

$$\mu_2(A) = \frac{2 - 2\cos\frac{n\pi}{n+1}}{2 - 2\cos\frac{\pi}{n+1}} = \frac{1 + \cos\frac{\pi}{n+1}}{1 - \cos\frac{\pi}{n+1}} = \frac{1 + \cos(2\frac{\pi}{2(n+1)})}{1 - \cos(2\frac{\pi}{2(n+1)})} = \frac{2\cos^2\frac{\pi}{2(n+1)}}{2\sin^2\frac{\pi}{2(n+1)}} = \frac{1}{\operatorname{tg}^2\frac{\pi}{2(n+1)}}.$$

Since $\lim_{n\to+\infty} (\frac{\pi}{2(n+1)})^2 / \operatorname{tg}^2 \frac{\pi}{2(n+1)} = 1$, we can conclude that $\mu_2(A) = O(n^2)$. It follows that, in order to solve a system $A\mathbf{x} = \mathbf{b}$ where the coefficient matrix

It follows that, in order to solve a system $A\mathbf{x} = \mathbf{b}$ where the coefficient matrix A is as above, it is convenient to apply the linear systems solver at disposal to the equivalent system $E^{-1}AE^{-T}E^{T}\mathbf{x} = E^{-1}\mathbf{b}$, i.e. compute $\tilde{\mathbf{x}} = E^{T}\mathbf{x}$.

Proof that a DFT of order n can be reduced to two DFT of order n/2

$$\mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} z_0 \\ z_1 \\ \vdots \\ z_{n-1} \end{bmatrix} = W\mathbf{z}$$

 $(\omega = \omega_n, W = W_n)$. Then, for $i = 0, \ldots, n-1$,

$$y_{i} = \sum_{j=0}^{n-1} \omega^{ij} z_{j} = \sum_{p=0}^{m-1} \omega^{i(2p)} z_{2p} + \sum_{p=0}^{m-1} \omega^{i(2p+1)} z_{2p+1} = \sum_{p=0}^{m-1} (\omega^{2})^{ip} z_{2p} + \omega^{i} \sum_{p=0}^{m-1} (\omega^{2})^{ip} z_{2p+1} = \sum_{p=0}^{m-1} \omega^{ip}_{m} z_{2p} + \omega^{i}_{n} \sum_{p=0}^{m-1} \omega^{ip}_{m} z_{2p+1}, \quad (1)$$

 $(\omega_n^2 = \omega_m, m = n/2)$ and, for i = 0, ..., m - 1,

$$y_{m+i} = \sum_{p=0}^{m-1} \omega_m^{(m+i)p} z_{2p} + \omega_n^m \omega_n^i \sum_{p=0}^{m-1} \omega_m^{(m+i)p} z_{2p+1} = \sum_{p=0}^{m-1} \omega_m^{ip} z_{2p} - \omega_n^i \sum_{p=0}^{m-1} \omega_m^{ip} z_{2p+1}.$$
 (2)

Formulas (1), i = 0, ..., m - 1, and (2) in matrix form become:

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{bmatrix} = W_m \begin{bmatrix} z_0 \\ z_2 \\ \vdots \\ z_{n-2} \end{bmatrix} + \begin{bmatrix} 1 & & & \\ & \omega_n & & \\ & & \ddots & \\ & & & \omega_n^{m-1} \end{bmatrix} W_m \begin{bmatrix} z_1 \\ z_3 \\ \vdots \\ z_{n-1} \end{bmatrix},$$

$$\begin{bmatrix} y_m \\ y_{m+1} \\ \vdots \\ y_{n-1} \end{bmatrix} = W_m \begin{bmatrix} z_0 \\ z_2 \\ \vdots \\ z_{n-2} \end{bmatrix} - \begin{bmatrix} 1 & & & \\ & \omega_n & & \\ & & \ddots & \\ & & & \omega_n^{m-1} \end{bmatrix} W_m \begin{bmatrix} z_1 \\ z_3 \\ \vdots \\ z_{n-1} \end{bmatrix}.$$

It follows that

$$\mathbf{y} = W_n \mathbf{z} = \begin{bmatrix} W_m & DW_m \\ W_m & -DW_m \end{bmatrix} \begin{bmatrix} z_0 \\ z_2 \\ \vdots \\ z_{n-2} \\ z_1 \\ z_3 \\ \vdots \\ z_{n-1} \end{bmatrix} = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} W_m & 0 \\ 0 & W_m \end{bmatrix} Q \mathbf{z}$$

where the permutation matrix Q is defined in an obvious way.

The real part of $\lambda(A) > 0$ vs $\lambda(A_h) > 0$, also for A real $A \in \mathbb{C}^{n \times n}$, $A_h = \frac{1}{2}(A + A^*)$, $A_{ah} = \frac{1}{2}(A - A^*)$. Definition: A_h is p.d. iff $\mathbf{z}^* A_h \mathbf{z} > 0$, $\forall \mathbf{z} \in \mathbb{C}^n$, $\mathbf{z} \neq \mathbf{0}$. Then

$$\begin{aligned} \mathbf{z}^* A \mathbf{z} &= \mathbf{z}^* A_h \mathbf{z} + \mathbf{z}^* A_{ah} \mathbf{z}, \\ \mathbf{z}^* A \mathbf{z} &= (\mathbf{z}_R - \mathbf{i} \mathbf{z}_I)^T (A_R + \mathbf{i} A_I) (\mathbf{z}_R + \mathbf{i} \mathbf{z}_I) \\ &= \mathbf{z}_R^T A_R \mathbf{z}_R + \mathbf{z}_I^T A_R \mathbf{z}_I - \mathbf{z}_R^T (A_I - A_I^T) \mathbf{z}_I \\ &+ \mathbf{i} [\mathbf{z}_R^T (A_R - A_R^T) \mathbf{z}_I + \mathbf{z}_R^T A_I \mathbf{z}_R + \mathbf{z}_I^T A_I \mathbf{z}_I \end{aligned}$$

where $\mathbf{z} = \mathbf{z}_R + \mathbf{i}\mathbf{z}_I$, $A = A_R + \mathbf{i}A_I$. Note that $\mathbf{z}^*A_h\mathbf{z}$ is real and $\mathbf{z}^*A_{ah}\mathbf{z}$ is purely immaginary.

