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0. Introduction

The idea of informational content of a matrix is a wide and not-well defined
concept, although Forsythe [14] suggested that a measure of it could be the
amount of memory required to store the matrix. Indeed, for several classes
of matrices, to identify a matrix it is sufficient a number of parameters k
smaller than the number of elements. During the last decades it has become
clear that a measure of the informational content of a matrix is related to
the structure of the matrix, as remarked in [5],[6].

Displacement decompositios are a tool that, besides computational benefits,
allows to point out different aspects of the informational content of some
classes of matrices, for example the number of parameters required to iden-
tify uniquely a matrix in such a class.

In literature there are several displacement formulas that can be usefull to
decompose a matrix as a combination of structured and low-complexity ma-
trices; these formulas find also some interesting applications, for example
to compute the solution of Toeplitz, Hankel or Toeplitz plus Hankel linear
systems. Most of these decompositions can be formulated in terms of Hes-
senberg algebras, as it has been demonstrated in [1]; although, several of the
algebras involved in displacement formulas are, not only Hessenberg algebras,
but also SDU algebras (algebras of matrices simultaneously diagonalized by
a unitary matrix U). For example we can cite the Gohberg-Olshevsky for-
mulas that decompose a matrix as combinations of e-circulant matrices (that
are diagonalized by the e-Fourier matrix [7]); other examples, found in [3],
are formulas involving the algebras 7., which are related to the 7 class and
diagonalized by different types of sine and cosine transforms.

Our aim was to prove some displacement theorems for generic SDU algebras;
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we have succeeded in it (see the contents of the first chapter) and we have
observed that our theorems can be applied to some low complexity SDU
algebras as the 7.,. Thanks to our formulas it is possible to decompose a
generic matrix A as a sum of products of Hermitian matrices in two “near
each other” SDU algebras, i and V, plus one matrix in one of the two alge-
bras; the number of the terms in the sum is proportional to the rank of the
commutator of A with an Hermitian matrix in U.

In the second chapter, we have studied some particular low complexity ma-
trix algebras that are the Householder algebras; with the aim to apply our
displacement theorems to the Householder algebras, we have investigated
when they have some properties that can be interesting for an algebra of
matrices: closure by conjugation, symmetry, persymmetry and non trivial
intersection with algebras of the same class.

Working with the Householder matrices, we met the necessity to generalize
them, so in the third chapter we present our generalization, the Householder-
type matrices. We have noticed that this generalization had been already
proposed in the 90" by Venkaiah, Krishna and Paulraj [11], although , in
literature, we have found just a small number of basic results of those that
we present in the third chapter.

We can say that the Householder-type matrices are a good generalization of

the Householder matrices mainly for four reasons:

e If w and v are two real vectors of equal 2-norm, there always exists
an Householder matrix U such that Uw = v. Nevertheless when w
and v are two vectors as above, but with complex entries, the above
property is true if and only if the scalar product <w,v > is real. The
Householder-type matrices have the capability to fill this gap of the
Householder matrices in the complex case; indeed, given w and v two
complex vectors of equal norm, there always exists an Householder-type

matrix U, such that U,w = v.

e The result described here, obtainable thanks to the introduction of the
Householder-type matrices, can be seen as a consequence of the above
one but, in our opinion, it is worth of consideration as much as the
above.

If U is a real unitary matrix, we know that U can be decomposed as

a product of Householder matrices; but, again, in the complex case
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this is not true anymore. Indeed a generic complex unitary matrix can
be, at most, decomposed as a product of n — 1 Householder matrices
and a diagonal unitary matrix. Also in this case the Householder-
type matrices fill this gap and we can demonstrate that every complex
unitary matrix can be decomposed as a product of n Householder-type

matrices.

e An Householder-type matrix has the shape I — aquu”, where u is a
unitary vector and « is a coefficient that can move on the circumference
(in the complex field) with center in 1 and radius 1. Fixed the vector
u, the set of Householder-type matrices that we can define by such
vector is a commutative group that contains the identity I and the

Householder matrix [ — 2uu™.

e Any unitary matrix that is a 1-rank variation of the identity matrix
must be an Householder-type matrix. So the 1-rank matrix perturbing

I must be Hermitian unless a complex factor a.

In the first part of the third chapter, after a presentation of the above results,
we deepen some related questions. In particular we describe an optimal de-
composition of a generic unitary matrix U in terms of Householder-type ma-
trices, underlining its link with the spectral decomposition of U. Moreover,
we find the best approximation, in both Frobenius and 2-norm, of a generic
unitary matrix U by the product of a fixed number k of Householder-type
matrices. This is obtained by simply removing the n — k smallest singular
values of I — U. We prove also that if two matrices, A and B, have the
same Gram-matrix (i.e. A"A = B"B) then it is possible to transform A in B
through a number of Householder-type matrices equal to the rank of A (this
result is a generalization of an analogous one, for real matrices, found in [9]
and usefull in conceving optimization and preconditioning procedures).

In the second part of the third chapter we investigate two possible numerical
applications of the Householder-type matrices. However the study of both
the applications needs still some work to be concluded.

The first one is a modification of the classical Householder QR decomposi-
tion of a matrix A(see [8],[15]) that, in order to define A; at step ¢ of the
triangularization, uses the Householder-type matrix “closest” to the identity
I to map in span{e;} the first column of the (n+1—14) X (n+ 1 —14) tail
submatrix of 4,1 (Ap = A). This version of the QR algorithm could have
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the capability to bound the expansion of the errors as much as possible, but
this is still to prove. An interesting fact that comes from the study of this, in
principle, optimal QR algorithm is that, before each step, it seems convenient
to introduce a partial or a total pivoting, as it happens for the LU algorithm.
In the second application, which has yet to be investigated in many details,
Householder-type matrices are used to conceive an iterative procedure for
the construction of the normal matrix closest to a generic matrix A (the
problem is studied also in [12],[13]). The fact that every normal matrix is
diagonalized by a unitary transform and the fact that every unitary matrix
can be decomposed as a product of (at most n) Householder-type matrices,
lead naturally to the proposed algorithm, which, starting from Ay = A, at
the generic step k, computes the Householder-type matrix U, that minimizes
the distance of a certain matrix Ay from its projection in the Householder-
type SDU algebra defined by U,. Such projections turn out to be normal
matrices that approximate A better and better.

Apart the applications already described we expect that algebras SDU with
U = Householder-type or U = products of Householder-type can be used
to construct new efficient displacement formulas, and that the results of the
first chapter (or some their improvements) can help to reach this aim, but

this needs further work to be verified.



1. SDU Algebras

In the first part of this chapter we recall some properties and definitions of the
algebras of matrices simultaneously diagonalized by a unitary matrix (SDU
algebras) and then discuss the way an SDU algebra can be characterized by
a combination of his rows or columns. In the second part of the chapter we
present some new displacement theorems that allow to decompose a generic
matrix into a sum of products of matrices in two different SDU algebras,
which have the property to contain two matrices whose difference is a rank

one Hermitian(symmetric) matrix with some good properties.

1.1 Definitions and basic properties

Definition. : If U is a unitary matrix we can define the space U = sdU
as the algebra of the matrices simultaneously diagonalized by the matrix U.
In particular V z € C" let’s define Ulz] = UD(2)U" the matrix € U with
eigenvalues \; = z;. (So D(z) = D(z;) = diag(z1,...,2n)).

Remark 1.1.1. : The space sdV is equal to the space sdU iff V. = UPD,

where D is a unitary diagonal matrix and P a permutation matrix. Indeed
V[z] = VD(2)V" = UPDD(2)DPTU" = UPD(2)DDPTU" = UD(P2)U" = U[Pz].

On the other hand, if sdV = sdU  then Vz Jy, s.t. U[z] = V]y.]. Noting
that (z); and (y.); are the eigenvalues of U|z], they have to be uniquely
defined and so necessarily there exists a permutation matrix P* s.t y, = P*z.
So

UD(2)U" = U[z] = V[P?*z] = VP*D(2)(P*)"V".
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Moreover, if we choose z s.t. Vi # j z; # z;, we can observe that the i-th
columns of U and V P* are both eigenvectors of the eigenvalue z; and so they
have to be unitary multiples one of the other; that is Ue; = €'V P?e; Vi =
1,...,n or, equivalently, in matrix form : U = VPD with P = P? (so P

doesn’t depend on z) and D unitary diagonal matrix.

Theorem 1.1.2. Let A € C"*". Then the best approximation in Frobenius
norm of A inU is Uy :=UD((U"AU);)U".

Proof. Consider the Hilbert space C™*" with the Frobenius inner product
(<M,N >p= ZZj=1 M ;;N;;). Then U is a closed subspace of C**" and so,
thanks to the Hilbert projection theorem, it is well defined the projection of
A in U, that is also its best approximation in the Frobenius norm

(IMI1F = 3200 [ M51).

We want to minimize:
1A~ UDEUM [ = [0 AU — D(:)| 3 ()
So we have to take z = Diag(U"AU) . O

Let’s state a result that follows from the definition of /4 and the linearity of

the projection:

Corollary 1.1.3. Uy, is real whenever A is real (A = A) if and only if
U=u.

Proof. (<) |lUs — All = |s — Al = |s — Al

then since Y4 € U and the projection is unique: Uy = Uy, .

(=) Consider a generic U|[z] , then it exists a matrix A such that

Uz] =Uy (Diag(U"AU) = z). Now decompose:

U[2] = Upe(ay + i Urmay = U] +iU[Z"].

