
A che serve il clustering attorno a 1
Let A be a p.d. matrix and ε, 0 < ε < 1, be fixed.
Denote by λε

j the eigenvalues of A outside the interval [1 − ε, 1 + ε] and by
rε the number of such eigenvalues. Set S = [1 − ε, 1 + ε] ∪ {λε

j} and let pq be
the polynomial

pq(λ) =
∏

λε
j

(

1 − λ

λε
j

)

Tq−rε
((1 − λ)/ε)

Tq−rε
(1/ε)

, q ≥ rε

where Tk(x) denotes the chebycev polynomial of degree k. ((b+a−2λ)/(b−a) =
(1− λ)/ε, (b + a)/(b− a) = 1/ε, if a = 1− ε, b = 1 + ε ). Notice that S is a set
containing all the eigenvalues of A, and pq has exactly degree q and pq(0) = 1.
Then one can say that if xq is the q-th vector generated by the CG method
when solving Ax = b, then

‖x− xq‖A ≤ (max
λ∈S

|pq(λ)|)‖x − x0‖A. (bound)

This bound for ‖x− xq‖A allows a better evaluation of the CG rate of conver-
gence with respect to the well known bound

‖x − xq‖A ≤ 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)q

‖x − x0‖A, µ2(A) =
maxλ(A)

min λ(A)
(wkbound)

in case it is known that most of (almost all) the eigenvalues of A are in some
interval [1 − ε, 1 + ε] where ε is small (almost zero).

If, moreover, the n×n linear system Ax = b can be seen as one of a sequence
of increasing order linear systems, with the property that ∀ ε > 0 ∃ kε, nε such
that for all n > nε outside [1 − ε, 1 + ε] fall no more than nε eigenvalues of A,
then (bound) allows to prove the superlinear convergence of CG.

(Note that in general CG has a linear rate of convergence, as a consequence
of (wkbound)).

Let us prove these assertions, by evaluating maxλ∈S |pq(λ)|.

maxλ∈S |pq(λ)| = maxλ∈[1−ε,1+ε] |pq(λ)|
≤ (max...

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣)(max...

∣

∣

∣

Tq−rε ((1−λ)/ε)
Tq−rε (1/ε)

∣

∣

∣)

= (max...

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣) 1
Tq−rε (1/ε) .

Now first notice that

Tq−rε

(

1

ε

)

= Tq−rε

(

1+ε
1−ε + 1
1+ε
1−ε − 1

)

>
1

2





√

1+ε
1−ε + 1

√

1+ε
1−ε − 1





q−rε

.

Then denote by λ̂ε
j those eigenvalues λε

j satisfying the inequalities

λε
j < 1 − ε, λε

j <
1

2
(1 + ε)

and observe that

maxλ∈[1−ε,1+ε]

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣ ≤ max...

∏

λ̂ε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣

=
∏

λ̂ε
j

(

1+ε

λ̂ε
j

− 1

)

.
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So, we have

maxλ∈S |pq(λ)| ≤
∏

λ̂ε
j

(

1+ε
λ̂ε

j

− 1

)

2

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≤ 2
(

1+ε
min λ(A) − 1

)#λ̂ε
j

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≈
(

1+ε
minλ(A) − 1

)#λ̂ε
j εq

εrε2q−rε−1 ,

where in the latter approximation we have used the following Taylor expansion

f(ε) =

√

1+ε
1−ε − 1

√

1+ε
1−ε + 1

=
ε

2
+

ε2

2
f ′′(0) + . . . .

Dubbio su GStrang
If t2 < 1 then Axi = λiAxi, λi > 0, for n linearly independent vectors xi.
Thus, if X denotes the matrix whose columns are the xi then AX = AXD,

D = diag (λi) ⇒ det(A) 6= 0 ⇒ A−1Axi = λixi ⇒ i λi sono gli autovalori di
A−1A.

Since (A−1A)−1 = A−1A = L−T L−1A = L−T (L−1AL−T )LT , then the
eigenvalues of L−1AL−T are 1/λi > 0.

⇒ L−1AL−T is p.d. ⇒ A is p.d. ⇒ A−1A and E−1AE−T , EET = A, have
the same eigenvalues.

But, why the xi are independent?

Sui metodi iterativi (H, uk)
rk = b − Axk

H = AT A: xk+1 = xk +
r

T
k Auk

‖Auk‖2
2

uk

becomes Richardson for uk = rk , and a method which converges in one step
if uk = A−1

rk = x − xk. Choose uk = L−1
A rk ?

For the method

xk+1 = xk +
(x − xk)T Hu

uT Hu
u

we know that |(x − xk)T Hu|/
√

uT Hu → 0, or, in case u are vectors of the
canonical basis, |(x − xk)T Hu| → 0. So, x − xk tends to be orthogonal to u.

Assume sk ∈ {1, 2, . . . , n} are chosen so that ∀ i we have sk = i for an infinite
number of k. Set u = esk

. Then x − xk tends to be orthogonal to all vectors
of the canonical basis, and thus tends to be the null vector. It follows that
Gauss-Seidel an Southwell are not the only laws leading to the convergence of
the scheme with u = esk

. Some of these remarks are not correct, why ?

’ <(A) > 0’ vs ’p.d. of hermitian part of A’
Let A be a n × n matrix with complex entries.
Set Ah = 1

2 (A + A∗)) (hermitian part of A) and Aah = 1
2 (A − A∗) (anti-

hermitian part of A). Obvioulsly A = Ah + Aah.
If z

∗Ahz > 0 for all non null complex vectors z, or, equivalently, if Ah is
p.d., then <(λ(A)) > 0.

