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The Problem

“In 1963 I attended a meeting at Imperial College, London, where most of the
participants agreed that the general algorithms of that time for nonlinear optimization
calculations were unlikely to be successful if there were more than 10 variables, unless
one had an approximation to the solution in the region of convergence of Newton’s
method. However, because I had studied the report of Davidson that presented the first
variable metric algorithm, I already had a computer program that would calculate least
values of functions of up to 100 variables using only function values and first
derivatives.”

M. J. D. Powell

f : Rn → R lower bounded,

find x∗ such that

f (x∗) = min
x ∈ Rn

f (x).
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Matrix Algebras [1980-2001]

Let U be a unitary matrix, let us define

L = {Ud(z)UH : z ∈ Cn} = sdU, d(z) = diag(z1, . . . , zn).

Given A ∈ Mn(C) let us define

LA = arg minX∈L ||X − A||F , where ||A||F =
∑n

r,t=1 artart ;

Properties LA

LA well defined because L is a closed subspace of Cn×n (Hilbert’s Projection Theorem);

LA = Ud(zA)UH where [zA]i = [UHAU]ii , i = 1, . . . , n;

A ∈ Rn×n, U ∈ Rn×n (UH = UT ) ⇒ LA ∈ Rn×n;

A S.P.D (Real Symmetric Positive Definite), U ∈ Rn×n (UH = UT ) ⇒ LA S.P.D;

trLA =
∑

i [zA]i = trA;

detLA =
∏

i [zA]i ≥ detA.

χ(M) number of FLOPS sufficient to perform matrix-vector product Mx , x ∈ Cn.

If L ∈ L = sdU, then χ(L) = χ(UT ) + χ(U) + n.

χ(U) = O(n) =⇒ χ(L) = O(n) for all L ∈ L.
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Generalized quasi-Newton: Algorithm Structure

Algorithm 0.1: Generalized Quasi-Newton [2003]

Data: x0 ∈ Rn;
g0 = ∇f (x0);

B0 S.P.D., d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6


Define B̃k+1 S.P.D ⇒ dk+1 = −B̃−1

k+1gk+1 NS;

dk+1 = −B−1
k+1gk+1 ⇒ Define B̃k+1 S.P.D S;

Φ(B̃k , sk , yk ) = B̃k + 1
yT
k
sk
yky

T
k −

1
sT
k
B̃k sk

B̃ksks
T
k B̃k

is the generalized BFGS-type updating formula;

Remarks

B̃k is a S.P.D. approx. of Bk ;

if B̃k = Bk for all k = 0, 1, . . . we
obtain classical BFGS method;

the NS algorithm and S
algorithms generate sequences
{xk}k∈N,{gk}k∈N,{Bk}k∈N
COMPLETELY DIFFERENT!
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Generalized quasi-Newton : Properties

Algorithm 0.2: Generalized q-N

Data: x0 ∈ Rn;
g0 = ∇f (x0);

B0 S.P.D, d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 =


−B̃−1

k+1gk+1 NS;

−B−1
k+1gk+1 S;

Properties

Φ(B̃k , sk , yk )sk = yk
Bk+1sk = yk → Secant Algorithm;
B̃k+1sk 6= yk → Non Secant Algorithm;

gTk dk < 0 and λk such that (0 < c1 < c2 < 1):

f (xk+1) ≤ f (xk ) + c1λkg
T
k dk

∇f (xk + λkdk ) ≥ c2gTk dk
⇓
sTk yk > 0 and f (xk+1) < f (xk ).

sTk yk > 0 and B̃k S.P.D. ⇒ Φ(B̃k , sk , yk ) S.P.D;{
B̃k+1 S.P.D. ⇒ gTk+1dk+1 < 0 (NS);

Bk+1 = Φ(B̃k , sk , yk ) S.P.D. ⇒ gTk+1dk+1 < 0 (S).
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Generalized quasi-Newton : Complexity

Algorithm 0.3: Generalized q-N

Data: x0 ∈ Rn;
g0 = ∇f (x0);

B0 S.P.D, d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 =


−B̃−1

k+1gk+1 NS;

−B−1
k+1gk+1 S;

B−1
k+1 = Ψ(B̃−1

k , sk , yk ) =

(I − yk s
T
k

yT
k
sk

)T B̃−1
k (I − yk s

T
k

yT
k
sk

) +
sk s

T
k

yT
k
sk

.