Moreover

$$\begin{aligned} \mathbf{z}_{R}^{T} A \mathbf{z}_{R} + \mathbf{z}_{I}^{T} A \mathbf{z}_{I} &(\text{ if } A \text{ is real}) = \\ (\mathbf{z}^{*} A \mathbf{z})_{R} &= \mathbf{z}^{*} A_{h} \mathbf{z} = (\mathbf{z}_{R} - \mathbf{i} \mathbf{z}_{I})^{T} [(A_{R})_{S} + \mathbf{i}(A_{I})_{AS}] (\mathbf{z}_{R} + \mathbf{i} \mathbf{z}_{I}) \\ &= \mathbf{z}_{R}^{T} (A_{R})_{S} \mathbf{z}_{R} + \mathbf{z}_{I}^{T} (A_{R})_{S} \mathbf{z}_{I} + 2 \mathbf{z}_{I}^{T} (A_{I})_{AS} \mathbf{z}_{R} \\ &+ \mathbf{i} [\mathbf{z}_{R}^{T} (A_{I})_{AS} \mathbf{z}_{R} + \mathbf{z}_{I}^{T} (A_{I})_{AS} \mathbf{z}_{I}] \\ &= (\text{ if } A \text{ is real}) \mathbf{z}_{R}^{T} A_{s} \mathbf{z}_{R} + \mathbf{z}_{I}^{T} A_{S} \mathbf{z}_{I}, \\ (\mathbf{z}^{*} A \mathbf{z})_{R} &= \mathbf{z}_{R}^{T} A_{R} \mathbf{z}_{R} + \mathbf{z}_{I}^{T} A_{R} \mathbf{z}_{I} - \mathbf{z}_{R}^{T} (A_{I} - A_{I}^{T}) \mathbf{z}_{I} \\ &= (\text{ if } A \text{ is real}) \mathbf{z}_{R}^{T} A \mathbf{z}_{R} + \mathbf{z}_{I}^{T} A \mathbf{z}_{I}. \end{aligned}$$

Consequences:

- 1. A_h is p.d. iff $(\mathbf{z}^* A \mathbf{z})_R > 0, \forall \mathbf{z} \in \mathbb{C}^n, \mathbf{z} \neq \mathbf{0}$
- 2. For any eigenvalue $\lambda(A)$ there exists \mathbf{z} , $\|\mathbf{z}\|_2 = 1$, such that $(\lambda(A))_R = \mathbf{z}^* A_h \mathbf{z} \ge \min \lambda(A_h)$ [it is the vector \mathbf{z} in $A\mathbf{z} = \lambda(A)\mathbf{z}$]
- 3. For any eigenvalue $\lambda(A_h)$ there exists \mathbf{y} , $\|\mathbf{y}\|_2 = 1$, such that $\lambda(A_h) = (\mathbf{y}^* A \mathbf{y})_R$ [it is the vector \mathbf{y} in $A_h \mathbf{y} = \lambda(A_h) \mathbf{y}$]
- 4. Assume A real. Then the following assertions are equivalent

- $A_h = A_S$ is p.d. $(\mathbf{z}^* A_h \mathbf{z} > 0, \forall \mathbf{z} \in \mathbb{C}^n, \mathbf{z} \neq \mathbf{0})$
- $\xi^T A \xi > 0, \forall \xi \in \mathbb{R}^n, \xi \neq \mathbf{0}$
- $\xi^T A_S \xi > 0, \forall \xi \in \mathbb{R}^n, \xi \neq \mathbf{0} \ (\xi^T A \xi = \xi^T A_S \xi \text{ if } \xi \in \mathbb{R}^n \text{ and } A \text{ is real})$

Further results:

 A_h p.d. $(\lambda(A_h) > 0) \Rightarrow (\lambda(A))_R > 0$ (consequence of 2.)

 $(\lambda(A))_R > 0 \& A \text{ normal} \Rightarrow A_h \text{ p.d.}$

 $(\lambda(A))_R > 0$ does not imply A_h p.d. (see Example with $a^2 \ge 4$)

There exist non normal matrices A with $(\lambda(A))_R > 0$ for which A_h is p.d. (see Example with $0 < a^2 < 4$)

Perhaps $(\lambda(A))_R$ "much" positive would imply $\lambda(A_h) > 0$ $(A_h \text{ p.d.})$ EXAMPLE.

$$A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}, \quad a \in \mathbb{R},$$
$$[x \ y] \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = [x \ xa + y] \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + axy + y^2,$$
$$x^2 + axy + y^2 > 0, \quad \forall x, y, \ (x, y) \neq (0, 0) \quad \text{iff} \quad a^2 < 4$$

i.e. the hermitian part of A is p.d. iff $a^2 < 4$. Also observe that A is normal iff a = 0. So, $a \in \mathbb{R}$, $0 < a^2 < 4 \Rightarrow A$ satisfies the coditions: A real, $A_h = A_S$ p.d., A is not normal, $(\lambda(A))_R = \lambda(A) = 1 > 0$.

We know that A_h p.d. implies $\Re(\lambda(A)) > 0 \dots \Re(\lambda(A)) > 0 \Rightarrow A_h$ p.d. ? If A is normal, yes; otherwise a stronger hypothesis of kind $\Re(\lambda(A)) > q \ge 0$ is sufficient to obtain the p.d. of A_h . The aim is to find a q as small as possible. A question is "q can be zero for a class of not normal matrices ?"