Since Re(A) and I'm(A) are real matrices, Uge(a)y and Uy, a) have to be real;
this implies that:

= U] = Ux = Upe(ay — i Upmay = UD(z)U" — i UD(z")U" e U
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1.2 Characterization of a SDU Algebra

Let’s now analyze when the algebra U/ is characterized uniquely by a combi-
nation of its rows or columns and let’s introduce the notations U(*)(z) and
Uw)(2). Similiar definitions can be found in [4] where is presented the con-
cept of space of class V, these are n-dimensional spaces such that each matrix

of the space is uniquely identified thanks to its product by a fixed vector v.

Definition 1.2.1. Let v be a vector s.t. (U™); #0 Vi; Vz e C" let’s
define U (z) := UD(U"z)D(U"v)"*U".

It is the only matrix of U s.t. U™ (2)v = z; indeed:
UD(U"2)D(U") UMy = UD(U) ' D(U"2)U" = UD(U™) ' D(U")U"z = 2.

To demonstrate the uniqueness assume by contradiction that 3 Uy |, U [ys]
st. Ulyilv =2, 1=1,2 = (U] —U[y2])v =10
= UD(yl - yg)UhU =0= D(yl - yZ)UhU =0= (y1 — y2>1 =0 Vi.

Note moreover that U (z)q = UV (q)z (see also [1]).

Similarly we can define U(,)(2) :

Definition 1.2.2. If w is a vector s.t. (w'U); # 0 Vi;
Vz € C" let’s define Uy, (2) := UD(UT2)D(UTw)~tU".

It is the only matrix of U s.t. w Uy (z) = 2T -

w'UDUT2)D(UTw) U™ = 2" UD(UTw) DU w) UM = 2T

The uniqueness can be easily demonstrated as above.
Note moreover that ¢'U,)(2) = 2 Uw (q)-

Proposition 1.2.3. If v characterizes U by columns, i.e. (Uv); # 0 Vi,
then:

{w s.t. characterizes U by columns } = { U[z]v | U[2] is nonsingular }

Proof. (C) If w characterizes U by columns (Uhw); # 0 Vi, then

JU|[z] nonsingular s.t. U[z]v = w
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Uhw);
& DU =UWw & Vi 2= ﬁ
The vector z is well defined and U[z] is nonsingular because product of non-
singular matrices.

(D) If U]z] is nonsingular we want to show that (U"U[z]v); # 0 Vi. But
(UU[2]v)i = (D(2)U"); = z(U"v); # 0,

indeed U|[z] is nonsingular iff z; # 0 Vi and (U"v); are non zero because v
characterizes U.
[l

A similar result can be easily formulated for a vector that characterizes U by

TOWS.

Corollary 1.2.4. Let v characterize U by columns and w = U|z|v with U[z]

nonsingular. Then:
U U™ (w) = U (yU[2] = U (y).

Proof. 1t is easy to observe that the three matrices have all the property to
be in U and to map v in y. So, because of the uniqueness, they have to be

equal. O

Example 1.2.5. If U = [ — 2uu”", ||u|| = 1, is an Householder matriz and
u; # 0 Vi, then {w that characterize U} = {U[z|u | U[z] is nonsingular }.
Indeed, Uu = Uu = —u and so we can apply Proposition 1.2.3.

Proposition 1.2.6. Note that, if v characterizes U by columns, v charac-

terizes U by rows indeed:

(UM); 40 Vi < (3'U); #0 Vi.

. = ( (U0)i\
In particular we can observe that U™ (z) = Uy, UD<(Uh ) )U z):
V)i

V"UY (2) = v"UD(UM) 1 D(U"2)U™"

= "UD(UD) ' D(UD)D(U") ' D(U"2)U" = ztUD<<Uh”)f) uh.
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1.3 Displacement Formulas

Now we will present two new diplacement theorems, the second one is a
complex generalization of the first, but we have distinguished the two cases
because, in order to demonstrate the complex version, one needs some extra
work. The idea of the proofs is similar to the one adopted in [1], where some
general displacement theorems, involving Hessenberg algebras, are proved;
as a consequence of them, the authors deduce the displacement formulas
of Gohberg-Semencul, Gader, Bini-Pan, Gohberg-Olshevsky and some other
formulas, for example formulas involving matrices of the same algebra but of
different dimensions. Our new theorems seem not to be a generalization of
any of the above known results, nevertheless, their hypotheses are satisfiable
for example by some low complexity SDU algebras as the ones presented in [2]
and [3]. However, these are just an example that ensures that the theorems
can be applied; it is an open problem to look for other low complexity unitary

matrices such that the associated SDU algebras satisfy our hypotheses.

Lemma 1.3.1. (See also [1], [2])
Given A € C", if Cyp(A) = AU[z] —U[z]A = Zle iyt

then S8 aU' wly; =0 Yw € C™.
Proof.
k k n
fout[w}yz = Z Z xzhu h]yzj — Z szhu h]yz] -
=1 =1 h,j=1 h,j=1 i=1
Z Ulwl;n Z Ty )n Z Ulwlin(AUZ] = U[z]A)n; =
hyj=1 hyj=1

Tr(Uw](AU[z] — U[Z]A)) = Tr(U[w]AU[2] — U[z]U[w]A)) =0,
where the last equality follows since the matrices U[w]AU[z] and U[z]U[w]A

have the same characteristic polynomial. O

Lemma 1.3.2. Ker(&yp) = {A € CY" sit. AU[z] — U[]z]A = 0} =
{UAU" with A € C™" s.t. AD(z) — D(2)A = 0}.

Proof. Trivial. O]
Definition 1.3.3. A matrix A is non derogatory if and only if there is only

one eigenvector associated with each distinct eigenvalue A, if and only if its

minimum polynomial is equal to its characteristic polynomial.
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Note that if A is a diagonalizable nonderogatory matrix, then it has all dis-

tinct eiegnvalues.

Theorem 1.3.4. (I displacement theorem for SDU algebras)

Let U,V € R™™ be two unitary real matrices and w € R" a vector s.t.
characterizes U by colums and )V by rows; assume that there exists z € R"
such that U[z] + ww' = V[2'] € V. Then we can say :

1. Given A € R™™ | if Cup.(A) = AU[z] —U[2]A = Zle zyl 1, then
A =31 U (2;)V ) (1) + C where C is a matrix that commutes
with U|[z].

2. If U[z] is non-derogatory, that is z; # z; Vi # j, then
C=U (Aw = L, U (@) )

Proof. Let’s show that Qu[z](Zle U (@) V) (¥i)) = Zle zyl = Sy (A):

i (U () Ve () U] — U] il (U () Vi (1)) =

3 0 00) V1)~ ) 3 e ) =
il(u(w (z:) V[’ i () Vi (1)) (waw') —
—é;@ﬂ>uwumvmmm):

iwwﬂv )wW)iWmemxwz
iw”4w> g o () (wu') =
imm—iWWmmwmww

So, if we show that S (U (2;)Viw) (i) (ww') = 0, we have proved the

first statement.

'We assume the z; and 1; real vectors.
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Let’s analyze the j-th row of the above equation (remind that Vi) (y:),

U™ () are symmetric and remind Lemma 1.3.1):

€5 D (U ) Viay () (w') = 3 (5 Vi () )u* =

i@”(%i)(w”’w () )u' = i( wer)' (o) Yt =
Zk: <(U(w)(ej)xi)ty")wt =2 ( (U(w)@j))t%)wt =0.

To prove the second statement we can observe that, thanks to Lemma 1.3.3,
if U[z] is non-derogatory, it generates the whole algebra ¢ and the commu-
tator of U|z| is the algebra Y. From this it follows that C' is a matrix of the
algebra U; that is 32" € C* s.t. C =U™(2"). Since

it follows that:

k
2= ( wa 25) V(w) (y2)>w = Aw — Z (Z/l(w)(xi)V(w)(yi))w =
= Aw — Z (U (2:) V) (yi)w) = Aw — Z (U™ (z:)y;).

Remark. :

If Ais a complex matrix we can apply the preceding theorem, where U[z] €

R™ " to the matrices Re(A) and Im(A).

If Cyp(A) = AUz —U[z]A = Zf L z;yl, decomposing each z; and y; as
= Re(x;) +ilm(x;), y; = Re(y;) + iIm(y;), it follows that:

k
Sy (A) = Z Re(w;)Re(y;)" — Im(a;)Im(y;)’
+ Z<Z Re(x;)Im(y;)" + Im(xi)Re(yi)t> ,

i=1
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k
where (Z Re(x;)Re(y;)" — Im(xi)lm(yi)t> is a (non optimal) skeleton de-

composition of €. j(Re(A)) and (ZR@ DIm(y;)" + Im(xi)Re(yi)t) is a

skeleton decomposition of @1 (1 m(A)) So A can always be decomposed as:

A= Zu<w> (Re(x:))Viw) (Re(yi)) — U™ (Im(:)) Vi) (Im(y:))

<ZL{ (Re(x;)) V) (Im(y;)) —|—Z/{(“’)([m(mi))v(w)(Re(yi))> + C +1iCy,

where C] and C5 are matrices that can be determined as in Theorem1.3.4.

Now we want to generalize Theorem 1.3.4 to the complex case; to do it
we want two matrices U[z], V[/] such that V[2/] — U[z] = ww", where w
characterizes U by columns and w characterizes V by rows.

Assume that U[z] € U and w € C™ is such that characterizes U by columns;
if U[z] +wwh € V for some space SDV (i.e. A+ ww" is a normal matrix),
then z has to be such that z —z = k1.

Indeed if w characterizes U by columns, thanks to Def 1.2.1, it can be written
as w = Uz where x; # 0 Vi.

So we are looking for a matrix U[z] such that U[z] + Uzz"U" € V;

let’s impose that U[z] + Uzz"U" is a normal matrix:

U(D(z) + xxh) UhU<D(Z) + m:h) Ut = U(D(E) + :th> UhU(D(z) + atxh) u',
D(|z]) + ||z|[Pzz" + D(2)xz" + z2"D(Z) = D(|2*) + ||z|[*z2" + D(Z)x2" + z2"D(2) ,
D(2)xa" + z2"D(Z) = D(Z)xa" + z2"D(2),

D(z —Z)aza" = 22" D(z — %).