Complexity

if B̃k = Bk for all k = 0, 1 . . . we obtain BFGS and
its complexity is :
O(n2) FLOPS per step;
O(n2) memory allocations;

if B̃k 6= Bk algorithm’s complexity is :
� Time Complexity per Step :
- number of FLOPS sufficient to calculate B̃−1

k where

B̃k is an approximation of Bk ;
- number of FLOPS sufficient to multiply the matrix
B̃−1
k by a vector;

- O(n) more FLOPS ;
� Space Complexity :
- number of memory allocation sufficient to store B̃−1

k ;
- O(n) more memory allocation.
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Global convergence of generalized QNNS

Algorithm 0.4: QNNS
Data: x0 ∈ Rn;
g0 = ∇f (x0), B0 S.P.D,;

d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 = −B̃−1
k+1gk+1;

Non Secant Global Convergence [2003]

If B̃k is such that {
trBk ≥ trB̃k

detBk ≤ detB̃k
(1)

and there exists M > 0 such that

||yk ||2

yTk sk
≤ M, (2)

then
lim inf ||gk || = 0.

NOTE 1: (1) is verified if B̃k = LBk
for some L = sdU.

NOTE 2: (2) is verified if f is convex.
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Global convergence of L(k)QNNS (“pure projections”)

Algorithm 0.5: L(k)QNNS
Data: x0 ∈ Rn;
g0 = ∇f (x0), L(0);

B0 S.D.P, d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(L(k)
Bk
, sk , yk );

6 Define L(k+1);

7 dk+1 = −[L(k+1)
Bk+1

]−1gk+1;

L(k+1) = {Uk+1d(z)UH
k+1 : z ∈ Cn}

⇓

trBk+1 = trL(k+1)
Bk+1

detBk+1 ≤ detL(k+1)
Bk+1

Remark

The choice L(k) ≡ L for k = 0, 1, . . . is allowed! (LQNNS)

L(k)QNNS and LQNNS are CONVERGENT but NOT EFFICIENT [2003,2015]
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Global Convergence Generalized QNS

Algorithm 0.6: QNS
Data: x0 ∈ Rn;
g0 = ∇f (x0), B0 S.D.P,;

d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 = −B−1
k+1gk+1;

Global Convergence Secant [2015]

If B̃k is such that

trBk ≥ trB̃k , detBk ≤ detB̃k

||Bksk ||2

(sTk Bksk )2
≤
||B̃ksk ||2

(sTk B̃ksk )2
(∗)

and there exists M > 0 such that ||yk ||
2

yT
k
sk
≤ M , then

lim inf ||gk || = 0.

Bksk = σB̃ksk ⇐⇒ −B̃−1
k gk = σdk =⇒ (∗)

σ =?
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One step analysis of Generalized QNS self-correction properties [1987-2015]

m‖z‖2 ≤ zTG(x)z ≤ M‖z‖2 ∀ x ∈ {x ∈ Rn : f (x) ≤ f (x0)}
⇓

Gsk = yk , where G =

∫ 1

0
G(xk + τsk )dτ

Bk+1 = Φ(Bk , sk , yk)

trBk+1 = trBk−
‖Bk sk‖2

sT
k
Bk sk

+
‖yk‖2

yT
k
sk

det(Bk+1) = det(Bk )
sTk (Gsk )

sT
k
Bk sk

Bk+1 = Φ(B̃k , sk , yk)

