A che serve il clustering attorno a 1

Let A be a p.d. matrix and ¢, 0 < € < 1, be fixed.

Denote by A7 the eigenvalues of A outside the interval [1 —¢,1+ €] and by
7e the number of such eigenvalues. Set S = [1 —¢,1+¢]U{A5} and let p,; be
the polynomial
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where T} (z) denotes the chebycev polynomial of degree k. ((b+a—2\)/(b—a) =
(I—=XN)/e, (b+a)/(b—a)=1/e,ifa=1—¢, b=1+¢ ). Notice that S is a set
containing all the eigenvalues of A, and p, has exactly degree ¢ and p,(0) = 1.
Then one can say that if x, is the g-th vector generated by the CG method
when solving Ax = b, then

I = xqll4 < (max pg(A)])lx — %ol a- (bound)

This bound for ||x — x4||4 allows a better evaluation of the CG rate of conver-
gence with respect to the well known bound

[x —x4]|a <2 <%Zij§;> IIx —xolla, n2(A) = % (wkbound)

in case it is known that most of (almost all) the eigenvalues of A are in some
interval [1 — &,1 + ] where ¢ is small (almost zero).

If, moreover, the n x n linear system Ax = b can be seen as one of a sequence
of increasing order linear systems, with the property that Ve > 0 3 k., n. such
that for all n > n. outside [1 — &, 1 + ] fall no more than n. eigenvalues of A,
then (bound) allows to prove the superlinear convergence of CG.

(Note that in general CG has a linear rate of convergence, as a consequence
of (wkbound)).

Let us prove these assertions, by evaluating maxyeg [pg(N)]-

maxies |pq()‘)| = INaX)g[l—e,1+€] |pq()‘)|
Tq—r. (1=X)/e
< (maxm]_[Aj — % )(max_ % )
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Now first notice that
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Then denote by 5\3 those eigenvalues \j satisfying the inequalities
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So, we have
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where in the latter approximation we have used the following Taylor expansion

lte
1—¢ 1

fe=t=—=t+

1 2
i+l

o |

770)+....

Dubbio su GStrang

If t2 < 1 then Ax; = \jAx;, \; > 0, for n linearly independent vectors X;.

Thus, if X denotes the matrix whose columns are the x; then AX = AX D,
D = diag (\;) = det(A) # 0 = A 'Ax; = \;jx; = i \; sono gli autovalori di
ALA.

Since (A7'A)™1 = A71A = L7TL7'A = L-T(L7YAL"T)LT, then the
eigenvalues of L= AL~ are 1/); > 0.

= L 'AL Tispd = Aispd. = A 'Aand E-'AE~T, EET = A, have
the same eigenvalues.

But, why the x; are independent?

Sui metodi iterativi (H, uy)
rey = b — Axk
T rl Auy,

H=A"A: xk+1:xk+muk

becomes Richardson for uy = ry, and a method which converges in one step
if up, = A~ r;, = x — x3. Choose u;, = E;lrk ?

For the method
(x —x3)THu

ulHu

we know that |(x — x3)T Hu|/vul Hu — 0, or, in case u are vectors of the
canonical basis, |(x — x3)T Hu| — 0. So, x — x}, tends to be orthogonal to u.

Assume s;, € {1,2,...,n} are chosen so that Vi we have sy, = 7 for an infinite
number of k. Set u = e, . Then x — x; tends to be orthogonal to all vectors
of the canonical basis, and thus tends to be the null vector. It follows that
Gauss-Seidel an Southwell are not the only laws leading to the convergence of
the scheme with u = e,,. Some of these remarks are not correct, why ?

Xk+1 = Xk +

"R(A) >0’ vs ’p.d. of hermitian part of A’

Let A be a n X n matrix with complex entries.

Set A, = (A + A%)) (hermitian part of A) and A, = £(A — A*) (anti-
hermitian part of A). Obvioulsly A = A}, + Agp.

If z*Apz > 0 for all non null complex vectors z, or, equivalently, if Ay is
p.d., then R(A(A)) > 0.