Let A be a generic $n \times n$ matrix. It is known that AX = XT, with $X = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]$ unitary and T upper triangular

$$T = \begin{bmatrix} \lambda_1 & t_{12} & \cdots & t_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{n-1n} \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

with the eigenvalues of ${\cal A}$ as diagonal entries (Schur theorem). Equivalently, we have

 $A\mathbf{x}_j = \lambda_j \mathbf{x}_j + t_{1j} \mathbf{x}_1 + \ldots + t_{j-1j} \mathbf{x}_{j-1}, \quad j = 1, \ldots, n.$

Now let $\lambda(A_h)$ be a generic eigenvalue of $A_h = \frac{1}{2}(A + A^*)$, the hermitian part of A. Then there exists $\mathbf{y} \neq \mathbf{0}$ such that

$$\lambda(A_h) = \frac{\mathbf{y}^* A_h \mathbf{y}}{\mathbf{y}^* \mathbf{y}} = \frac{\mathbf{y}^* A \mathbf{y}}{\mathbf{y}^* \mathbf{y}} - \frac{\mathbf{y}^* A_{ah} \mathbf{y}}{\mathbf{y}^* \mathbf{y}}$$

and, since $\lambda(A_h)$ is real and $\mathbf{y}^* A_{ah} \mathbf{y}$ purely immaginary, we have the formula:

$$\lambda(A_h) = \frac{\Re(\mathbf{y}^* A \mathbf{y})}{\mathbf{y}^* \mathbf{y}}.$$
(1)

Let us obtain, using (1), an expression of $\lambda(A_h)$ in terms of the eigenvalues λ_i of A. There exist $\alpha_i \in \mathbb{C}$ for which $\mathbf{y} = \sum_i \alpha_i \mathbf{x}_i$ (recall that \mathbf{y} is an eigenvector of the $\lambda(A_h)$ we are considering), thus $\mathbf{y}^* \mathbf{y} = \sum_i |\alpha_i|^2$ and

$$\mathbf{y}^* A \mathbf{y} = \sum_i \overline{\alpha_i} \mathbf{x}_i^* \sum_j \alpha_j A \mathbf{x}_j$$

= $\sum_i \overline{\alpha_i} \mathbf{x}_i^* \sum_j \alpha_j (\lambda_j \mathbf{x}_j + \sum_{k=1}^{j-1} t_{kj} \mathbf{x}_k)$
= $\sum_i |\alpha_i|^2 \lambda_i + \sum_i \overline{\alpha_i} \mathbf{x}_i^* \sum_{j=2}^n \alpha_j (\sum_{k=1}^{j-1} t_{kj} \mathbf{x}_k)$
= $\sum_i |\alpha_i|^2 \lambda_i + \sum_i \overline{\alpha_i} \mathbf{x}_i^* \sum_{k=1}^{n-1} (\sum_{j=k+1}^n \alpha_j t_{kj}) \mathbf{x}_k$
= $\sum_i |\alpha_i|^2 \lambda_i + f(\{\alpha_i\}_{i=1}^n, \{t_{ij}\}_{i < j})$

where

$$f(\{\alpha_i\}_{i=1}^n, \{t_{ij}\}_{i< j}) = \sum_{i=1}^n \overline{\alpha_i} \sum_{j=i+1}^n \alpha_j t_{ij} = \sum_{j=1}^n \alpha_j \sum_{i=1}^{j-1} \overline{\alpha_i} t_{ij}.$$

It follows that

$$\lambda(A_h) = \frac{\sum_i |\alpha_i|^2 \Re(\lambda_i)}{\sum_i |\alpha_i|^2} + \frac{\Re(f(\{\alpha_i\}_{i=1}^n, \{t_{ij}\}_{i< j}))}{\sum_i |\alpha_i|^2}.$$
 (2)

Remark. Since AX = XT implies $A_hX = XT_h$, $T_h == \frac{1}{2}(T + T^*)$, we have:

$$\min_{\alpha^{(k)}, X\alpha^{(k)} \text{ indip. eigenvectors of } A_h} \frac{\Re(f(\{\alpha_i\}_{i=1}^n, \{t_{ij}\}_{i$$

Let us see some consequences of (2):

1 If $t_{ij} = 0 \ \forall i < j$ (i.e. if A is normal), then

$$\min \Re(\lambda_i) \le \lambda(A_h) = \frac{\sum_i |\alpha_i|^2 \Re(\lambda_i)}{\sum_i |\alpha_i|^2} \le \max \Re(\lambda_i).$$

So, if A is normal and $\Re(\lambda(A)) > 0$, then A_h is p.d. (all eigenvalues of A_h are positive)

2 Since $|\Re(f)| \le |f|$, in order to obtain bounds for $\Re(f) / \sum_i |\alpha_i|^2$ in (2) we look for bounds for |f|:

$$\begin{aligned} |f| &= |\sum_{i=1}^{n} \overline{\alpha_{i}} \sum_{j=i+1}^{n} \alpha_{j} t_{ij}| \leq \sum_{i=1}^{n} |\alpha_{i}| \sum_{j=i+1}^{n} |\alpha_{j}| |t_{ij}| \\ &\leq \sqrt{\sum_{i=1}^{n} |\alpha_{i}|^{2}} \sqrt{\sum_{i=1}^{n} (\sum_{j=i+1}^{n} |\alpha_{j}|^{2}) (\sum_{j=i+1}^{n} |t_{ij}|^{2}} \\ &\leq \sqrt{\sum_{i=1}^{n} |\alpha_{i}|^{2}} \sqrt{\sum_{i=1}^{n} (\sum_{j=i+1}^{n} |\alpha_{j}|^{2}) (\sum_{j=i+1}^{n} |t_{ij}|^{2}} \\ &\leq \sqrt{\sum_{i=1}^{n} |\alpha_{i}|^{2}} \sqrt{\sum_{i=1}^{n} \sum_{j=i+1}^{n} |t_{ij}|^{2}} \\ &= \sum_{i=1}^{n} |\alpha_{i}|^{2} \sqrt{\sum_{i=1}^{n} \sum_{j=i+1}^{n} |t_{ij}|^{2}}, \end{aligned}$$

$$|f| \le \max_{i < j} |t_{ij}| \sum_{i=1} |\alpha_i| \sum_{j=i+1} |\alpha_j| \le \max_{i < j} |t_{ij}| x \sum_{i=1} |\alpha_i|^2, \quad x \le \frac{n-1}{2}.$$