2



There exists x 6= 0 such that λ(A) = x
∗Ax. Thus

<(λ(A)) = <(x∗Ahx + x
∗Aahx) = x

∗Ahx > 0

( x∗Aahx = (x∗Aahx)∗ = x
∗A∗

ahx = −x
∗Aahx, so x

∗Aahx is is a complex
number with null real part).

If <(λ(A)) > 0 and A is normal then z
∗Ahz > 0, ∀ z 6= 0.

Let xk be eigenvectors of A (Axk = λkxk) such that x
∗
i xj is 1 if i = j and

0 otherwise. Then

z
∗Ahz = <(z∗Az) = <((

∑

αixi)
∗A(

∑

αjxj))
= <(

∑ |αk|2λk) =
∑ |αk|2<(λk) > 0, z 6= 0.

The hypothesis <(λ(A)) > 0 alone is not sufficient to assure that z
∗Ahz > 0,

∀ z 6= 0. For instance, if

A =

[

1 a
0 1

]

, a ∈ R, a2 − 4 ≥ 0,

then

[x y]A

[

x
y

]

= [x xa + y]

[

x
y

]

= x2 + axy + y2

is not positive for all x, y ∈ R, [x y] 6= [0 0]. (We have used the fact that if
z ∈ R

n, A ∈ R
n×n then z

∗Ahz = z
∗Az).

On the rate of convergence of some iterative methods in cases where the
coefficient matrix has a p.d. hermitian part

For some linear systems iterative solvers (f.i. GMRES), it is known that the
residual at step k, rk = b − Axk, satisfies the inequality

‖rk‖2 ≤
(

1 − min λ(Ah)2

maxλ(A∗A)

)
k
2

‖r0‖2 (1)

(I’m not sure if the norm is the 2-norm) provided that the hermitian part Ah of
A is p.d. (This assertion is surely true in case of systems Ax = b with A and b

real, see [Saad book]).
Remark. If A is also hermitian or, equivalently, if A is p.d., then the number

in the parentheses becomes 1 − 1/µ2(A)2.
Let us observe that

Ah p.d. ⇒ 0 <
min λ(Ah)2

max λ(A∗A)
≤ 1

where the equality (on the right) holds iff A = αI , α > 0.
Lemma. If Ah is p.d. then <(λ(A)) ≥ min λ(Ah).
Proof. There exists a vector x, ‖x‖2 = 1, such that <(λ(A)) = x

∗Ahx. The
thesis follows from the minmax eigenvalues representation theory for hermitian
matrices.

By the Lemma, we have

min λ(Ah) ≤ <(λ(A)) ≤
√

<(λ(A))2 + =(λ(A))2

= |λ(A)| ≤ ρ(A) ≤ ‖A‖2 =
√

maxλ(A∗A).
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Note, more precisely, that the equality <(λ(A)) = ρ(A) holds for all λ(A) iff
the eigenvalues λ(A) are all equal to an α, α > 0, iff there exists T unitary such
that

T−1AT =







α ∗ ∗
. . . ∗

α






.

If at least one of the entries ∗ in the upper triangular part of this matrix is
nonzero, then ‖A‖2 > α = ρ(A). It follows that min λ(Ah) <

√

max(λ(A∗A))
unless A = αI , α > 0.

Let A be a non singular real n × n matrix. We know that the condition
<(λ(A)) > 0 (which is verified f.i. if the hermitian part of A is p.d.) is necessary
and sufficient for the existence of ω̂ > 0 such that ∀ω ∈ (0, ω̂) the Richardson
iterative scheme

x0 ∈ R
n, xk+1 = xk + ω(b− Axk), k = 0, . . . (R(ω))

converges to the solution x = A−1
b of the linear system Az = b.

Let ωott be a (it may be not unique) value of ω for which the rate of conver-
gence is maxima, i.e. ρ(I − ωottA) = min ρ(I − ωA).

Now we prove the following assertion:
If A is real, normal and its eigenvalues are of the form α+ iβj , j = 1, . . . , n,

α > 0, βj zero for at least one j (these hypothesis imply that the hermitian part
of A is p.d.), then the error at step k of R(ωott) satisfies the inequality

‖x− xk‖2 ≤
(

1 − 1

µ2(A)2

)
k
2

‖x− x0‖2 (2)

where µ2(A) =
√

α2 + maxβ2
j /α is the condition number of A (compare with

(1), where A is p.d.).
So, µ2(A) small is a sufficient condition to have fast convergence also in cases

where A is not p.d..
Example. A = B + αI , B real, B∗ = −B, det(B) = 0, α > 0. For instance

B =





0 1 0
−1 0 1
0 −1 0



 .

Proof. First recall that if M is a normal matrix then ρ(M) = ‖M‖2.
Observe that ρ(I − ωA)2 = maxk gk(ω), gk(ω) = ω2(α2 + β2

k) − 2ωα + 1.
Since g′k(ω) = 2ω(α2 + β2

k) − 2α, we have

g′k(
α

α2 + β2
k

) = 0, g′k(0) = −2α

and thus g′k(0) is constant with respect to k and negative. It follows that R(ω)
converges iff ω ∈ (0, 2α/(α2 + maxβ2

k)). Moreover,

ωott =
α

α2 + maxβ2
k

, ρ(I − ωottA)2 = 1 − α2

α2 + max β2
k

= 1 − 1

µ2(A)2
,

‖x − xk‖2 ≤ ‖I − ωottA‖k
2‖x− x0‖2 = ρ(I − ωottA)k‖x− x0‖2

which imply the thesis.
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