Since D(z — Z) has to commute with z2", that is a full non-zero matrix,
D(z — %) must be equal to kI for some k € C.
Hence, as new hypotheses for the generalization of Thm 1.3.4, let’s assume
that z and 2’ are real vectors (i.e. U[z], V[2/] are Hermitian matrices), in
this way the above condition is easily satisfied.
Another important property that we have used in the proof of Theorem 1.3.4

is the symmetry of the matrices U(*)(x;) and V() (y;); so, to generalize it in
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the complex case, we want to make them Hermitian matrices.

The matrix ™) (z) is an Hermitian matrix iff D(U"w)~'U"z is a real vector
and the matrix Vg(y) is an Hermitian matrix iff D(V'w) 'V'y is a real
vector. So, analogously to before when we have applied the theorem to the

real matrices, now we want to apply the theorem to matrices A such that
D(U"w) 'U" €y, (A)V D(Viw) ™!

is a real matrix.

The next lemma is usefull to understand which frame have such matrices A.

Lemma 1.3.5. :

Let U,V € C™™ be two unitary matrices, w € C" a vector s.t. characterizes
U by colums and W characterizes V by rows, and z € R™ a real vector such
that U[z] + wwh = V['] € V.

If D(UMw) 'UMAVD(V'w)™t s a real matriz, then

D(Uhw)~tU™" (AZ/{[Z] — U[z]A) VD(Viw)=t is still a real matriz.

Proof. Let’s consider the real skeleton decomposition
k
DU"w) ' U"AVD(V'w) ™ = " ikl
=1

then we can consider the following skeleton decomposition of A:
A=Y, UDU w)hkD(Vw)V" = 31, 2y,

where we have defined z; := UD(U"w)h; and y; := V D(V'w)k;.
Then

D(UMw)"'U" (AZ/{[Z] —L[[z]A) VD(V'w) ! =

k k
D) U (D wytUlz) ~ Ul Y wt )V D(V'E) ! =
=1 =1
k k
( N DU ) Uy UV D) = D(th)*1UhU[z]xiy§VD(vtw)*1) .
i=1 =1
Here we already know that D(Uhw) 'U"z; = h; and y!VD(Viw)™! = k!
are real vectors; so, to demonstrate the thesis, it is enough to observe that
Yyt U]V D(Viw) ™ and D(U"w) tU"A[z]z; are real vectors.
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Let’s analyze D(Uhw)'U"U|[z|x;:

D(U"w) 'U"U[z]2; = D(U"w) "' UUD(2)U"x; =
D(z)D(U"w)'U"x; = D(2)h;

Since both z and h; are real, D(U"w)~'U"U|z]z; is real.

Now analyze y! U[2]V D(Viw) ™"
YUV D(VIE) ! = ot <V[z’} - wwh)vp(vtw)*l -
yVD(E )WY DV — yluw"VD(Viw) T =
yVD(V'T) ' D(2) — ytw (V%)tD(Vtw)‘l =
kiD(2") — (0" Vi (yi)w) 1"

Here, k; is real by construction, 2’ is real since V[z] is an Hermitian ma-
trix and? w"Vg (y;)w is real since, as we can easily observe, Vi (y;) is an

Hermitian matrix :

V(i) = VD(V'w) 'D(Viy) V" = VD(V'w) " D(V'VD(Viw)k)V" =
VD(V'®w) " D(V'W) D(k)V" = VD(k:)V" = (VD(k)V")" = (Ve ()"

So also y! U[z]V D(V'w)~! is a real vector. O

Theorem 1.3.6. (II displacement theorem for SDU algebras)

Let U,V € C™™" be two unitary matrices, w € C" a vector s.t. characterizes
U by colums and W characterizes V by rows. Assume that 3z € R" such that
UlZ] + wwh = V['] € V. Then:

1. Given A € C™" such that D(UMw)TU"AVD(V'w)™t s a real ma-
triz, if Sy (A) = AUz -U[Z]A = S aayt, where (D(th)_thxi>
and (D(Vt@)_lvtyi> are real vectors,® then
A= U (1) V) (i) + C where Cis a matriz that commutes
with U[z].

21 :is the vector with each component equal to 1
3this is possible thanks to Lemma 1.3.5
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2. If U[z] is non-derogatory, that is z; # z; Vi # j, then
C = U (Aw - YL, U™ (@)7) ).

Proof. C commutes with U[z] iff €y (A) = Eypy ( S U () Vi (yz)>
Hence, let’s analyze the right side of the latter equality :

k k

Zu@))(wi)v@)(yi)u[z] — U] Zu(w) (i) V) (yi) =

i=1 =1

DU @) Vi () - wu + V) - wa Ve (1) =

iww)(@)(v[zq —U[ZJ>V<@(%) —Zk:uw(xz)v( )(y»( h) -

i“ ) (w ) Vi (31) ium (20) Vi () () =
Zf’fzyz ZL{(“’) (23)Vw) (%)(wwh) = Cypy(A) — ﬁ:u(w)(xz)v( )(y,)< h) ‘

Thus we have only to show that Zle U (2) V) (i) (wwh> = Q.
Look at its j-th row:

63&““’1( i)V (4:) (ww):i AU (0) Vi (o) () =
i <(U(w)($i))h€j>h(wh(v<w> (yi))h>h<wh>- (1.2)

But, both <D(th)_1Uhxi> =: ¢ and (D(Vtw)_lvtyi> =: 1; are real vec-
tors, so it is easy to demonstrate that the matrices (Z/{ (w) (xl)) and (V(@)(yi))

are Hermitian matrices :

(u(w)(%)) = UDU"w) ' D(U"x;)U" =
UD(Uh’LU)_lD(UhUD(Uh )fZ)Uh UD(&) ’

(Ve (:)) = VD(V'w) ' D(Viy,)V" =
VD(V'w) ' D(VVD(V'w)n,)V" = VD (n)V".
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So, using Lemma 1.3.1, the (1.2) becomes:

i ((Z/{(w)(xi))hej>h<wh (V(w)(yi))h>h = zf: ((Z/l(w) (L))@)h(wh(l}(w)(?/i)))h =
Z ((u(w)(ej))a:i>h<yf>h = sz (U(w)(ej))hm

If the matrix U[z] is non derogatory, the commutator of U[z] is the algebra
U; thus C' is in the algebra U,

C=U"(p)=A- Zw“’ i)V (Ui) »

and it can be characterized by the combination of his columns given by the
multiplication on the right by w, that is:

_ (A _ zk:u(“’)(xi)V(w)(yi))w
- wa ) (0 Vi w))")

= Aw — ZL{(“’) (x:)Yi-

This proves also the second statement. O

Remark. This theorem is a generalization of Theorem 1.3.4; indeed, in the
real case, it is easy to observe that the term D(U"w) 'U"AV D(Viw)™!

real if and only if A is real.

Remark. If A is a generic matrix, we can always decompose it as a sum of
two matrices A = A; + 1Ay where A; and Ay are defined as:

A, = UD(U"w) (Re (D(th)—thAVD(Vtm)—l) ) D(Vtw)Vh,

Ay = UD(U"w) (]m (D(U"w)‘lU"AVD(VtE)‘1>)D(V%)Vh .

Both A; and A, satisfy the hypotheses of the theorem; so, to find a decom-

position of the matrix A, we can apply the previous result separately to the
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matrices A; and As.

In particular, if

k
T (A) =D ot
1=1

is a skeleton decomposition of €.j(A), we can decompose each of ¢; and 1;

as:

0; = UD(UMw) (Re( 1Uh<,01)>+ZUD (Uw) (lm(D(th)lU ’"‘%)) 7

v = VD(V'w) (Re(D V') 1vt¢z )—HVD (V'w (Im(D(Vtw)_lvt@/zi)) :
for simplicity, if we rename

z; := UD(U"w)

k
then we have €p,(A) = Z (l‘zhf — yﬂ@t) +1 Z (%lff + yih§> ;

i—1 i=1
where
k

Z (xlhf — chf) is a not-optimal skeleton decomposition of the matrix A;
i=1
and

k

Z (:Elkf + szf) is a not-optimal skeleton decomposition of the matrix A,.
i=1

Thus

]
M-

(U @) Ve () = U () Vi (i) ) +

7

1
k
i <u<w (@) Vi) (i) — U™ () Vi) (e )) O+ iy, (1.3)

=1
where, if U[z] is nonderogatory, C; and Cy can be determined as in the the-

orem .
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Remark. Note that if U[z]+ Uzz"U" = V[2/], the unitary matrix W = UV
is such that UMV D(2)V'"U = D(z) + xz"; so the columns of W, {w;}, are

the eigenvectors of D(z) + zx™:

Nw; = (D(2) + za™)w;
w; = (z"w;))(\I — D(2)) .

Thus:
T

(A —2)
this means that W must be a unitary Cauchy-like matrix (see [18] section
12.1).

Wi = (z"w;)

We can also define the real unitary Cauchy-like matrix

)

that is :
|

h
Nij = |x wj|)\i —

So, if we want to look for SDU algebras that satisfy the hypotheses of Theo-

rems 1.3.4 and 1.3.6, we could try to study when a Cauchy-like matrix (real

or complex) is also unitary.

1.3.1 Applications

Let’s start recalling some results; these will ensure that some SDU algebras
satisfy all the hypotheses of Theorems 1.3.6 and 1.3.4.

e By proposition (2.1) of [1] we know that an Hessenberg matrix X is
non-derogatory if and only if b; # 0 V.