So we can say that

$$\frac{|\Re(f)|}{\sum_{i} |\alpha_{i}|^{2}} \leq \min\{\sqrt{\sum_{i=1}^{n} \sum_{j=i+1}^{n} |t_{ij}|^{2}}, \frac{n-1}{2} \max_{i < j} |t_{ij}|\}.$$
 (3)

Note how the min changes when passing from a matrix T with $|t_{ij}|$ constant (for i < j) to a T with $t_{ij} = 0$ for all but one (i, j), i < j.

The case n = 2:

$$\frac{|\Re(\overline{\alpha_1}\alpha_2t_{12})|}{|\alpha_1|^2 + |\alpha_2|^2} \le \frac{|\alpha_1||\alpha_2||t_{12}|}{|\alpha_1|^2 + |\alpha_2|^2} \le \frac{1}{2}|t_{12}|$$

Theorem. We have

$$\min \Re(\lambda_i) - g(\{t_{ij}\}_{i < j}) \le \lambda(A_h) \le \max \Re(\lambda_i) + g(\{t_{ij}\}_{i < j})$$

whenever $\frac{|\Re(f)|}{\sum_{i} |\alpha_{i}|^{2}} \leq g(\{t_{ij}\}_{i < j})$. So, if $\Re(\lambda(A)) > g(\{t_{ij}\}_{i < j})$, then A_{h} is p.d.

Examples of functions $g({t_{ij}}_{i < j})$ are given in (3). Notice, however, that the functions $g({t_{ij}}_{i < j})$ in Theorem should be easily computable from the entries of A; in fact they should depend directly on the entries a_{ij} :

$$\sum_{i < j} |t_{ij}|^2 = ||T||_F^2 - \sum_i |\lambda_i|^2 = ||A||_F^2 - \sum_i |\lambda_i|^2 \le ||A||_F^2 - n \min \lambda(A^*A) \dots$$
$$(A\mathbf{v}_i = \lambda_i \mathbf{v}_i, \Rightarrow \mathbf{v}_i^* A^* A \mathbf{v}_i = |\lambda_i|^2 \mathbf{v}_i^* \mathbf{v}_i \dots)$$

Eigenstructure of normal matrices

If A is normal and $A\mathbf{x} = \lambda \mathbf{x}$, then also $A^*\mathbf{x}$ (besides \mathbf{x}) is eigenvector of A corresponding to λ .

If A is normal, $A\mathbf{x} = \lambda \mathbf{x}$ and λ is a simple eigenvalue, then there exists μ such that $A^*\mathbf{x} = \mu\mathbf{x}$. Note that $\overline{\mu}$ must be an eigenvalue of A. (The eigenvalues of A^* are the complex conjugates of the eigenvalues of A).

If A is normal, $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, i = 1, ..., n, and all the λ_i are simple eigenvalues (so A has n distinct eigenvalues), then there exist μ_i such that $A^*\mathbf{x}_i = \mu_i\mathbf{x}_i$, i = 1, ..., n. Note that $\overline{\mu}_i$ must be equal to an eigenvalue λ_j of A

If A is normal then $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, $\mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}$, $1 \le i, j \le n$, $AA^* \mathbf{x}_i = A^*A\mathbf{x}_i = \lambda_i A^* \mathbf{x}_i \Rightarrow \{A^* \mathbf{x}_i\}$ are eigenvectors of A (as $\{\mathbf{x}_i\}$). Moreover

$$(A^*\mathbf{x}_i)^*(A^*\mathbf{x}_j) = \mathbf{x}_i^*AA^*\mathbf{x}_j = \mathbf{x}_i^*A^*A\mathbf{x}_j = (A\mathbf{x}_i)^*(A\mathbf{x}_j) = (\lambda_i\mathbf{x}_i)^*(\lambda_j\mathbf{x}_j) = \overline{\lambda_i}\lambda_j\mathbf{x}_i^*\mathbf{x}_j = |\lambda_i|^2\delta_{ij}.$$

So, if A is also non singular, then $\{\frac{1}{\lambda_i}A^*\mathbf{x}_i\}$ are orthonormal eigenvectors of A (as $\{\mathbf{x}_i\}$).

Circulant-type matrix algebras

Let

$$A = \left[\begin{array}{rrr} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{array} \right].$$

We have:

•
$$A^3 = I$$
 iff $abc = 1$
$$A^2 = \begin{bmatrix} 0 & 0 & ab \\ bc & 0 & 0 \\ 0 & ca & 0 \end{bmatrix}, A^3 = \begin{bmatrix} abc & 0 & 0 \\ 0 & bca & 0 \\ 0 & 0 & cab \end{bmatrix}$$

- the characteristic polynomial of A is $\lambda^3 abc$, so, if abc = 1 then the eigenvalues of A are: 1, ω_3 , ω_3^2 , where $\omega_3 = e^{-i2\pi/3}$.
- A is normal iff |a| = |b| = |c|.
- *A* is unitary iff |a| = |b| = |c| = 1.

