Ramanujan in his first paper states that the Bernoulli numbers satisfy the

following equations
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(actually, since Ramanujan Bernoulli numbers are the moduli of ours, his equa-

tions are a bit different).
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such semi-infinite Ramanujan linear system. We observe that such system is

equivalent to the following linear systems:
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ap =1, a1 =a2 =0, a3 = gz2°, au = a5 =0, ag = E2”, ar = ag = 0,
Qg = 25,7;39, ... . The symbol Z denotes the semi-infinite lower shift matrix:
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So, the Ramanujan system is equivalent to a lower triangular Toeplitz (sparse)
linear system. Can the latter system be obtained from the lower triangular
Toeplitz (dense) even and odd linear systems introduced in toe_In ? First let

us prepare things.
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Theorem.
Let Z,_1 and Z,, be the upper-left n — 1 x n — 1 and n X n submatrices of Z.

Then
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Application of the Theorem:
We have shown that the Ramanujan system is equivalent to the system
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Note that from the explicit expression of q* it follows an explicit expression for
the f; of the Ramanujan system:
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Note also that (*) can be rewritten as

L(a, )I?D,b = diag(z;, i =1,2,...,n— 1)I2D.q"

n—1

for suitable z;. Let us look for such z;:
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Now let us consider the two even and odd systems introduced in toe_1n whose
solution is again the vector of Bernoulli numbers:
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Set
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Then
L(a)D,b = D,q, L(a)Z'D,b=d(z)Z" D,q,

where the vectors a = ()5, q = (¢, and z = (2;)%, can assume
respectively the values:
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( Z is the semi-infinite lower shift matrix
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L(a) is the semi-infinite lower triangular Toeplitz matrix with first column «,
ie.
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Exercise.

Try to prove that the system L(a®)D,b = D,q’ (the lower triangular Toeplitz
sparse system equivalent to the Ramanujan lower triangular sparse system) can
be obtained as a consequence of the system L(a®)D,b = D,q° (or L(a®)D,b =
Daq®).

For example, try to find 3¢, 3° such that L(3°)L(a®) = L(a®f) = L(3°)L(a®)
[?? L(B°)D.q® = D.qf = L(3°)D.q° 77], i.e. L(a®)3° = off = L(a®)p°.

Find « such that L(v)L(a®) = L(a) (or L(v)L(a®) = L(«)) with o more sparse

than o.

Exercise.

Prove that d(z)ZT L(a)(D,b) = L(a)ZT(D.b).



Note that
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If we introduce the following two semi-infinite matrices,

1 0
0 0
4 01 0
IL = diag((-1)*,¢=0,1,2,3,...), E=]10 0 0 ,
0 010
0 0 0 O
then the previous equality can be rewritten as
2s—1
L(a)lra = FEa®, a(()l) =1, agl) = 2a95 + Z (—1)jaja23_j, s=1,2,3,....
j=1

Of course, L(a)L(I+a) = L(I+a)L(a) = L(EaW), so, for example, a lower
triangular Toeplitz (1.t.T.) system of the type L(a)z = c is equivalent to the
1.t.T. system L(Fa)z = L(I.a)c whose coefficient matrix has null diagonals
alternating with non-null ones. We shall introduce, as a consequence of this
result, an algorithm of complexity O(n(log, n)?) for solving a lower triangular
Toeplitz system (of order n = 2F).

Exercise. Apply the above result to the odd (even) system (the one solved by
Bernoulli numbers) in order to obtain a system where null diagonals alternate
with the non-null ones. Is it possible to write an explicit formula for the entries
of the non-null diagonals?

Exercise. Use twice the above result in order to show that a 1.t.T. system of the
type L(a)z = c is equivalent to a 1.t.T. system where the coefficient matrix has
three-null diagonals alternating with non-null ones.




Exercise. Answer to the quotation marks in the following equality:
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As a consequence of this result,

(i) introduce an algorithm of complexity O(n(logsn)?) for solving a lower
triangular Toeplitz system (for example, in case the system has order n = 27
such algorithm is more efficient rather than embed the system in one of order
n = 32 and use the algorithm ok for n = 2F);

(ii) obtain the Ramanujan system solved by Bernoulli numbers as a conse-
quence of the odd (even) system.