T11 bl 0 Ce 0

T91 Too b

T'n1 . . .. T'nn
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e By proposition (4.2) of [2] we know that the algebra generated by T/
is a symmetric 1-algebra if the matrix I3, is nonsingular.
A 1-algebra is an algebra characterized by its first row; note that, since
the algebra is symmetric, if e; characterizes the algebra by rows then

it characterizes the algebra also by columns.

e 1 0 . . B
1 01 . 0
0 1

Ty = -

1 0

0 1 01

g 0 .01 p
15} 1
L =y

[Bso— +
1
B L =y

e From [3] we know the matrices that diagonalize the algebra generated

by T ,:
e 1 0 0
1 01
01
T., =
0 1 0 1

00 . 01 ¢

1. Ty = 7 is diagonalized by the matrix:

[ 2 ijm
Moo = i 1 =1,...
00 n—i—l(Slnn—l—l)’ 1, ) y 1y

MOOTOOMOO = 2Diag<cos J7 >, j = ]_, .o, N
n+1
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2. T, is diagonalized by the matrix:

2 20+ 1)y
M11:\/j<kjcosw>a ij=0,..,n—1,
n 2n

MflTnMn = 2Dz’ag<cos ‘E), 7=0,...,n—1,
n

1
where k; = — for j = 0,n — 1 and k; = 1 otherwise.

V2

3. T4 _; is diagonalized by the matrix:

2 2% —1)j
ALPP:¢;GWmLLZ%E),Lj:L”wm

MYy Ty Moy = 2Diag<cos ]—W>, j=1,...,n,
n

1
where k; = —= for j = 1,n and k; = 1 otherwise.

V2

4. Ty _, is diagonalized by the matrix:

2 20 +1)(27+1
]\/[112\/;(008( rt )ianr ﬁT), 4,7 =0,...,n—1,

27+ 1
My Ty M4 = 2Diag<cos<‘72+—)7r>, 7=0,...,n—1.
n

5. T4, is diagonalized by the matrix:

2 2 + 1)(2j + 1
M¢1:vg(mﬁz+ ij+>ﬁ) i i=0,. .. .n—1,

27+ 1
M_T_11M_11 = 2Diag<cos<‘72+—)7r>, 7=0,...,n—1.
n

All of these cosine and sine transforms are fast transforms. Moreover,
all the algebras generated by these 7T ,, thanks to the previous remark,
are l-algebras and the matrices 7. ., from the first remark, are non-
derogatory matrices.

Note also that, for example:

T 11+ 2e,€} = Th 4 T 11+ 2e1€} =Ty,
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So we can apply our diplacement theorems to this algebras.
Note that it is also possible to apply our results to the algebras gener-

ated by two matrices T/ and 50

', such that Ig, is non singular and

g,&,p, B are real, indeed:

Tff + (¢' —e)erel = Tﬁﬁ

Nevertheless in this case we have the problem that we don’t know the

matrix that diagonalize a generic Tff.

It’s right to indicate that the formulas in terms of the algebras 7., that we
can obtain as corollaries of Theorems 1.3.6, 1.3.4 are basically weaker than

13

the ones that are presented in [3]; here “weaker” means that the number of
terms of the sum, in our case is more or less 4-times the rank of AT, ,—T. A,
whereas, in [3], it is equal to the rank of the above commutator. This is due
to the fact that we use less hypotheses on the algebras than the ones used in
[3]; indeed Bozzo and Di Fiore always use the symmetry or persymmetry of
the algebra (or both of them).

So we can state that, even if our strategy is slightly more expensive, our

theorems are much more adaptable.



2. Householder Algebras

In this chapter we study the particular case of the Householder-SDU algebras
(the algebras of matrices simultaneously diagonalized by an Householder ma-
trix). In particular we study some basic properties of these algebras: sym-
metry, closure by conjugation and intersections with algebras of the same

class.

2.1 Householder Matrices

Definition. : Let u € C" be a vector such that ||u||]o = 1, then it is possible
to define the Householder matrix: U := I — 2uu”.

Remark 2.1.1. : We can observe that U is not uniquely defined by u, indeed,
if we consider the vector v/ = e®u, where § # 0, it is easy to note that
U="uU.

Similarly, if U’ = U, looking at the element (7,7), we can observe that |u;
2

* =
luf|* so Vj ) = u;e®® for some 6; € [0,27); and looking at the element

(i,7), it follows that w;u; = uju/;, that is ual; = we®u;e="%, so 'i=0%) =

1=0,=0,=0 = u = ue'

1uje

Properties 2.1.1. :
1. U 1s a unitary matriz ;
2. U s an Hermitian matrix ;

3. U is the reflection matrix with respect to the hyperplane orthogonal to

U.
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Proposition 2.1.2. U is real iff wu; = ujg; Vi,j=1,...,n iff u=-e’

with v € R".

Proof. (1)=-(2) If U is real , thanks to the property (2), U is symmetric and
SO Uij = Uji VZ,j = Uiﬂj = Ujﬂi

(2)=(3) Assume without loss of generality that u; # 0, then we have:

Vi 30; s.it. u; = |ui]ei9i

= \V/Z,j s.t. Ui,Uj %0, 622‘% = — = __] 2620]
i Uy
= fizedi=1Vj st. uj#0 0,=0, or 0;,=0,+n

= Vi u; = £|ule™

this relation can obviously be extendend also to the u; = 0

(3)=(1)trivial.

Theorem 2.1.3. (See [9])
Let be given A, B € R™™ non singular matrices with m < n s.t. A'A =
B'B. Then 3U,,,...,U; s.t. U,,...UjA = B.

Proof. Prove it by induction on m.

(a1 — b1)(ar — by)’
llay — b [?

Supposing it is verified for m — 1, study the case m.

m = 1 it is easy true taking U = — 2

Let’s consider a generic unitary matrix @);

i — b ~ ~ .
and define u; = Qa— and U; = I — 2uul = Ui(Qai) =0b Vi=

|Qa; — bil|’
1,...,m.
If it exists a matrix () product of m — 1 Householder matrices, s.t. u; = ... =

Uy, then
U =..= U~m =: U; and it will be true the thesis. 4Q) as above iff:

Qa; — by = Qay — by
< Q(Cll —al) = bz —b1

But the last one is true by induction since the matrices
<a2—a1, as —ay, ..., CLm—CL1> and (bQ—bl, bg—bl, cee bm—bl)
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still satisfy the hypotheses of the theorem. So the theorem is proved.
In particular it follows that the vector u; that defines the i-th Householder

matrix, can be obtained by setting :

ui = (—=1)"""Ui—1 ... Ui(Am—it1 — Am—i) — (Bm—i+1 — Bin—i)]

Uj
U; ==
' i
where we set wg =v9 =0. O

2.2 Householder SDU-Algebras

and their properties

When U is an Householder matrix, exploiting the structure of U[z] we can

observe that :

Ulz) = (I —2uu™)D(z )([ 2uul) =

D(z) = 2(uu)D(2) = 2D(2)(uu") + 4(u" D(2)u)uu’ =

D(2) 4 2(uu”) ((u"D(2)u)I — D(z)) + 2((u"D(2)u)I — D(z))uu =
D(2) + 2uu" M + 2Muu” (2.1)

where M is the diagonal matrix defined as:

M = ((uhD(z)u)I . D(z)) . (2.2)

From (2.1) it’s easy to note that U[z] is always a 2-rank variation of a diagonal

matrix.

Remark 2.2.1. : If U = I — 2uu® and u; = 0 for some 14, let’s assume, without
loss of generality, u; =0 Vi=m+1,...,n;then U[z] hasa block-structure
and can be taken back to a direct sum of matrices of smaller dimension. Let
u' € C™ be the vector s.t. u; = u; Vi =1,...,m, then ||[t/|| = |[u]] =1

and taking 2’ € C™ thevectors.t. z/ =2z Vi=1,...,m, wecannote that:
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0 D(Z")

ul[zl] 0 gt "
(0 2o

Theorem 2.2.2. (Householder algebras closed under conjugation)
Let be given u e C", n >4, wu; #0 Vi

The Householder algebra U is closed under conjugation < U is real.

Remark. 1t’s easy to observe that even though u; = 0 for some ¢, thanks to
Remark 2.2.1, it is possible to come back to the case u; # 0 Vi. Indeed U
is closed under conjugation iff ¢’ is closed under conjugation, where u’ is the

subvector of v with all non-zero entries.

I Proof.
(«=):
Uz] =UD(2)U =UD(2)U =U[Z] .
(=) : U is closed under conjugation < Vi, Ule] el
& Vi Hal}r, st Ule] = Z@;Z/{[ej],
that is

(I — 2uu')e;el (I — 2uu’) Z ol (I — 2uuh)eje§(l — 2uu™),

j—l

(e; — 2ugu) (el — 2uu’ Z o’ (e; — 2uju) (e — 2uu”) .
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Selecting the element (k,[), with [ # k, we obtain:

(5ik—2ukuz) ZZ—QUZUJ[ Z CY 2u]uk jl—QUjul)—kozz,((Slk—Qﬂkul) .

From (2.3), if we take k = 4,1 # 4,
and define C; := Zaj ( - ul)(5 L — 2ujuy)

j=1
it follows that:

(1 = 2|w;|H) (—2usm) + 207 vy

= Za (—2u;1;)(6;1 — 2ujul)<ul) =: Cluy
)

= (1—2|u,-|2)(—zﬂ—f)+2 i (“l =q.

i Uy

\/

From (2.3), taking k,l # ¢ with k # [ we obtain:

(4| + 200, Uy

= Zoz ZUJUk; 2u]ul) <UI) = Clﬂkﬂl s
U

= (afu) () + 20} (Z) c.