By imposing the identity

$$\begin{bmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \omega^{i} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

for i = 0, i = 1, i = 2, and therefore by requiring, respectively, the conditions abc = 1, abc = 1 & $\omega^3 = 1$, abc = 1 & $\omega^6 = 1$, one obtains the equalities:

$$\begin{bmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ bc \\ c \end{bmatrix} = 1 \begin{bmatrix} 1 \\ bc \\ c \end{bmatrix}, \begin{bmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ bc\omega^{2} \\ c\omega^{2} \end{bmatrix} = \omega \begin{bmatrix} 1 \\ bc\omega^{2} \\ c\omega^{2} \end{bmatrix},$$

So, if abc = 1 and Q = diag(1, bc, c)F, where F is the 3×3 Fourier matrix, then $AQ = Q \text{diag}(1, \omega_3, \omega_3^2)$.

Note that Q is unitary iff |a| = |b| = |c| = 1 (iff A is unitary). Exercise. Consider the $n \times n$ case.

Proof of $A\mathbf{x}_i = \lambda_i \mathcal{A}\mathbf{x}_i$, $A = [t^{|i-j|}]$, \mathcal{A} GStrang

Let A be the real symmetric Toeplitz matrix $[t^{|i-j|}]_{i,j=1}^n$ and \mathcal{A} be the GStrang circulant matrix associated with A. Assume n even, set m = n/2 and consider the $m \times m$ matrices

$$S = \begin{bmatrix} 1 & t & \cdots & t^{m-1} \\ t & & & \\ \vdots & & & \\ t^{m-1} & & & \end{bmatrix}, R = \begin{bmatrix} t^m & t^{m+1} & \cdots & t^{n-1} \\ t^{m-1} & & & \\ \vdots & & & \\ t & & & \end{bmatrix}, Q = \begin{bmatrix} t^m & t^{m-1} & \cdots & t \\ t^{m-1} & & & \\ t^{m-1} & & & \\ \vdots & & & \\ t & & & \end{bmatrix}, J = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & 1 & 0 \\ 0 & & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$

(S, R, Q are Toeplitz). Observe that

$$A = \begin{bmatrix} S & R \\ R^T & S \end{bmatrix}, \quad SJ = JS, \quad RJ = JR^T, \quad \mathcal{A} = \begin{bmatrix} S & Q \\ Q & S \end{bmatrix}, \quad QJ = JQ.$$

Obviously we have the identities $A\mathbf{e}_m = \mathcal{A}\mathbf{e}_m$ and $A\mathbf{e}_{m+1} = \mathcal{A}\mathbf{e}_{m+1}$. Moreover, if \mathbf{x} is the $m \times 1$ vector $[t \ 0 \ \cdots \ 0 \ -t^m]^T$, then

$$S\mathbf{x} = \begin{bmatrix} t - t^{n-1} \\ t^2 - t^{n-2} \\ \vdots \\ t^m - t^m \end{bmatrix}, \quad QJ\mathbf{x} = \begin{bmatrix} -t^n + t^2 \\ -t^{n-1} + t^3 \\ \vdots \\ -t^{m+1} + t^{m+1} \end{bmatrix}, \quad RJ\mathbf{x} = \begin{bmatrix} -t^n + t^n \\ -t^{n-1} + t^{n-1} \\ \vdots \\ -t^{m+1} + t^{m+1} \end{bmatrix} = \mathbf{0}.$$

$$\Rightarrow S\mathbf{x} \pm RJ\mathbf{x} = \begin{bmatrix} t - t^{n-1} \\ t^2 - t^{n-2} \\ \vdots \\ t^m - t^m \end{bmatrix}, S\mathbf{x} \pm QJ\mathbf{x} = \begin{bmatrix} (t - t^{n-1})(1 \pm t) \\ (t^2 - t^{n-2})(1 \pm t) \\ \vdots \\ (t^m - t^m)(1 \pm t) \end{bmatrix}$$
$$\Rightarrow \frac{1}{1 \pm t}(S\mathbf{x} \pm QJ\mathbf{x}) = S\mathbf{x} \pm RJ\mathbf{x}. \tag{1}$$
$$\Rightarrow SJJ\mathbf{x} \pm RJ\mathbf{x} = \frac{1}{1 \pm t}(SJJ\mathbf{x} \pm QJ\mathbf{x})$$
$$\Rightarrow JSJ\mathbf{x} \pm JR^T\mathbf{x} = \frac{1}{1 \pm t}(JSJ\mathbf{x} \pm QJ\mathbf{x})$$
$$\Rightarrow SJ\mathbf{x} \pm R^T\mathbf{x} = \frac{1}{1 \pm t}(SJ\mathbf{x} \pm Q\mathbf{x})$$
$$\Rightarrow LSJ\mathbf{x} \pm R^T\mathbf{x} = \frac{1}{1 \pm t}(SJ\mathbf{x} \pm Q\mathbf{x})$$
$$\Rightarrow \pm SJ\mathbf{x} + R^T\mathbf{x} = \frac{1}{1 \pm t}(SJ\mathbf{x} \pm Q\mathbf{x}). \tag{2}$$

Equalities (1) and (2) imply

$$\begin{bmatrix} S & R \\ R^T & S \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \pm J\mathbf{x} \end{bmatrix} = \frac{1}{1 \pm t} \begin{bmatrix} S & Q \\ Q & S \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \pm J\mathbf{x} \end{bmatrix}, \quad \text{i.e.}$$

$$A \begin{bmatrix} t \\ 0 \\ \vdots \\ 0 \\ -t^m \\ \mp t^m \\ 0 \\ \vdots \\ 0 \\ \pm t \end{bmatrix} = \frac{1}{1 \pm t} \mathcal{A} \begin{bmatrix} t \\ 0 \\ \vdots \\ 0 \\ -t^m \\ \mp t^m \\ 0 \\ \vdots \\ 0 \\ \pm t \end{bmatrix}.$$

Finally, let **y** be any $m \times 1$ vector $[y_0 \ y_1 \ \cdots \ y_{m-1}]^T$ satisfying the following two linear equations:

(a) $y_0 + y_1 t + \ldots + y_j t^j + \ldots + y_{m-1} t^{m-1} = 0,$ (b) $y_{m-1} + y_{m-2} t + \ldots + y_{j-1} t^{m-j} + \ldots + y_0 t^{m-1} = 0.$