A lower triangular Toeplitz system solver of complexity O(n(logsn)?)
Set

1 1 !
a MO ar 1
n=2F a=a® = .1 = , L(a) = az a1 1 ,
(0)
n-1 n-1 an—1 . az a1 1

and let I+ and E denote the n x n upper-left submatrices of the previously

defined semi-infinite matrices I+ and E. In the following we multiply L(a)
on the left by suitable 1.t.T matrices so to reduce the number of its non-null
diagonals; we do this in k = logy n steps:

step 1
L(a)lra=:F a(l)
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L( )L(I:a) —L(Iia)L( ) = L(Ea(l))
Note: One here needs to compute a!), i.e. (5 — 1 odd entries of) the vector
L(a) - I+a. Denote by ¢, the cost (the number of multiplications) of such
operation.
step 2
L(Ea® ))EIia(l) = E2 @),

() =1, ol = —|—229 '(=1 )451)aés)j,s:1,...,%—1, a@:O,s:%
L( a<1>) (EIia(l)) (Elia(l)) (FaM) = L(E?a®)

Note: One here needs to compute a® | i.e. (4 — 1 odd entries of) the order &

non null first part of the vector L(a(")) - I a(). Denote by ¢x the cost of such
operation.



step 3
L(E?a®)E?I.a® =: E3a®),

o® =1, o® = 2(2)+229 fe1aPal L s=1,,0 -1, 0V =0, s= 2,
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Note: One here needs to compute a® | i.e. (§ — 1 odd entries of) the order 7
non null first part of the vector L(a®) - I a(®). Denote by ¢= the cost of such
operation.
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Note: One here needs to compute a*=1) i.e. (gt —1 odd entries of) the order
7755 non null first part of the vector L(a(k 2. Iralk=2),
cost of such operation.

step k = log, n
L(Ek: 1 (k— l)Ek lliak 1) Ek )’

a( ) = =1,
agk)—() s——,c,...,n—l,
L(E*'a )L(E’“’llia(’“’l)) = L(E* 'ra D) L(EF a1y = L(E*a®)

(EF =ejel, a®) =e;, L(E*a®) = TI)
Note: One here needs to compute a*), i.e. (37 — 1 odd entries of) the order
s non null first part of the vector L(a*~1). I ak=b.

=0).

cost of such operation (@zk’i ;

Finally note that the following equality holds

L(E*  Lia* D L(EF 21 a® 2. L(E*[ea®)L(ELia®) L(I1a) [L(a)] — 1,
in other words we have transformed L(a) into the identity matrix.
Example: n =8
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and let I and E denote the 8 x 8 upper-left submatrices of the previously
defined semi-infinite matrices I+ and F.



step 1

[ 1 17 1 7 1

ail 1 —al 0
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51) =2a2 —ai, a ( ) = 2a4 — 2a1a3 + a3, ag ) = 2a6 — 2a1a5 + 2aza4 — a3,

L(a)L(I+a) = L(Iia)L(a) = L(EaW)

Note: One here needs to compute a?), i.e. (% — 1 odd entries of) the vector
L(a) - I+a. Denote by g the cost of such operation (pg < 6 if multiplications
by 2 are not counted).

step 2
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L(Ea(l))L(EIia(l)) = L(EILaM)L(Ea®W) = L(E?a®)
Note: One here needs to compute a?, i.e. (% — 1 odd entries of) the order %
non null first part of the vector L(a™)) - I a(®). Denote by ¢s the cost of such
operation (¢ 8 < 1 if multiplications by 2 are not counted).
step 3 = log, 8
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L(E*a®)E2[a® = | ) : 00 | = E2a® = | ©
a A = ay 1 a(2) = Lrary = 0
a§2) 1 0 0
al? 1 0 0
a§2) 1L 0 | 0
o =1, o) =24 +22§ N-1aPal? L s=1,...,8 -1, a4 =0, s=8,...,8-1,
L(E?a®)L (EQIia(Q)) (EQIia(Q)) (F?a?) = L(E3a®)

3 _ T
(E° = ejeq,
a(3), i.e.

al® = e;, L(E*a®) = I) Note: One here needs to compute
(% — 1 odd entries of) the order ¥ non null first part of the vector
L(a®) . I a®. Denote by (s the cost of such operation (ps = 0).