Now let’s equal the (2.4) with the (2.5), then:

1—2U22 —2? +20€Z?:4u12¥+20/?7
i k
U; Uup UL up

2% (0 — af) = Afuf (“——%) ol

uj Uj U,

From the latter equality we have to distinguish two cases :

Lol —al=0 Vk#i.

u
Taking out _—k we can observe that, changing k,
U

Ur . .
— is constant for k # 1, so:
U,

26

(2.3)

(2.4)

(2.5)

(2.7)
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2. Jk; st o, —a; #0.
u u
In this case, taking out :l, we can observe that, varying [, :l is con-

Uy U
stant for [ # ¢, k;, so:

I claim Varying ¢ 3 not more than a unique ky s.t. — is constant for

JA ko, and =t A k.
j
proof of claim [ ’

If there exists some i such that (2.9) is true, there is nothing to prove.
Otherwise, if Vi it is true the (2.8) Jk; and C; constants
u .
st. =L =: C; Vj # i, k;. Let’s fix ig and the corresponding k;,; considering
L7
11 # 1o, k;, it has to be true that one among k;, and i, is different from £;.
Without loss of generality let’s assume that it is 7, so
Do _ == Cy= 1
Uig Uj Uiy
where we have considered j # g, 71, ko, k1.
u .
SoVj # ki, =L =:C constant.
uj
This completes the proof of the first claim.

II claim If d!ky s.t. g—] is constant for j # ko, and & + ?, j# ko
u; Uk, U,

then Vi # ko, af = a! Vk:;é ko.

proof of claim I

By contradiction suppose that Jky,i # ko s.t. ail =+ oé; then,
from (2.8) it follows that

ko % £k

ﬂkzo Uj

This completes the proof of the I claim.
Note that if it is true the thesis of claim II, we would have that Vi # kg

Ule] = af Y Ules] + aj,Ulex,)-
J#ko

From this it follows the absurd because {Z/{ lei] }Z are linearly independent

and so it can’t be true that Ule;] € span{bl[v],l/{[eko]}, Vi # ko
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u

with v = Z ej. Hence, Vj, — is constant and therefore, thanks to Propo-
ko i

sition 2.1.2, U is real. O

II proof. (<) Easy, as in the first proof.

(=) U[z] €U Vzimplies that ¥z Jv, s.t. U[z] = U[v,], that means that
the algebra U is a subalgebra of &. On the other hand, since both of them
are n-dimensional algebras, they have to be the same algebra, sdU = sdU.
Hence, thanks to Remark 1.1.1, 3 a permutation matrix P and a diagonal

unitary matrix D s.t.

U=UPD.

So Vj 30}, k; s.t. multiplying on the right by e;:

ej — 2uu = e (ekj — ukjﬂ)

0

= e; — Ve, = 2mju — 2"y, . (2.9)

If, by contradiction e; — e ex, 7 0 Vj, consider the set {e; — e ek, };; this
one would contain a set of more than [7] linearly independent vectors and
at the same time it would be contained in span{u,u}, which is absurd for
n > 4.

So 3j s.t. k; = j and 6; = 0; replacing in (2.9) we obtain:

QEju — 2'&]@ =0
= Uiﬂj = Ujﬂi Vi
U .
= — = Constant Yi
U;
and, thanks to Proposition 2.1.2, we can conclude that U is real. O

Corollary 2.2.3. In the same hypotheses of Theorem 2.2.2, the algebra U s

closed under transposition iff U is real.

Proof. U is closed under transposition iff it is closed under conjugation:
U[Z]T = (D(2) 4+ 2Muu? + 2uu M)T = D(z) + 2Muut + 2uu!M = U[z]. O

Proposition 2.2.4. The algebra U is symmetric iff U is real.
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Proof. As we have observed in the previous corollary, we have U[z]7 = U]z].
So if U[z] = U[z] Vz € C", it follows that the i-th column of U has to be
a multiple of the i-th column of U (since both of them are the eigenvectors
relative to the eigenvalue z;). So let’s impose Vi e; — 2u;u = e; — 2u;u, that
is w;u; = w;u;, but this means that U is real because of Proposition 2.1.2.

The inverse is trivial. O
Proposition 2.2.5. The algebra U is never persymmetric if n > 4.

Proof. U is persymmetric iff Vz € C" U[z]" = JU[z|J, where J is the
exchange matrix (J;; = §;,41_;). This means UD(2)U = JUD(z)UJ, where
JU is still a unitary matrix. So it has to be true that the i-th column of JU

is a unitary multiple of the i-th column of U, that is :

JUe; = Ue, ,
J(I —2uu)e; = € (I — 2au')e;
Jei - 2%117/ = €i9i(€i — 2uﬂ) s

Cnt+1—i — 2@1’& = e’ei (ei — QUZE) .

Thus it should be true that {e®e; — e, 1}, C span{i,u}, but this is
absurd if n > 4. [l

Theorem 2.2.6. (Intersections of Householder algebras)
Let’s be given two distinct Householder algebras U,V s.t. u;,v; # 0 Vi, n > 4.
Then we have:

dim(UNYV) < 2.

Assume U[z] = V|z], where z = (a, ceyoay Byl 6) ; let u be a vector
that defines the Householder matriz U, and consider the partition of u =
(ul, uz) where the dimension of (uy) is equal to number of entries of z

equal to . Then it has to be true one of the following assertions:

121 A 1]
[lual| 7 [fuel]

1. The vector v = ( u2> defines the matriz V.

2. |ur||? = ||us||? = 1/2, and if v is a vector that defines the Householder
matriz V', then 3, ¢ such that v = (ewul 7 eisou2>

Proof. We want to show that if A € U NV then, A = kI or A generates a
subalgebra of dimension 2 that is the whole U/ N V.
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If AceUNVY, then Jz,y € C" s.t. A =U|z] = V[y] and, since {z;} and {y;}
are the eigenvalues of A, it has to exist a permutation matrix, P, s.t. Pz =y,

hence:

A= UJz] = V[P
= UD(2)U = VD(P2)V < VUD(z) = D(P2)VU (2.10)
& V(i,j) (VU)yz = (VU)y,(P2);.

So we can assert that :

Define Vi the index h; s.t. Pej,, = e; and let’s consider the graph G s.t.
Jedge (i < j) & (VU)n; #0 and/or (VU)pn,; # 0.

It is easy to observe that if 3(i +— j) than z; = z;.
So if the graph is connected, then necessarily z = k1, k € C, andUNYV = k1.
In detail, we can say that the graph has as many connected components as
many different elements has z.
If the graph is totally disconnected the matrix VU must have just one non
zero entry in each row and column and therefore it has to be verified the
equality

VU =QD'

where () is a permutation matrix and D’ is a diagonal unitary matrix.

Thus the equation (3.26) becomes:

VUD(z) = D(Pz)VU
& QD'D(z) = D(P2)QD’' = PD(2)P'QD’
& P'QD'D(z) = D(2)P'QD’ .
The latter equality is true Vz taking P = @ but, then, it has to be true

U =V. So we can restrict to the case of a disconnected graph but not totally

disconnected.
Let be

Il = {7:1, ...72.}1}, _[2 = {jl; ~-~7jlc} s.t. ]1 U IQ = {17 ...,TL}, ]1 N ]2 =
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and without loss of generality assume
Zi = Q \V/iE]l, ZZ'#Oé Vi€ Iy.

Thanks to the above observation (the graph is not totally disconnected) it is
admissible to assume f/; > 2.
Now, by the definition of G, it has to be true

Viel,jel, (VU)pj=VU)pi=0
and this relation, if we define
Ji=A{hli € i}, Jo={hjlj € Lr},
can be written as

(VU)” =0 v<Z,j) € (Jl X [2) U (JQ X [1)

Let’s define
vy, = 0lg, vy, =0l v =0, v =g
and Ly, Ly, G1, G5 the rectangular matrices s.t.
Liv=wvy, Lyv=uvy,, VG = vr,, vIGy = Vy,.
Then we can state the following equivalent statement:
(VU)ij =0 V(i,5) € Jix[hUJyx 1, & LUVGy = LUVG, =0.
Thus it has to be true:

h h h ho_
LGy — 2uguy, — 2v507, + 40" uv s up, = 0

h h h h _
LyGy — 2uguy, — 205,07 + 40 uvguy, =0

LGy + 2((v"u)vy, — qu)u?2 + 2le((1}hu)u?2 — vfé) =
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Let’s note that the matrices L; G5 and L,G are matrices with not more than
one entry equal to 1 in each row and column and, since they have to be equal
to matrices of rank 2, we can immediately say that it is not possible that
they have more than two nonzero entries.

At the same time we can also say that the number of rows plus the number

of columns of LG5 and LoG; has to be equal to n.

claim If 475, > 1, then LG5 and L,G are the null matrices.

proof of the claim

If we assume n > 4, we have an equation of the type A + ujvf + upvl = 0,
where A has not more than two non zero entries in two different rows and
columns and both v; and us have all entries different from zero. So we can

analyze just the two following cases

1)A:[1 00 ] 2)A:[1 00 ]

010 .. 000 ..

In the first case, looking at the third column, u; and wuy should be lin.dep.
whereas, from the first two columns, they should be lin.indep. taking to a
contradiction.

In the second case, looking at the second column, u; and us should be lin.dep.
and, looking at the first one, they should be both multiples of e; against the

hypothesis that uy has all non zero entries. This completes the proof of the

claim.

It remains to study the cases :

Dl =1

2)L1Gy =0 and LyG; =0

In the first case z must have n — 1 components equals to each other and so
dimU NVY) < 2.