Multiplying (a) by t^m, t^{m-1}, \ldots, t and (b) by t, t^2, \ldots, t^m , one obtains the identities:

$$R\mathbf{y} = \begin{bmatrix} t^m & t^{m+1} & \cdots & t^{n-1} \\ t^{m-1} & & \\ \vdots & & \\ t & & \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{bmatrix} = \mathbf{0}, \ R^T \mathbf{y} = \begin{bmatrix} t^m & t^{m-1} & \cdots & t \\ t^{m+1} & & \\ \vdots \\ t^{n-1} & & \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{bmatrix} = \mathbf{0}$$
$$\Rightarrow A \begin{bmatrix} \mathbf{y} \\ \pm \mathbf{y} \end{bmatrix} = \begin{bmatrix} S & R \\ R^T & S \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \pm \mathbf{y} \end{bmatrix} = \begin{bmatrix} S\mathbf{y} \\ \pm S\mathbf{y} \end{bmatrix}.$$
(1)

On the other side we also have:

$$t^{m}S\mathbf{y} = t^{m} \begin{bmatrix} 1 & t & \cdots & t^{m-1} \\ t & & & \\ \vdots & & & \\ t^{m-1} & & & \end{bmatrix} \begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{m-1} \end{bmatrix} = -\begin{bmatrix} t^{m} & t^{m-1} & \cdots & t \\ t^{m-1} & & & \\ \vdots & & & \\ t & & & \end{bmatrix} \begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{m-1} \end{bmatrix} = -Q\mathbf{y}.$$

In fact, for j = 0, 1, ..., m - 1 the (j + 1)-row in the left is equal to (use (b) and (a), respectively)

$$\begin{bmatrix} t^{m+j} \cdots t^{m+1} \ t^m \ t^{m+1} \cdots t^{2m-1-j} \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{bmatrix}$$

= $(t^{m+j}y_0 + t^{m+j-1}y_1 + \ldots + t^{m+1}y_{j-1}) + (t^m y_j + t^{m+1}y_{j+1} + \ldots + t^{2m-1-j}y_{m-1})$
= $(-y_{m-1} - y_{m-2}t \ldots - y_jt^{m-j-1})t^{j+1} + (-y_0 - y_1t \ldots - y_{j-1}t^{j-1})t^{m-j}$
= $-[t^{m-j} \cdots t^{m-1} \ t^m \ t^{m-1} \cdots t^{j+1}] \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{bmatrix}$

which is the (j + 1)-row in the right. Thus

$$\mathcal{A}\begin{bmatrix}\mathbf{y}\\\pm\mathbf{y}\end{bmatrix} = \begin{bmatrix}S\mathbf{y}\pm Q\mathbf{y}\\Q\mathbf{y}\pm S\mathbf{y}\end{bmatrix} = \begin{bmatrix}S\mathbf{y}\mp t^m S\mathbf{y}\\-t^m S\mathbf{y}\pm S\mathbf{y}\end{bmatrix} = (1\mp t^m)\begin{bmatrix}S\mathbf{y}\\\pm S\mathbf{y}\end{bmatrix}.$$
 (2)

From (1) and (2) it follows that

$$A\begin{bmatrix}\mathbf{y}\\\pm\mathbf{y}\end{bmatrix} = \frac{1}{1 \mp t^m} \mathcal{A}\begin{bmatrix}\mathbf{y}\\\pm\mathbf{y}\end{bmatrix}, \forall \mathbf{y} \mid \begin{bmatrix}1 & t & \cdots & t^{m-1}\\t^{m-1} & \cdots & t & 1\end{bmatrix} \mathbf{y} = \begin{bmatrix}0\\0\end{bmatrix}.$$

So we have:

- m 2 eigenvectors of type $\begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix}$ corresponding to the eigenvalue $\frac{1}{1-t^m}$ - m - 2 eigenvectors of type $\begin{bmatrix} \mathbf{y} \\ -\mathbf{y} \end{bmatrix}$ corresponding to the eigenvalue $\frac{1}{1+t^m}$
- two eigenvectors \mathbf{e}_m and \mathbf{e}_{m+1} corresponding to the eigenvalue 1
- one eigenvector $\begin{bmatrix} \mathbf{x} \\ J\mathbf{x} \end{bmatrix}$ corresponding to the eigenvalue $\frac{1}{1+t}$ - one eigenvector $\begin{bmatrix} \mathbf{x} \\ -J\mathbf{x} \end{bmatrix}$ corresponding to the eigenvalue $\frac{1}{1-t}$

where $\mathbf{x} = \begin{bmatrix} t & 0 & \cdots & 0 \\ 0 & -t^m \end{bmatrix}^T$ and the vectors \mathbf{y} are m-2 linearly independent solutions of the system:

$$\begin{bmatrix} 1 & t & \cdots & t^{m-1} \\ t^{m-1} & \cdots & t & 1 \end{bmatrix} \mathbf{y} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

We have proved the equality $A\mathbf{x}_i = \lambda_i \mathcal{A}\mathbf{x}_i$ for *n* (eigenvalues, eigenvectors) $(\lambda_i, \mathbf{x}_i)$. Why the \mathbf{x}_i are linearly independent?

Let A, B be $n \times n$ (non null) matrices with complex entries. Assume that $A\mathbf{x} = \lambda B\mathbf{x}$, $A\mathbf{y} = \mu B\mathbf{y}$ for non null vectors \mathbf{x} and \mathbf{y} where $\lambda, \mu \in \mathbb{C}, \lambda \neq \mu$. Then \mathbf{x} and \mathbf{y} are linearly independent.

If B is non singular, then we have the equations $B^{-1}A\mathbf{x} = \lambda \mathbf{x}$ and $B^{-1}A\mathbf{y} = \mu \mathbf{y}$, and the thesis follows as in the classic eigenvalue problem case (but $B^{-1}A$ takes the role of A).