trBk+1 = tr B̃k−
‖B̃k sk‖2

sT
k
B̃k sk

+
‖yk‖2

yT
k
sk

det(Bk+1) = det(B̃k )
sTk (Gsk )

sT
k
B̃k sk

⇓

If Bksk = σB̃ksk , tr B̃k = trBk , det B̃k ≥ detBk

trBk+1 = trBk −
1

σ

‖Bk sk‖2

sT
k
Bk sk

+
‖yk‖2

yT
k
sk
, det(Bk+1) = σ det(B̃k )

sTk Gsk

sT
k
Bk sk

σ = 1⇒ self-correction properties analogous to BFGS!
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Global convergence L(k)QNS, B̃k =“pure” projection

At each step impose
||Bksk ||2

(sTk Bksk )2
=
||B̃ksk ||2

(sTk B̃ksk )2

Algorithm 0.7: L(k)QNS
Data: x0 ∈ Rn;
g0 = ∇f (x0), L(0) = sdU0;

B0 S.P.D, d0 ∈ Rn, dT0 g0 < 0;
1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(L(k)
Bk
, sk , yk );

6 dk+1 = −B−1
k+1gk+1;

7 Choose L(k+1);

Choose L(k+1) → Totally Non Linear Problem

To guarantee the convergence:
Find Uk+1 such that

Bk+1sk+1 = σL(k+1)
Bk+1

sk+1,

where
L(k+1)
Bk+1

= Uk+1d(zk+1)UT
k+1

and

[zk+1]i = [UT
k+1Bk+1Uk+1]ii > 0, i = 1, . . . , n .
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Global convergence L(k)QNS, B̃k =“hybrid” projection

The matrix B̃k+1 approximation of Bk+1 = Φ(B̃k , sk , yk ) must be S.P.D. and in L(k+1),
i.e must have the following structure :

B̃k+1 = Uk+1d(zk+1)UT
k+1, Uk+1 unitary, zk+1 > 0, χ(Uk+1) << n2.

Which kind of structure should have L(k+1) = sdUk+1 and which kind of spectrum zk+1

should have B̃k+1 in order to guarantee convergence?

Algorithm 0.8: Hybrid L(k)QNS
Data: ...

1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 = −B−1
k+1gk+1;

7 Define zk+1 > 0;

8 Choose L(k+1) (i.e choose Uk+1);

9 Define B̃k+1 = Uk+1d(zk+1)UT
k+1;

Partially Non Linear Problem

To guarantee the convergence it is sufficient

Given z ∈ Rn, z = zk+1 > 0, such that

detBk+1 ≤
∏

zi , trBk+1 ≥
∑

zi

Find Uk+1 unitary such that

Bk+1sk+1 = σUk+1d(z)UT
k+1sk+1

EXAMPLE: Try for

[zk+1]i = [UT
k Bk+1Uk ]ii , i.e. zk+1 = λ(L(k)

Bk+1
).
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Existence of the solution for PNLP (using σ as a parameter) [2015]

Given z > 0, exists Uk+1 unitary and σk+1 > 0 such that

Bk+1sk+1 = σk+1Uk+1d(z)UT
k+1sk+1

if and only if the following Kantorovich condition holds

4zmzM

(zm + zM)2
≤

(sTk+1(−gk+1))2

||sk+1||2||gk+1||2
.

“⇐”: Starting from z > 0 such that hypothesis are fulfilled, we build explicitly

Uk+1 = dHc(z) = H(wk+1)H(vk+1) ,

where H(x) is the Householder matrix I − 2
||x||2 xx

T .