There exists x # 0 such that \(A) = x*Ax. Thus
RA(A)) = R(xTApx +x"Agpx) = X" Apx > 0

( x*Aapx = (X*Aupx)* = x* A% x = —x*Aapx, s0 x*Agpx is is a complex
number with null real part).
If R(A(A)) > 0 and A is normal then z*Apz > 0, ¥ z # 0.
Let xj, be eigenvectors of A (Axy = A\pxy) such that x}x; is 1 if i = j and
0 otherwise. Then
z*Apz = R(z"Az) = R aixi)*AY o5%;))
= %(Z |Oék|2/\k) = E |0¢]¢|2§R()\k) >0, z#0.

The hypothesis $8(A(A)) > 0 alone is not sufficient to assure that z* A,z > 0,
V z # 0. For instance, if

_| 1 a 2
A—{O 1},a€R,a —4 >0,

then
[xy]A[ ’ } — e za+y] [ ’ } — 2 +azy +

is not positive for all z,y € R, [z y] # [0 0]. (We have used the fact that if
z € R" A € R" " then z*Apz = z* Az).

On the rate of convergence of some iterative methods in cases where the
coefficient matriz has a p.d. hermitian part

For some linear systems iterative solvers (f.i. GMRES), it is known that the
residual at step k, rp = b — Axy, satisfies the inequality

min \(A)? H
Il < (1 ZERE) ol 1)
(I'm not sure if the norm is the 2-norm) provided that the hermitian part Aj, of
A is p.d. (This assertion is surely true in case of systems Ax = b with A and b
real, see [Saad book]).
Remark. If A is also hermitian or, equivalently, if A is p.d., then the number
in the parentheses becomes 1 — 1/uo(A)2.

Let us observe that

min \(Ap)?
where the equality (on the right) holds iff A = oI, « > 0.

Lemma. If Ap is p.d. then R(A(A)) > min A\(Ap).

Proof. There exists a vector x, [|x||2 = 1, such that R(A(A4)) = x*Apx. The
thesis follows from the minmax eigenvalues representation theory for hermitian
matrices.

By the Lemma, we have
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Note, more precisely, that the equality R(A(A)) = p(A) holds for all A\(A) iff
the eigenvalues A(A) are all equal to an «, a > 0, iff there exists T unitary such
that

a k%

T YAT =

*
(0%

If at least one of the entries * in the upper triangular part of this matrix is
nonzero, then [|A|l2 > a = p(A). It follows that min A(Ay) < y/max(A(A*A))
unless A = al, a > 0.

Let A be a non singular real n X n matrix. We know that the condition
R(A(A)) > 0 (which is verified f.i. if the hermitian part of A is p.d.) is necessary
and sufficient for the existence of & > 0 such that Vw € (0,) the Richardson
iterative scheme

xp €ER", xpy1 =x +w(b— Axy), k=0,... (R(w))

converges to the solution x = A~!b of the linear system Az = b.

Let woyr be a (it may be not unique) value of w for which the rate of conver-
gence is maxima, i.e. p(I —wepA) = minp(I — wA).

Now we prove the following assertion:

If A is real, normal and its eigenvalues are of the form a+iB;, j=1,...,n,
a >0, B; zero for at least one j (these hypothesis imply that the hermitian part
of A is p.d.), then the error at step k of R(wett) satisfies the inequality

k
1 2
[x —xxll2 < (1 - m) [[x — xoll2 (2)

where pi3(A) = \/a? +max (8 /a is the condition number of A (compare with
(1), where A is p.d.).

So, pa(A) small is a sufficient condition to have fast convergence also in cases
where A is not p.d..

Example. A= B+ al, B real, B* = —B, det(B) =0, a > 0. For instance

0 10
B=|-1 0 1
0 -1 0

Proof. First recall that if M is a normal matrix then p(M) = || M]|2.
Observe that p(I — wA)? = maxy g, (w), gr(w) = w?(a® + B7) — 2wa + 1.
Since g, (w) = 2w(a? + %) — 2a, we have
«

m) =0, g,(0)=—2a
i

9i(
and thus g (0) is constant with respect to k and negative. It follows that R(w)
converges iff w € (0,2a/(a? + max 37)). Moreover,

« a? 1

ott = —5———=5, Pl —woen A =1—- 57— =1— ——,
Wott o? 4+ max (37 P = wotA) a? + max 3} p2(A)2

1 = %[z < 1T = wore All3]|% — Xoll2 = p(I — woreA)*|x — xo]|2

which imply the thesis.