By using the obtained identities, one realizes that
L(E*1.a®)L(ET1 aM)L(I a)[ L(a)] =1,
i.e. we have performed a kind of Gaussian elimination ... .

Upper bounds for the cost Z;:k ©o; of the computation of aM a® .. ak—1) ak)

Since the cost of a matrix-vector product involving a generic vector and a 27 x 27
lower triangular Toeplitz matrix with ones on the diagonal is obviously bounded
by 1+243+4...+ (27 — 1) = 12/(2/ — 1), we can say that

. 1o 2 1
. et 2]_],_ k\2 _ ok | 2
;S%JSQ; 2 3(2) 2 +3~

However, by exploiting the particularity of our matrix-vector products, we
observe that w2 =0, 04 <1, ps <3 +1+2, 016 <7T+1+2+3+4+5+6,
poi < 329712271 — 1), So,

k k
1 1 1

22] 2 2] l - 2k 2 _ _2k .

; ¥2s g =52 32 +3

l\)l»i

Finally, since a matrix-vector product involving a generic vector and a 27 x 27
lower triangular Toeplitz matrix can be computed by means of the three FF'T
of order 27+1, i.e. with a cost O((j + 1)2771), we have

k
Z @25 = O(K*2") = O(n(log, n)?) prove this!
Jj=1

Computing the first column of L(a)~!

Now observe that

L(E* ' Lia® D) L(EF 21 a2 ... [(E*[ra®)L(Elia®)L(I1a) [L(a)} =1,
L(a)z = c,
= L(E* pat V) L(EF21pa*2) ... L(E*[ra®)L(EILa®P)L(I1a) ¢
= L(Ita)L(ElzaW)L(E*[La®) ... L(E* I a* D) L(EFat V)¢,

L(a)z = ue1 + ven .1,
z = L(Iza)L(El+a")L(E’Iza®) - .- L(E* 2 Lea®* ) L(E* ' Ira* V) (uei + ven 1)
= L(Iza)EL(IzaM)EL(I+a®) ... EL(I:a* 2)EL(Ita® ™) (ue; + ves).

The latter identity, whose proof is left to the reader, implies that the solution
of the system L(a)z = ue; +vex 1 (the first column of L(a)™!, if u =1, v = 0)
can be computed by performing k = log, n 1.t.T.matrix-vector products where
the matrices are, respectively, 2 X 2 (no operation, if u =1, v =0), 4 X 4 (one
multiplication, if u = 1, v =0), 8 x 8, ..., 2¥ x 2% je. 2/ x 27, j =1,2,... k.
If we perform such products by means of FFT (as soon as j becomes so large
that using FFT is cheaper than the economized direct product), then the total
amount of operations is O(n(logy n)?) (prove it!).



Example: n =8 =23 k=3
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How to determine z such that [L(a)z]; =0,7=1,2,4,5,7,8,10,11,...7

1 17 1 ] 1
al 1 —ax

9 0
as ai 1 ai — az 0
a3 a2z a1 1 x =

a3z — 2a1a9 + a? +x
as a3 a2 a; 1 Y 2 2
a4 —aiaz +aza] —ax; +a1x+y
as a4 a3z a2 a1 1 z 2
as — aia4 + a3aj] — 203 + a2 + a1y + 2

We have to choose z,y, z such that

a4—alag—i—aga%—a%—i—alac—l—yzo7
as — a104 —|—a3a% —agas + asx + a1y + z = 0.

Note that it must be y = —ay + a% —ait, * = asz — ayaze + t, and then z is
determined by

2 2 2, 2 2 2
z = —as+aia4—asaj+azaz—asaz+aias—ast+aias—ajay+ajt = —as+2a1a4—aza]—ast+ajt.

A possible choice of t is ¢t = a3, so that in z there are not terms of type ala;
with r greater than 1:

z = —as + 2a1a4 — asas.

Exercise. What choice of ¢ allows one to obtain the Ramanujan system from
the odd (even) system 7 ...

Proceed analogously in order to obtain [L(a)z]; =0, i =7,8:
art+a X+Y+ax+y=0, ag ...+ ax+a1y+2z=0.