In the second case, if

L1G2 =0 and L2G1 = 0,

we are in the situation that J; = I; and Js = Is.
Note that we can assume without loss of generality that I; = {1,...,k} and
Igz{k—f—l,,n}
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The equalities in (2.11) became:

((Uhu)vjl - qu)u,}Q + ’UJI((,U}LU)U/?Q - ’U?Q) = O
(0 u)vgy = ug)uf, + v (W)}, —vf) =0

and multiplying them on the right and on the left the equation by the per-
mutation matrices that switch the indexes Jy with I and I; with J;, we

obtain:

(W vy, —ug)uf, +vg (W w)ul, —vf,) =0
(W wvr, = up)uj, +vp(Vw)ul, —vj) = 0.

Let’s redefine uy, =: uq, vy, =: v, vy, =: v; and uy, =: uy. Observing that
the vectors uy, ug, v1 € v9 are a partition of the vectors u and v, the system

of equations becomes:

[ (W u)vr — w)ul + o (Pu)ul — of) =

(V"u)vg — ug)ul + vo((Vru)ult — vft) =
[ |]? + [|ug|]? = 1
[o1]]? + [Jva| > = 1

(2.12)

Note that the above system of equations is equivalent to impose that the

non-diagonal blocks of the matrix VU are equal to 0:

VU = ([— 2 [Zj [oh ol > (I— 2 Z:] u ug}) (2.13)

_ ([_2 [?1171{Z Ul“%] _9 [WL? uiul 4 Al vruf U1U§] ) (2.14)

'UQ'U;Z UQ’UQ u2u’f UQUS Ugu}f Ugug

Using the equations of (2.12) and computing the difference between the sec-

ond equation and the conjugate of the first one, we have:

— 4(v"u) vyl + 4(u"v)uol =0, (2.15)

from this it follows that must exist a and S such that

U] = Qv and Uy = [vg.
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Now use the third equation to obtain :

[a*[[va]|* + |BP[Jvel[* = 1; (2.16)

replace again in the (2.15) and remind that v;v! is a full matrix:

— (awfvy + Bohvs) Buivly + (@vivy + Bulvs)avvl =0

= (aBlvil* + |81 lva|[)vrvy + (laf?|[v][* + Bal [va][*)vrvy = 0

= (lol?|lvil]* + Ballva|[*) — (aBl[va][* + |B]*][2][*) = 0

= ((la* — aB)l[o1|[* + (Ba — [B*)]|va]|* = 0. (2.17)

Y

Now, without loss of generality, we can divide by f(a@ — 3):

((al>=aB), 1o, Ba—=18P) n_
sam M GE
= Sl + Sl 0. 219
Let’s define
(a —p) . eif
a-p8
replace it in (2.18) and obtain :
a _||U?||2 i0
B llP”
- o= _HUQHQGZ'GB (2 19)
[T . '

Now consider again the identity (2.16) which yields:

||U2||4 2 2 2 _
||’l}1||2‘ﬁ| +‘ﬁ‘ HUQH -
ol
N ||v2||2w|2( 11) =1
il
ol
¥ et =t
, el s leall?
=1 = e (2:20)



Capitolo 2

So we can assume

| o1]] i
e
[[val

8=

35

el

ol (2.21)

where ¢ must be different from v, otherwise U = V.
This is sufficient to prove that dim(U N'V) < 2; indeed, replacing the last

two formulas and the equations u; = avy, ug =

(1—2 vl vvh Ly la2vvl o Buvl
vVl vyl aBugvt | B2l

h

I =21+ |af* = 2(cvr||* + Bl v [*)a)vrvf

| —2(1+ap = 2(el[u]]* + Bllve| P)@)vart
I=2(1+ |af* = 2(a|fvi|[* + Bl vl *)a)vivy

0
1—9 2 2(1 i(p—p)
r oo L 2Pl PO+ ey
[[o1]|?
0

Pug in (2.14), we obtain:

B'Ul (%)

1)

B/UQUQ

h

avv

+A(af [i[[2+8]]v|?) [ N
avavy

—2(1+aB = 2(allvi|* + Bllva|[*) B)vrvy

(1 =21+ 81 = 2(allwr] P + Blleal )B)each
0

(1 =21+ (81 = 2allr]? + Blleal PVB)ea
0

U__2<1_zuwuﬂﬁiiu—%éw‘”)vﬂg

So the matrix VU belongs to the commutator of every diagonal matrix with
all equal elements in the first part and all equal elements in the second part
of the diagonal, that means that dim <L{ N V) = 2. At the same time, since
it is easy to observe that necessarily

) #0.

<
o

(5 7& 0
the two blocks in the head and in the tail of the matrix VU are full matrices.
Hence this matrix cannot belong to the commutator of none diagonal matrix

that has more than two distinct elements in the diagonal. Indeed the commu-

tator of a diagonal matrix that is direct sum of identity matrices multiplied

L — 2| s [*[[on |P(1 + €'~
o2

L — 2o [P[[on |P(1 + €'~
[[va|[?

and
Vi,

Uy
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by different scalars, is made of blocks-diagonal matrices with as many blocks

on the diagonal as many different elements there are in the direct sum.

Now it is also easy to demonstrate the second part of the theorem, indeed we
are already in its hypotheses; so let’s replace in the first equation of (2.12),
at first the (2.16) and then the equations for a and f in (2.21):

28(al|vi| > + Bllve| [H)vivh — aBvivl —vivl =0
= 28(allui]]* + Bllal[?) —af —1=0

2Ba[ui|[* +2 = 2[al’|[n|P —aB -1=0
= 2(|af* = Ba)|ln| —1+aB =0,

4

2
= 2(”“2” _ eiw—w)) ||U1||2 — 1 — efile=¥)

= 2(|Jeglf? = o] ) = 1 - i
= 21— [l = oy |[?) = 1 = o)

) 1 — eile—1)
= (- (1 eIl = T
. ile=y) 1
e
S (14—l = S
2 2
5 1
= Jlf=5 or (p-w)=r.
Now, if ||v]|? = 1/2, then also ||v{|]* = 1/2.
Whereas in the case (¢ — 1)) = 7, we have that
o el
[Jor ]|
ol il
[|va] 1

and, since u is defined unless unitary multiples (because of Remark 2.1.1),
we can assume

o] Nl
1= 1 Uy = Vg,
[[os]] ||va]|

that is the first possibility in the statement of the theorem (note that in this

case u_lv).
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In the other case, when ||vs||?> = ||v1||> = 1/2, then |a| = |B] =1,
hence u; = e¥vy, uy = €vy, that is the second possility in the statement
of the theorem.

m

As a consequence of this theorem we can formulate the following conjecture:
If U is the product of £ Householder matrices and V' is the product of A
Householder matrices it could be true that dim (L{ N V) <k+h.

The results in the next Lemma and Corollary could be usefull to find an
extension of Theorems 1.3.4, 1.3.6 that involves two Householder SDU alge-
bras.

Lemma 2.2.7. Let be given uw € C", |ju|]|=1 ez € C". Then, Vu' €C"
such that ||| =1, w'D(2)u™ = uD(2)u" and D(z)(u’' —u) = Mu' — u), we

have that U[z] —U'[Z] is a two rank matriz.

Proof. Defining w = v’ — u and using (2.1):

U'[2] = D(2) — 2Mu'u™ — 2u'u"" M

D(2) —2M (u + w)(u + w)" — 2(u + w)(u + w)"M
D(z) = 2M (u)(u)" = 2(u)(u)" M — 2M (w)(w)"~
—2(w)(w)"M — 2M (uvw” + wu™) — 2(uw" 4+ wu) M

= U[z] — Mw(w" + 2u") — (Mw + 2Mu)w" — ww" M + 2u" M) — (w + 2u)w" M.

Now since D(z)w = Mw and M := ((u"D(2)u)l — D(z)), it follows that

Mw = vw and so:
Uzl =U[2] — vw(w" + 2u") — (Mw + 2Mu)w" — w(w" M + 2u" M) — (w + 2u)vw”
=U[z] — w(w" + 2u") (v + M) — (vI + M)(w + 2u)w" .
0

Corollary 2.2.8. If w = u' — u = ke; where k = u;(e? — 1), then all the

hypotheses of the above lemma are satisfied:

n n
r_ i0 _ 0
u = 5 uje; +ui(e” —1)e; = E ue; + ui(e”)e; .
=1 i#ig=1
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So it follows :

and

le/[] = [lull =1, w'D(z)u™ = uD(z)u"

Mke; = k(uD(2)u" — 2z)e; .

38



3. Householder-Type

3.1 Householder-Type Matrices

It is well known that, if we have two vectors u,v € C" s.t. ||w|| = [[v]|,
then there exists an Householder matrix U such that Uw = v if and only if
the scalar product <w,v > is real; so if w and v are real vectors it’s always
possible. A consequence of this fact is also that each real unitary matrix is
a product of Householder matrices, whereas to represent a generic complex
unitary matrix, we need a product of Householder matrices and a unitary
diagonal matrix. In this chapter we will study a new class of unitary matri-
ces that generalize the Householder matrices and that work, in complex case,
as well as the Householder matrices do in the real case; it is right to point
out that these matrices and some of their basic properties have already been
introduced in the past (see [10], [11]). To understand how to define these
matrices let’s understand why the Householder matrices fail in the complex
case. A good explanation of this fact can come from Theorem 4.0.1 that says
us that if we have two vectors as above, it exists an orthonormal basis u; and
n+1 coefficients :{o; }=!, B, v (B # 7) such that w = Z;:ll a;u; + Bu,  and
v =" u; + yu, and, since ||w|| = ||v|], it has to be true that |y] = |].
Now, if we want a matrix that maps w in v, it is sufficient a matrix that sends
Bu, in yu, and leaves invariate the other {u;}. It is easy to observe that
<w,v> is real iff B = —~, so, if <w,v> is real, we just need a matrix that
sends u, in —u,, that is exactly the Householder matrix generated by u,,.
Nevertheless, in the general case, (since v = €?3) what we need is a matrix

0

that sends u, in eu, and leaves invariate the subspace orthogonal to u,,.