If A is non singular and both λ and μ are non zero (the case of GStrang) then we have the equations $A^{-1}B\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$ and $A^{-1}B\mathbf{y} = \frac{1}{\mu}\mathbf{y}$, and the proof is very similar to the classic eigenvalue problem case (but $A^{-1}B$ takes the role of A).

If B is singular, A is non singular and $\lambda = 0$ (or $\mu = 0$), then we have the equation $A\mathbf{x} = \mathbf{0}$ ($A\mathbf{y} = \mathbf{0}$) which implies $\mathbf{x} = \mathbf{0}$ ($\mathbf{y} = \mathbf{0}$), which is against our hypothesis.

If B and A are singular ... is the thesis true ?

Proof of eigenvalue minmax representation for a hermitian matrix A (and of the interlace theorem)

(1) $A\mathbf{x}_i = \lambda_i \mathbf{x}_i, \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ (recall that normal matrices can be diagonalized via unitary transforms). Let $V_j \subset \mathbb{C}^n$ be a generic space of dimension j. Then for any $\mathbf{x} \neq \mathbf{0}, \mathbf{x} \in V_j \cap \text{Span} \{\mathbf{x}_j, \ldots, \mathbf{x}_n\}$, we have $\mathbf{x} = \sum_{i=j}^n \alpha_i \mathbf{x}_i$ with α_i not all zeroes, and

$$\frac{\mathbf{x}^* A \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \frac{(\sum_i \alpha_i \mathbf{x}_i)^* A(\sum_k \alpha_k \mathbf{x}_k)}{(\sum_i \alpha_i \mathbf{x}_i)^* (\sum_k \alpha_k \mathbf{x}_k)} = \frac{(\sum \overline{\alpha_i} \mathbf{x}_i^*) (\sum \alpha_k \lambda_k \mathbf{x}_k)}{(\sum \overline{\alpha_i} \mathbf{x}_i^*) (\sum \alpha_k \mathbf{x}_k)} \\ = \frac{\sum_{i=j}^n |\alpha_i|^2 \lambda_i}{\sum_{i=j}^n |\alpha_i|^2} \ge \lambda_j.$$

Thus $\lambda_j \leq \max_{\mathbf{x} \in V_j} (\mathbf{x}^* A \mathbf{x} / \mathbf{x}^* \mathbf{x}).$

Moreover, we have $(\mathbf{x}_j^* A \mathbf{x}_j / \mathbf{x}_j^* \mathbf{x}_j) = \lambda_j$, and for any $\mathbf{x} = \sum_{i=1}^j \beta_i \mathbf{x}_i$, with β_i not all zeroes,

$$\frac{\mathbf{x}^* A \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \frac{\sum_{i=1}^j |\beta_i|^2 \lambda_i}{\sum_{i=1}^j |\beta_i|^2} \le \lambda_j.$$

It follows that for $V_j = \text{Span} \{ \mathbf{x}_1 \dots \mathbf{x}_j \}$ it holds $\max_{\mathbf{x} \in V_j} \frac{\mathbf{x}^* A \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \lambda_j$.

(2) A, B, C hermitian, $\alpha_i, \beta_i, \gamma_i$ their eigenvalues in non-decreasing order, C = A + B: proof of the interlace theorem

$$\gamma_{j} = \min_{V_{j}} \max_{\mathbf{x} \in V_{j}} \frac{\mathbf{x}^{*}C\mathbf{x}}{\mathbf{x}^{*}\mathbf{x}} = \min_{V_{j}} \max_{\mathbf{x} \in V_{j}} \left(\frac{\mathbf{x}^{*}A\mathbf{x}}{\mathbf{x}^{*}\mathbf{x}} + \frac{\mathbf{x}^{*}B\mathbf{x}}{\mathbf{x}^{*}\mathbf{x}}\right)$$

$$\leq \min_{V_{j}} \max_{\mathbf{x} \in V_{j}} \left(\frac{\mathbf{x}^{*}A\mathbf{x}}{\mathbf{x}^{*}\mathbf{x}} + \beta_{n}\right) = \min_{V_{j}} \max_{\mathbf{x} \in V_{j}} \frac{\mathbf{x}^{*}A\mathbf{x}}{\mathbf{x}^{*}\mathbf{x}} + \beta_{n} = \alpha_{j} + \beta_{n},$$

$$\begin{aligned} \alpha_j &= \min_{V_j} \max_{\mathbf{x} \in V_j} \frac{\mathbf{x}^* A \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \min_{V_j} \max_{\mathbf{x} \in V_j} \left(\frac{\mathbf{x}^* C \mathbf{x}}{\mathbf{x}^* \mathbf{x}} - \frac{\mathbf{x}^* B \mathbf{x}}{\mathbf{x}^* \mathbf{x}} \right) \\ &\leq \min_{V_j} \max_{\mathbf{x} \in V_j} \left(\frac{\mathbf{x}^* C \mathbf{x}}{\mathbf{x}^* \mathbf{x}} - \beta_1 \right) = \min_{V_j} \max_{\mathbf{x} \in V_j} \frac{\mathbf{x}^* C \mathbf{x}}{\mathbf{x}^* \mathbf{x}} - \beta_1 = \gamma_j - \beta_1. \end{aligned}$$

Deflation

Le A be a $n \times n$ matrix. Denote by λ_i , i = 1, ..., n, the eigenvalues of A and by \mathbf{y}_i the corresponding eigenvectors. So, we have $A\mathbf{y}_i = \lambda_i \mathbf{y}_i$, i = 1, ..., n.