Let us denote the corresponding algebra

L(k+1) = sdUk+1 =: [2Ho](k+1)

Observe that χ(H(x)) = O(n) for all x ∈ Rn =⇒ χ(L) = O(n) for all L ∈ [2Ho](k+1)
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Existence of the solution for PNLP with σ = 1

Given z > 0 such that

zm <
sTk+1Bk+1sk+1

‖sk+1‖2
< zM ,

‖Bk+1sk+1‖2 − (zm + zM)sTk+1Bk+1sk+1 + zMzm‖sk+1‖2 ≤ 0

and exists j ∈ {1, . . . , n}\{m,M} such that

zj ∈ [
sTk+1Bk+1sk+1zM − ‖Bk+1sk+1‖2

zM‖sk+1‖2 − sTk+1Bk+1sk+1

,
sTk+1Bk+1sk+1zm − ‖Bk+1sk+1‖2

zm‖s‖2 − sTk+1Bk+1sk+1

] =: [θ̃s, β̃s],

(we will write P(zm, zM) = True) then there exists a unitary Uk+1 such that

Bk+1sk+1 = Uk+1d(z)UT
k+1sk+1.

“⇐”: Starting from z > 0 such that P(zm, zM) = T , we build explicitly

Uk+1 = dHc(z) = H(wk+1)H(vk+1) ,

where H(x) is the Householder matrix I − 2
||x||2 xx

T .

In this case let us denote the corresponding algebra

L(k+1) = sdUk+1 =: [2Ho](k+1)

Observe that χ(H(x)) = O(n) for all x ∈ Rn =⇒ χ(L) = O(n) for all L ∈ [2Ho](k+1)
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Algorithm 0.9: Hybrid L(k)QNS
Data: ...

1 for k = 0, 1 . . . do
2 xk+1 = xk + λkdk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk ) ;

6 dk+1 = −B−1
k+1gk+1;

7 Consider [2Ho]
(k)
Bk+1

;

8 Compute zk+1 = λ([2Ho]
(k)
Bk+1

);

9 if P([zk+1]m, [zk+1]M ) = T then
10 Uk+1 = dHc(zk+1);

11 B̃k+1 = Uk+1d(zk+1)UT
k+1;

12 [2Ho](k+1) = sdUk+1;

13 else
14 zk+1 = SC(zk+1);

15 zk+1 := zk+1;
16 Uk+1 = dHc(zk+1);

17 B̃k+1 = Uk+1d(zk+1)UT
k+1;

18 [2Ho](k+1) = sdUk+1;

Complexity

Set [2Ho](k) = sdUk , where Uk = H(wk )H(vk ) .
� O(n) memory allocations are sufficient for
implementation.
� Line (6): O(n) FLOPS

Invert a matrix in [2Ho](k);

Multiply a matrix in [2Ho](k) by a vector;

� Line (8) : O(n) FLOPS via a simple
eigenvalue updating formula

zk → zk+1 = λ([2Ho]
(k)
Bk+1

).

� Line (10) o (15): O(n) FLOPS for the
construction of U = dHc(z).
� If P(zm, zM) = False ? Which is the
computational cost of SC?
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If P([zk+1]m, [zk+1]M) = False ? Spectral correction: the strategy

Given zi = (UH
k Bk+1Uk )ii > 0 such that

P(zm, zM) = F ,
we need to produce a correction z of z

z := SC(z),

such that

P(zm, zM) = T ;∑n
i=1 z i ≤ trBk+1;∏n
i=1 z i ≥ detBk+1.

The last two conditions hold any time

z̃i = (ṼHBk+1Ṽ )ii

for some Ṽ unitary
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Spectral correction: the theoretical framework for σ = 1

Theorem

Let be B a S.P.D. matrix and s ∈ Rn a given vector. Then:

‖Bs‖2 − (λm + λM )sTBs + λMλm‖s‖2 ≤ 0

Assumption (Bxj = λjxj where λj are all simple)

s

‖s‖
6= xj for all j ∈ {1, . . . , n}.

Theorem

∀ s ∈ Rn

sTBs

‖s‖2
∈ [θs, βs] := [

sTBsλM − ‖Bs‖2

λM‖s‖2 − sTBs
,
sTBsλm − ‖Bs‖2

λm‖s‖2 − sTBs
],

θs ≤ βs.