By setting x = —X +t, y = —ay — Y — a1t we satisfy the first equation, and the
second equation becomes ...aat + aga? — aft.... Thus choose t = ag so that
the only “strange” term of the second equation, aga?, is neglected, and z,y, z
are determined. Idem in order to obtain [L(a)z]; = 0, ¢ = 10,11. In such case
the second equation becomes ... ast + aga% — a%t .... Thus choose t = aqg ... .
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In this way we prove that

(1)

a;’ = 3a3—3aiaz+ay,
(1) _
as’ =7.

1
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ar
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ag
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a2
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aq
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ar
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ag
aio

2
—ag + 2a1a7 — az2a6 — asas + ajy
2a9 — ai1ag — az2a7 + 2a3a6 — asas

2

—a10 — a1a9 + 2a2a8 — azar — asae + aj

2
2a6 — ai1as — aza4 + a3
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ar
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as a2 ail
a4 as a2
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G as G4
ar ae as
as ar ae
1
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a4
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2
—a4 —aiasz + az
—as + 2a1a4 — aza3

a2
as
a4

—a7 — ai1a6 + 2a2a5 — azaq

ai
a2
as

ai
a2

—a11 + 2a1a10 — a2a9 — azag + 2a4a7 — asas

3

1
?aé

)

1
al 1
To1

0

0
o)

0

0
=| a®
0

0
oV

0

0

Set ag = 1. Conjecture on the next entry of the solution:

Why? ...
Conjecture on the solution:

i—1
5

_ ) 2
Z ar@i—r+0;_omod 203 +3

r=0

J

2
2apa12 — ai1ai11 — az2a10 + 2asza9 — asag — asay + ag

0
P

0
Dz 05t 150 43,0150 g,
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7 odd

1 even

= 3ag—3aias —3a2a4—|—3a§ —3aiasas —|—3a%a4—|—ag?,

,i=0,1,2,3,4,5,...



0
al 0
3
a2 0
3ai1| O
as 3
3as 0
aq 3ai1| O
3as 3
as 3az 0
3a4 3a1 0
ag 3as 3
3as 3az 0
ar 3a4 3a1 0
3ag 3as 3
asg 3as 3az 0
3ar 3aq 3a1 0
ag 3ag 3as 3
3ag 3as 3as 0
aio 3ar 3aq 3a1| O
3ag 3ag 3as 3
all 3ag 3as 3az 0
3aio0 3ar 3aq 3a1| O
a2 3ag 3ag 3as 3
3a11 3asg 3as 3as 0
a3 3ai10 3ar 3aq 3a1| 0
17 1
ail
1 a2
al 1 as
al 1 a4
as | a1 1 as
a2 | ai 1 ae
az | as | a1 1 ar
az | a2 | a1 1 ag
ag | a3 | a2 | a1 1 ag
ag | a3 | a2 | a1 1 aio
as | ag | a3 | a2 | a1 1 all
as | a4 | a3z | a2 al 1 a2
ag | as | aqa | a3 as a1 1 a13
ag | as | aqa | as a2 a 1 ) ai4
ar |ae | a5 | as | a3 | a2 | a1 1 ais
ar |as | a5 | a4 | a3 | a2 | @1 1 aie
ag | a7 | asg as a4 as az al 1 a7
ag | ar ag as a4 as as | a1 1 alg
ag | asg ar ag as aq az | az | a1 1 alg
ag ag a7 ag as ags | a3z | a2 | a1 1 a0
aio | a9 ag ar ae as | a4 |ag | a2 a1 | 1 a1
aio | ag as ar ag | as | a4 | a3 a2 | a1 | 1 a22
a1 |ao | a9 | ag | a7 |ag |as | a4 |az | a2 | a1 | 1 az3
ail | aip | ag ag | a7 |as | a5 | a4 | a3z |az2 | a1 | 1 a4
ai2 | a1 |aio | a9 |ag |a7 |ae |as | a4 (a3 a2 | a1 | 1 azs
ai2 | a1 |aio | a9 |ag | a7 |as | a5 | a4 | a3 | a2 | a1 |1 a6

QUESTION Can the above 37 x 37 matrix by vector product be computed in
at most O(375) arithmetic operations ?

If yes, then we would have a method which solves 3¥ x 3% lower triangular
Toeplitz linear systems in at most O(3*k) arithmetic operations.

If no, then look for another solution a of the system L(a)a =[100 e 00-]7 such
that {é}g_i is computable from {a}g_j in at most O(375) arithmetic operations.

13