To meet this requirement we have introduced the Householder-type matrices.
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Definition. : Similarly as we did for the Householder matrices, we can define
the matrix U, = I — cuu” where a = 1 — € and ||u|| = 1. We name this

class of matrices Householder-type.
Remark. Let o be defined as above, it’s easy to note that:
h

e U, is unitary and Ug =Uz=1—0uu

UlU, = UgU, = (I —auu)(I — auu”) = I — auu” — auwu” + |ofuu” =
I+ (| — 2Re(a))uu = I + (Re(@)® + Im(a)® — 2Re(a) )uu" =
I+ ((Re(a) — 1)* + Im(a)* — 1)uu” =
I+ (Re*(e®) + Im?(e”) — Duu" = I

e U, is Hermitian iff a = 0, 2

Ur=1-auu"=Us=U, <= a=a <= a=0,2 (3.1)

o Uu=e%yand Upw=vVv Lu.

(I —(1—e)yuu")u=u—(1—e")u=e’u (3.2)

Lemma 3.1.1. Let be given w,v € C" s.t. ||w|| = ||v||. Then Fu €
C™ ||lull| =1 and « with |a — 1| =1 (|a|?* =2Rea) s.t. Uy = w:

v —w <v,v—w > <v,w—uv>
vi=——ada=1+—"———=14———

llo —w]| <v—w,v> <w—wv,v>
Proof. Without loss of generality assume ||w|| = ||v|| = 1 and define u := ﬁ

v—w

To get « let’s impose :

<I L(v—w)((v—wﬁ)v =w

|| = wl|?

= - <|L(1—<w,v>)>(v—w):w,

v —wlf?
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from which it follows:

m&-<w,v >)=1,

a(l— < w,v>) = |jv—wl|f,
a(l-<w,v>)=<v—w,v—w>=2—<v,w>—<Ww,0v >,
(a—1(1-<w,v>)=1-<v,w>,

I-<v,w> <v,v—w>

-1 = = :
(o ) l-<w,v> <v—w,v>

Note that : | — 1| = 1.
[

Theorem 3.1.2. If u € C" is a unitary vector and we define the function
a(f) :=1— ¢, then the set of the Householder-type matrices
Uaioy =1 — (1 - euu, € R, is a commutative subgroup of the unitary

matrices.

Proof. The thesis follows from the following equalities:

h 1
Ua(-0) = Usioy = Upiy »

Un()Ua(e) = (I — (1 — e”)un) (I — (1 — €")uu”)
=1 — (1 —ePuu" — (1 — e®)uu” 4 (1 — €?)(1 — )uu”
=T+ (—(1—e?+1—e%)+ (1 —e? —e%+ )y
=1 = (1= = Usosy) = Uae)Ua(o) -
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3.2 Characterization of Householder-Type

Matrices

Theorem 3.2.1. : In C™*", n > 2

1. If a matriz is a rank-1 variation of a diagonal matriz it has to be the

product of an Householder-Type matriz by a unitary diagonal matriz

2. The Householder-type matrices are the only unitary matrices that are

a 1-rank variation of the identity matriz.

Proof. Let U = D(z) —vw" be a unitary matrix; we want to show that there
exist a diagonal unitary matrix D, u € C" s.t. [[u]| =1l and a=1—¢€"? € C
such that U = (I — auu™)D. Impose that U is unitary:

(D(2) —vw™) (D(z) — vwh)h = (D(z) — vwh)h(D(z) —ouw") =1.
This can be written as:

D(|z]*) = D()wv" — vw"D(Z) + |Jw|[Pvv" =1, (3.3)
D(|z|*) — DE)vw" — wo"D(2) + ||v|Pww =T, (3.4)

That are equivalent to:

[[wl]” I

2
D(2]?) = I + (@w - D(z)v)wh + w( —o"D(z) + @wh) ~0. (3.6)

[|w

D(|z|2)—]+< v—D(z)w)vh+v< vh—whD(2)> ~0, (3.5)

From this it follows that D(|z]|?) — I can have rank not bigger than 2, so we
can assume that 3j s.t. (D(|z[*) — I)e; = 0 and this implies:
2 2
((HU;H v— D(z)w)o" + U(@’U}L - whD(Z))>ej =0.
From this it follows that D(z)w /v = D(z)w = awv.

Now replacing it in (3.3), it follows that :

D(|z]?) — I — avv" —avo” + ||w||?v0" = 0 (3.7)

= (D(|z\2) — [) + (HwH2 — 2Re(a))vvh =0. (3.8)
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From the last equality, noting that it is allowed to assume that v # e; Vi
(otherwise it should be U = D(2")), it follows that

D(|=]?) —1=0

and

[[w|]* — 2Re(a) = 0.

So Vj 30, s.t. z; = €“%; moreover, assuming without loss of generality !

llv|]] =1, we have
[lwl] = [[D()wl]| = [ell[o]] = |af
Thus

la]* =2Re(a) =0 = (Re(a) =12 +Im(a)*’=1 = a=1+¢"

- ‘ h , '
= U=D(") - U<04D(€Z9j)flv) = D(e"%) —avv"D(e ?i)h
D) (1)),

If D(z) = I we have D(z)w = w = av and so U is an Householder-Type

matrix. O

Corollary 3.2.2. Let be given A € C™™ normal and non-derogatory. If
Jv € C" and {(hi, k;)}, € C? s.t. {he; — kw}, are eigenvectors of A,
Then 3a=1—¢"Y andu € C",||u|| =1 s.t. AelU, = SDU,,.

Proof. Since A is normal 3 U unitary matrix which diagonalizes A, that is:
A=UDN)U";

moreover, since it is non derogatory and diagonalizable, each eigenspace must
have dimension equal to 1. So, unless permutations of columns, it has to be
verified that

UP = D(B) —vw" where (B;,w;) = ci(hs, ki) Vi,
and, since U P is unitary, thanks to Theorem 3.2.1, we obtain:

UP = U,D(e").

WU = D(2) —vwh = D(2) — | Jv||wh = D(z) — v'w™.
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From this it follows that:
A =U,D(®)P'D(\)PD(e” ) U"

and thanks to Remark 1.1.1 one has A € U,,. O

3.3 Decomposition of Unitary Matrices

Note that every unitary matrix, U, since is a normal matrix, can be diag-
onalized by another unitary matrix, V', and, since all the eigenvalues of U

have absolute value equal to 1, we can write:

U= VD)WV = VvV =V (I = D))V
— 1= VD =)W' =TT (1= (1= e®)ul)
j=1

where the last equality holds since the columns of V' are orthogonal.
So, every unitary matrix U can be decomposed as product of Householder-
type matrices and more eigenvalues of U are equal to 1 less are the not-trivial
Householder-Type matrices we need to represent U. We will show that the
one above is an “optimal decomposition”; optimal means that the number of
not-trivial Householder-type matrices involved is the minimum possible. We
will also show that the QR algorithm adapted to work with the Householder-
Type matrices can be usefull to find an optimal decomposition of a unitary

matrix in terms of Householder-type matrices.

Theorem 3.3.1. Let be given V,W € C™ s.t. VAV = WHW = I,,cm, m <
n. Then 3U,,,..Uy, s.t. W =U,,,..UyV.

Proof. Let us name {v;}/",, {w;}!, the columns of V' and W. Proceed by

induction on m.

(v1—w1)

By lemma 3.1.1, 33U, =1 — alulu}f s.t. Uy, v1 = wy where u; = Tor=wa]] *

so the thesis is true for m =1.
(k = k+1): Let Uy,,...,Us, be st. U,,..Uyv; = w; Yi = 1,...,k, then
consider the vectors (Uak...Ualka) , Wga1 - Thanks to Lemma 3.1.1, we can
say that:

AU,

_ h
Qg1 I— O 1Uk41Up 41
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where
(Uak...Ua1Uk+1 — wk+1>

|Uay--Uay Vg1 — W]

Uk4+1 =

such that
U,

ki1 (Uak...Ualka) = Wk+1 -

Since the image of orthogonal vectors, through unitary tranformations, are
still orthogonal vectors, we can observe that Vi =1,...,k :
(Uak...Ualvi) = w; is orthogonal to the vectors (Uak, e Umvkﬂ) and w1 .
Hence

(Uak...Ualvi) 1 (Uak, - Ualvkﬂ) — Wiy -

From this and (3.2) it follows that

U

Qg1 (Uak...Umvi) = (Uak---Ualvi) = w;, Vi = 1, ceey k,
and, thanks to the definition, U, (Uak...Ualka) = Wk41 - ]

Corollary 3.3.2. Fach unitary matriz can be decomposed as a product of n

Householder-type matrices.

Remark 3.3.3. (This note will be usefull later).
If we want to decompose a unitary matrix () as product of Householder-type

matrices we can find U,, ,...,U,, such that
Ug, - Unp@Q=1.

We can note that the vector that defines the (k 4 1)-th Householder-type

matrix in the proof of the preceeding theorem is

Ups1 = (Uay---Uar Qg1 — €rg1)

where both (U,, ...Ua,qr+1) and ey are orthogonal to {e;}5_; .
So ugy1 must have the shape (0 ... 0 w4 ).

From this it is easy to note that the k-th Householder-type matrix has the

I 0
U, = ,
0 U,

where U/, is the Householder-type matrix of dimension n + 1 — k generated

shape

by the vector u;,,, and with the same o of U,,.
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Hence, to find the decomposition of a unitary matrix () as product of Householder-
type matrices, it is enough to find at the k-th step the Householder-type

matrix U], of dimension n + 1 — k such that
U, @ = e

where ¢ is the first column of the tail-submatrix Q¥ of dimension n +1 —k

of the matrix <Ua,€_1 - Ua1Q>:

I 0 1o\, (1 0
(m%“”%@>:Q)%4>WQ)%>%Q_<OQJ'

Note: this algorithm is equivalent to the QR algorithm.