Theorem

βs ≥ λr(m) and θs ≤ λl(M).
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Theorem

Let us suppose to have the following four eigenpairs of Bk+1:

(λm, xm), (λr(m), xr(m)), (λl(M), xl(M)) and (λM , xM).

Then there exists a unitary V such that defining

z i = (V
H
Bk+1V )ii for i = 1, . . . , n,

it holds that
P(zm, zM) = T .

�
sTk+1Bk+1sk+1

‖sk+1‖2 ∈ (λm, λr(m)) =⇒ V em = xm, V er(m) = xr(m), V eM = xM

�
sTk+1Bk+1sk+1

‖sk+1‖2 ∈ (λl (M), λM ) =⇒ V em = xm, V el(M) = xl(M), V eM = xM

�
sTk+1Bk+1sk+1

‖sk+1‖2 ∈ (λr (m), λl(M)) =⇒ V em = xm, V el = xsk+1
(l 6= m,M) , V eM = xM

where xsk+1
is such that ‖xsk+1

‖ = 1, xTsk+1
Bk+1xsk+1

=
sTk+1Bk+1sk+1

‖sk+1‖2 and xsk+1
∈ < xr(m), xl(M) >.

λl(M)λr(m)λm λM
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Algorithm 0.10: Coupled Subspace Iteration

Data: z0 := z, θs,0 =
sT BszM−‖Bs‖2

zM‖s‖2−sT Bs
, βs,0 = sT Bszm−‖Bs‖2

zm‖s‖2−sT Bs

S
(0)
B = [UeM ,Uet ], S

(0)

B−1 = [Ueb,Uem] where t, b 6= M,m

z0
M = zM , z0

t = zt z0
b = zb, z0

m = zm
1 i=0;
2 while STOP CONDITION do

3 Z
(i+1)
B = BS

(i)
B ;

4 Z
(i+1)
B =: Q

(i+1)
B R

(i+1)
B (QR decomposition);

5 Find P
(i+1)
B such that

[Q
(i+1)
B P

(i+1)
B ]HBQ

(i+1)
B P

(i+1)
B = diag (z

(i+1)
M , z

(i+1)
t );

6 S
(i+1)
B := Q

(i+1)
B P

(i+1)
B ;

7 Z
(i+1)

B−1 = B−1S
(i)

B−1 ;

8 Z
(i+1)

B−1 =: Q
(i+1)

B−1 R
(i+1)

B−1 (QR decomposition);

9 Find P
(i+1)

B−1 such that

[Q
(i+1)

B−1 P
(i+1)

B−1 ]HB−1Q
(i+1)

B−1 P
(i+1)

B−1 = diag (z
(i+1)
b , z(i+1)

m );

10 S
(i+1)

B−1 := Q
(i+1)

B−1 P
(i+1)

B−1 ;

11 θs,i+1 =
sT Bsz

(i+1)
M

−‖Bs‖2

z
(i+1)
M

‖s‖2−sT Bs
;

12 βs,i+1 =
sT Bsz

(i+1)
m −‖Bs‖2

z
(i+1)
m ‖s‖2−sT Bs

;

13 i:=i+1 ;

zi = (UH
k Bk+1Uk )ii > 0 such that

P(zm, zM) = F ,

Lemma

Algorithm 0.10 produces the mutually orthogonal
sequences

{viM}i , {v
i
m}i , {v

i
t}i , {v

i
b}i

(columns of the matrices S
(i)
B

, S
(i)

B−1 )

and the sequences

{z iM}i , {z
i
m}i , {z

i
t}i and {z ib}i ,

such that

lim
i→∞

(viM , z
i
M ) = (λM , xM ),

lim
i→∞

(vim, z
i
m) = (1/λm, xm),

lim
i→∞

(vit , z
i
t ) = (λl(M), xl(M)),

lim
i→∞

(vib, z
i
b) = (1/λr(m), xr(m)).
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