Assume that λ_1, \mathbf{y}_1 are given and that $\lambda_1 \neq 0$. Choose $\mathbf{w} \in \mathbb{C}^n$ such that $\mathbf{w}^* \mathbf{y}_1 \neq 0$ (given \mathbf{y}_1 choose \mathbf{w} not orthogonal to \mathbf{y}_1) and set

$$W = A - \frac{\lambda_1}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1 \mathbf{w}^*$$

It is known that the eigenvalues of W are

$$0, \lambda_2, \ldots, \lambda_j, \ldots, \lambda_n$$

i.e. they are the same of A except λ_1 which is replaced with 0. Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_j, \ldots, \mathbf{w}_n$ be the corresponding eigenvectors $(W\mathbf{w}_1 = \mathbf{0}, W\mathbf{w}_j = \lambda_j \mathbf{w}_j)$ $j = 2, \ldots, n$. Is it possible to obtain the \mathbf{w}_j from the \mathbf{y}_j ? First observe that

 $A\mathbf{y}_1 = \lambda_1 \mathbf{y}_1 \implies W \mathbf{y}_1 = \mathbf{0} : \ \mathbf{w}_1 = \mathbf{y}_1.$ (a)

Then, for $j = 2, \ldots, n$,

$$W\mathbf{y}_j = A\mathbf{y}_j - \frac{\lambda_1}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1 \mathbf{w}^* \mathbf{y}_j = \lambda_j \mathbf{y}_j - \lambda_1 \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1.$$
 (1)

If we impose $\mathbf{y}_j = \mathbf{w}_j + c\mathbf{y}_1$, $j = 2, \dots, n$, then (1) becomes,

$$W\mathbf{w}_{j} + cW\mathbf{y}_{1} = \lambda_{j}\mathbf{w}_{j} + c\lambda_{j}\mathbf{y}_{1} - \lambda_{1}\frac{\mathbf{w}^{*}\mathbf{w}_{j}}{\mathbf{w}^{*}\mathbf{y}_{1}}\mathbf{y}_{1} - c\lambda_{1}\mathbf{y}_{1}$$
$$= \lambda_{j}\mathbf{w}_{j} + \mathbf{y}_{1}[c\lambda_{j} - \lambda_{1}\frac{\mathbf{w}^{*}\mathbf{w}_{j}}{\mathbf{w}^{*}\mathbf{y}_{1}} - \lambda_{1}c]$$

So, if $\lambda_j \neq \lambda_1$ and

$$\mathbf{w}_j = \mathbf{y}_j - \frac{\lambda_1}{\lambda_j - \lambda_1} \frac{\mathbf{w}^* \mathbf{w}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1, \tag{2}$$

then $W\mathbf{w}_j = \lambda_j \mathbf{w}_j$. If, moreover, $\lambda_j \neq 0$, then $\mathbf{w}^* \mathbf{y}_j = \mathbf{w}^* \mathbf{w}_j + \frac{\lambda_1}{\lambda_j - \lambda_1} \mathbf{w}^* \mathbf{w}_j \Rightarrow$ $\mathbf{w}^* \mathbf{y}_j = \mathbf{w}^* \mathbf{w}_j \frac{\lambda_j}{\lambda_j - \lambda_1} \Rightarrow \mathbf{w}^* \mathbf{w}_j = \frac{\lambda_j - \lambda_1}{\lambda_j} \mathbf{w}^* \mathbf{y}_j$. So, by (2),

for all
$$j \in \{2...n\} \mid \lambda_j \neq \lambda_1, 0$$
:
 $A\mathbf{y}_j = \lambda_j \mathbf{y}_j \Rightarrow$

$$W(\mathbf{y}_j - \frac{\lambda_1}{\lambda_j} \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1) = \lambda_j (\mathbf{y}_j - \frac{\lambda_1}{\lambda_j} \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1)$$
: $\mathbf{w}_j = \mathbf{y}_j - \frac{\lambda_1}{\lambda_j} \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1$. (b)

Note that a formula for \mathbf{y}_j in terms of \mathbf{w}_j holds: see (2).

As regards the case $\lambda_j = \lambda_1$, it is simple to show that

for all
$$j \in \{2...n\} \mid \lambda_j = \lambda_1$$
:
 $A\mathbf{y}_j = \lambda_j \mathbf{y}_j \Rightarrow$
 $W(\mathbf{y}_j - \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1) = \lambda_j (\mathbf{y}_j - \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1)$: $\mathbf{w}_j = \mathbf{y}_j - \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1$.
(c)

Note that the vectors $\mathbf{y}_j - \frac{\mathbf{w}^* \mathbf{y}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1$ are orthogonal to \mathbf{w} . Is it possible to find from (c) an expression of \mathbf{y}_j in terms of \mathbf{w}_j ?

It remains the case $\lambda_j = 0$: find ? in

for all
$$j \in \{2...n\} \mid \lambda_j = 0$$
:
 $A\mathbf{y}_j = \lambda_j \mathbf{y}_j = \mathbf{0} \implies W(?) = \lambda_j(?) = \mathbf{0} : \mathbf{w}_j = ?$

$$(d?)$$

 $(\mathbf{y}_j = \mathbf{w}_j - \frac{\mathbf{w}^* \mathbf{w}_j}{\mathbf{w}^* \mathbf{y}_1} \mathbf{y}_1 \Rightarrow \mathbf{w}^* \mathbf{y}_j = 0) \dots$

Choices of **w**. Since $\mathbf{y}_1^* \mathbf{y}_1 \neq 0$ one can set $\mathbf{w} = \mathbf{y}_1$. In this way, if A is hermitian also W is hermitian.... If i is such that $(\mathbf{y}_1)_i \neq 0$ then $\mathbf{e}_i^T A \mathbf{y}_1 = \lambda_1(\mathbf{y}_1)_i \neq 0$. So one can set $\mathbf{w}^* = \mathbf{e}_i^T A = \text{row } i \text{ of } A$. In this way the row i of W is null and therefore we can introduce a matrix of order n-1 whose eigenvalues are $\lambda_2, \ldots, \lambda_n$ (the unknown eigenvalues of A).