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An Important Problem

We address the problem of looking for time-varying vectors Θ̂(t) – named Θ-
estimates – that exponentially converge to the unknown constant parameter vec-
tor Θ ∈ Rm defined by the set of linear time-varying equations:

y1(t) = ϕT1 (t)Θ (1)
yi(t) = ϕTi (t)Θ, i = 2, . . . , p− 1 (2)
yp(t) = ϕTp (t)Θ, (3)

where yi are the locally measured outputs and ϕi(·) : R+
0 → Rm are the local

regressor vectors, i = 1, . . . , p, each of them assumed to be available at the
running time at each node of the graph. This general problem is referred to as
the estimation problem for (1)-(3) on a graph. Now, when there are no edges
connecting nodes of the graph that are far from each other, the problem passes
from being full-graph-knowledge based to being partial-graph-knowledge based.
This way, the burden of information that has to be communicated to the vari-
ous measurement/estimation nodes of the graph might be (even largely) reduced.

Indeed, the general scenario is the one given by a multisensor network in which a
parameter estimator is to be designed on the basis of space-distributed sensing
(figure on the right). The set of agents (the swarm of drones) at the nodes face a
local identification problem, in which they cannot consistently estimate the param-
eter vector (position of a target in the space) in isolation, so they have to engage
in communication with their neighbours. In particular, estimate-consensus has to
be achieved through a sort of penalization of the mismatch between the parame-
ter estimates.

Original Contribution

The original contribution consists in showing that, under the weakest Θ-
identification condition (5), namely the Cooperative PE Condition [1] (PE stands
for Persistency of Excitation), a set of suitably tailored differential equations for
the time-dependent vectors Θ̂[i](t), all of them converging to the unknown Θ
(consensus), can be (redundantly) designed at each node i = 1, . . . , p. This is
proved under the condition that nodes undirectedly connected in series (undi-
rected chain graph) are considered, so that each estimation scheme at the node
can share information – namely, its own Θ-estimate – with the neighbours only,
one for node 1 and p, two for the remaining nodes.

Indeed, the derivations of this paper move along the direction of [1] and are in
exact accordance with it. However, in contrast to [1], which – for general graph
topologies – uses weaker contradiction arguments to prove that cooperative PE
condition guarantees exponential consensus, here original proofs of convergence
are able to provide an explicit characterization of the exponentially achieved con-
sensus in terms of PE constants and Lyapunov functions.

Nevertheless, the problem of identifying time-varying parameters that are peri-
odic with known periods can be innovatively solved as well. Adaptive tools can
be directly replaced by repetitive learning tools within the same theoretical frame-
work, where the asymptotic consensus is successfully ensured under identifica-
tion mechanisms based on the information exchange between neighbours.

Assumptions and Estimator Design

We introduce two standard assumptions.
A1. The elements of the regressor vectors are assumed to be continuous and uniformly
bounded over [0,+∞) as functions of time.
A2. (Cooperative PE Condition [1]) The corresponding regressor matrix ΦT(·) ∈ Rp×m

ΦT(·) =

 ϕT1 (·)
. . .

ϕTp (·)

 (4)

is assumed to be persistently exciting (PE), i.e., there exist (known) positive reals cp and Tp
such that the following condition [I ∈ Rm×m] holds:∫ t+Tp

t
Φ(τ )ΦT(τ )dτ ≧ cpI, ∀ t ≥ 0. (5)

Assumptions A1-A2 ensure, on the basis of [2] and references therein, that the unknown
parameter vector Θ is identifiable from the entire set of available measurements, even when
p < m and ΦT(·) is not a full-rank matrix.

The assumption that only partial-graph-based information is available for each node in-
creases the complexity for the design of the differential equations for the Θ-estimate. In
particular, each node i, i = 1, . . . , p, has to include a (redundant) set of Θ̂[i]-differential
equations (here referred to as local estimators at the node i) based on ϕi(t) and yi(t) and
the only information that can be shared between the local estimators is constituted by the
Θ-estimate provided by the (one or two) closest neighbours (undirected chain graph sce-
nario). Thus we design

˙̂
Θ[i](t) = ϕi(t)

(
yi(t)− ϕTi (t)Θ̂

[i](t)
)
− ηi(t). (6)

Taking into account that any internal i-th estimation scheme (i = 2, . . . , p− 1) can use only
the information coming from the (i − 1)-th and the (i + 1)-th estimation schemes, whereas
the 1-st and the p-th estimation schemes can use only the information provided by the 2-nd
and the (p− 1)-th, respectively, we determine

η1 =
(
Θ̂[1] − Θ̂[2]

)
ηi =

(
Θ̂[i] − Θ̂[i−1]

)
+
(
Θ̂[i] − Θ̂[i+1]

)
, i = 2, ..., p− 1

ηp =
(
Θ̂[p] − Θ̂[p−1]

)
. (7)

Theoretical Results

Defining the estimation errors Θ̃[i] = Θ− Θ̂[i], the error system reads

˙̃Θ[1](t)
˙̃Θ[2](t)
˙̃Θ[3](t)
. . .

˙̃Θ[p](t)

 = − (Λ(t) + T )


Θ̃[1](t)

Θ̃[2](t)

Θ̃[3](t)
. . .

Θ̃[p](t)

 (8)

where Λ(t) + T is a tridiagonal block matrix in Rpm×pm with

Λ(t) = diag[ϕ1(t)ϕ
T
1 (t), . . . , ϕp(t)ϕ

T
p (t)] (9)

and

T =


I −I O . . . . . . . . . O
−I 2I −I O . . . . . . O
O −I 2I −I O . . . O
. . . . . . . . . . . . . . . . . . −I
O O O O . . . −I I

 . (10)

First, if G(t) = Λ(t) + T is persistently exciting and the elements of Γ(t), in
the expression G(t) = Γ(t)ΓT(t), are continuous and uniformly bounded over
[0,+∞) then Theorem 1 in [2] can be applied to the overall system (8) as in the
lemma below.

Lemma: Assume that Φ(t), besides Assumption A1, satisfies the following hy-
pothesis:
A3. the entries of Φ(t) are analytical functions of time t.
Consider system (8) and assume that there exist (known) positive reals cpG and
TpG such that the condition:∫ t+TpG

t
G(τ )dτ ≧ cpGI, ∀ t ≥ 0 (11)

holds. Then the n-dimensional extended error vector Θ̃[e](t) =

[Θ̃[1]T(t), . . . , Θ̃[p]T(t)]T (n = pm) globally exponentially converges to zero.

Meaningfully, the theorem below shows how the weakest and least restrictive
condition (5) actually implies condition (11) and thus, used in conjunction with
Theorem 1, provides the proof that the solution to system (8), under Assump-
tions A1-A3, globally exponentially converges to zero.

Theorem: Under Assumption A2 [namely, condition (5)], there exist explicitly
computable positive reals cpG and TpG such that the condition (11) holds true.
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