Remark. With the Householder matrices it is possible to prove the same
theorem if the matrices are real, whereas, in the complex case it is only
possible to decompose a unitary matrix as product of n — 1 Householder

matrices and a unitary diagonal matrix.
Lemma 3.3.4. :

o IfU =1 —VQV" is a unitary matriz where V is a matriz in C™**
s.t. VMV = Iyp, then IW € C™F s.t. WhW = I and D € CF¥F
a diagonal matriz with Dj; = 1 — €% such that U = I — WDW" =
H?:l (] - Djjij?) = H§:1 Ua -

o IfU = 1—VQV" is a unitary matriz where V is matriz in C*™
then AW € CV* with k = rk(V) s.t. W'W = [, and D € C** ¢
diagonal matriz with D;; = 1 — €% such that U = I — W DW™".

o IfU =1—VQV" is a unitary matriz where V.€ C™™ has full rank
m, & C"™"™ is non singular, then U can be decomposed as a product
of m non-trivial Householder-type matrices s.t. the vectors that define

the Householder-type matrices are orthogonal.
Proof. Let’s consider the Schur decomposition of 2
Q=v'TV".

Then
U=I1-VvvV'Tv"vh
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and thanks to the unitarity of V' we have (VV)*(VV') = V"VMWV' = I,
so we can define

W:.=VvV'.

Now let’s impose that I — WTW™" is unitary:

(I =WTW") (I -WT'"W") = (I —WT'"W")(I - WTW") =1
= [-WT+T'-TT"YW"=1-W(T+T"-T'T)W"=1
= T+T"—TT"=T+T"-T'"T =0
= T+T"=TT"=T"T,

Since T is a triangular matrix that has to be also normal, T is a diagonal
matrix.
From the last equation we have also that |Tj;|> = 2Re(T};), that is, each T}
is equal to 1 — e for some ;.
If

U=I1-VQVvh

and the {v;} are not linearly independent, V' could be written as V' = V'X
where V' € C™F is a full rank matrix and X € C*¥*™ is an upper triangular

matrix, and so, defining

Q= XOX",
U can be written as
U=T1-VQV'=U=T-V'XQX"V*r=T-VvV'QV".

Now with an easy ploy we can bring the above equation to the hypotheses
of the first statement of the lemma; we use the fact that V"V’ is positive

definite and so we can consider it’s square root. Thus
U=I-vV'Qv"
—J - Vl (V/hvl) *% (V/hvl) %Q/ (V/hvl) % (V/hvl) *%V/h
and, if we define the matrices

1
2

W =Vv'"(V"V') 7,

Q” _ (V/hvl)%Q/(V/hV/)% 7
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then W’ is such that

W/hW/ — (V/hvl)*%vlhvl(vlhvl>*% — Ikxk-

Now we are in the hypothesss of the first statement of the lemma, and there-
fore 3Wand D s.t. U = [ —WDW?"  where W"W = I, and Dj; = 14¢€" .
The third statement follows from the two above: from the last one we observe

that U can be decomposed as
U=I—-WDW", where W"W = Ixm,
D]j =1- eiej )

we can easily observe that D is nonsingular (D;; # 0 Vj) since 2 is non
singular and we have used only non singular transformations. Now it is
simple to observe that if we decompose the last matrix equation in a product
of Householder-type matrices (as we did in the first part of the theorem) all

of them are non trivial. O

Theorem 3.3.5. Let U be a unitary matriz whose eigenvalues are 1 with

multiplicity k and {e' }?:_f, then:

1. El{aj}?:—f, {u]}?:—lk st |usl| = 1 V) and ujLlu; Vi # j st. U =

[[02) Ua, = TIZE (T — aguzul).

2. If U is product of m non-trivial Householder-type matrices U = [[;~, Ua,
s.t. the vectors that define the matrices U,, are orthogonal,

then m=n—%.

3. U can’t be decomposed as a product of less than n — k Householder-type
matrices.

4. The algorithm that comes from Theorem 3.3.1 converges in exactly n—k

not-trivial steps.

Proof. Let’s consider the spectral decompostion of
U=VDNV"=VV" V(I -D\)V"=1-V(I-DN\)V";

we can observe that the matrix I — D()\) is a diagonal matrix with n — k
non-zeros entries each one of the type 1 — e := a.

SoU=1-Yr" v, U = nv(I - aj,v;, 0" ) where the latter equality
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is true since the eigenvectors v;, are orthogonal.

To demonstrate the second statement it’s enough to observe that if
m
U= H —aulh with  u; L u; Vi#j
=1

then U has n — m eigenvalues equal to 1 so n — m = k.
To demonstrate the third statement let’s consider an optimal decomposition
of U, that is a decompositin in terms of a number of nontrivial Householder-

type matrices as minimum as possible

= H U, H — U J
j=1 j=1
If we define V' the n x m matrix that has as columns the {u;}, it is easy to

see that the above equality can be written in matrix form as
U=1-VQv",

where (2 is an upper triangular not-singular matrix with the o; on the diag-
onal.

Because of Lemma 3.3.4 it’s necessary that V' has maximum rank otherwise
the decomposition wouldn’t be optimal. So, again thanks to Lemma 3.3.4,
there exist W and D s.t.

U=1—-WDW"

where

WhW = [m><m

and

Djj=1+¢"%.
But this means that U has only m eigenvalues different from 1 where m < k,
som = k.
The algorithm that comes from Theorem 3.3.1 is such that the vectors {u,},
which define the Householder-type matrices involved in the decomposition of

U, are linearly independent, as observed in Remark 3.3.3; so if

m
U= | | ozju]
J=1
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is the decomposition that comes from the algorithm, then it can be written
as

U=1-VQVv"

where both V' and © (V' is the n x m matrix having {u;} as columns and €2 is
an upper triangular matrix with the o; # 0 on the diagonal) are nonsingular
matrices. Thanks to Lemma 3.3.4, this has to be an optimal decomposition,
that ism=n—k.

[]

Now we will show that, from the Householder-type decomposition of a real
unitary matrix, we can derive its decomposition in terms of real Householder
matrices. First of all let’s remember some basic properties of a real unitary
matrix. Consider U, a real unitary matrix, and A one of its eigenvalues; then
if A is not real (A # £1), also X is an eigenvalue. In the same way if v is
an eigenvector related to an eigenvalue A € C\ R, then v is an eigenvector
associated to X. Thus, if we look at the Householder-type decomposition of U

h

that is obtained from its spectral decomposition, if U, = I — auu" is one the

factors then, necessarily, in the decomposition there is also U, = I — auu’.
So, to obtain a decomposition of U in terms of real Householder matrices,
it’s enough to find the decomposition, in terms of Householder matrices, of
a matrix like (U,U,), where u and % are orthogonal.

Hence we want to show that V0 € [0,27), u € C" s.t. ||ul| =1, u'u =0

there exist v,w € R™||v|| = ||w|| = 1, such that:
<] —(1- ew)uuh> (I —(1— e_w)ﬂut> = (I - 2vvt> (] - wat> . (3.9
Note that, since u'u = 0, it has to be true:
(Rew)'(Reu) = (Imu)'(Imu) = % and (Reu)' (Imu)=0.
If we develop the first member of the equality (3.9) we obtain:

I—(1—eNuu" — (1 —euu' =

I— 2((1 — cos0) ((Rew)(Reu) + (Imu)(Imu)") + (sen6) ((Imu)(Reu)" — (Reu)(Im u)t)) .
Similarly the second member of (3.9) becomes:

I— 2<th + ww' — 2(vtw)th> : (3.10)
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Now, if we rename Reu = z and Imu = y, we are looking for v and w such
that:

(1 —cosb) (a:a:t + yyt) + (sen 0) (yxt — a:yt) = v’ +ww' - 2(v'w)vw’ . (3.11)

Let’s impose v = v/2 sinp z + /2 cos p y
and w = V2 siny z +v2 cos y .

Then the second term of the above equality becomes:
v + ww' — 20 w)vwt =
2 ((sin2 ¢ + sin® )z’ + (cos® ¢ + cos® ¥)yy" + (sin o cos p + sintp cos ) (zy’ + ya:t)>
— 4(sin ¢ sin + cos p cos ) <(sin psiny)za’ + (cos p cos w)yyt>
— 4(sin ¢ siny + cos ¢ cos ) <(sin ¢ cosp)zy’ + (cos p sin z/J)ya:t)> :
So ¥ and ¢ have to satisfy the following equalities:
1 — cos @ =2(sin” o + sin? 1)) — 4(sin ¢ sin 1) + cos o cos1))(sin psin )
=2(cos® ¢ + cos?1p) — 4(sin ¢ sin 1) + cos ¢ cos1))(cos @ cosp),
sin @ =2(sin ¢ cos ¢ + sin ¥ cos)) — 4(sin @ sin + cos ¢ cos ) (sin @ cos )
= — 2(sin ¢ cos ¢ + sin ) cos ) + 4(sin ¢ sin ) + cos p cos)(cos @ sin ) ,

cos ) =(1 — 2sin® ) (1 — 2sin® ) + 4(cos ¢ cos ) sin @ sin 1))
=(1 — 2cos? ) (1 — 2cos? 1)) + 4(sin ¢ sin 1) cos p cos ),
sin @ =2(sin ¢ cos @) (1 — 2 cos® 1)) + 2(sin vy cos 1)) (1 — 2sin? )
= — 2(sin g cos )(1 — 2sin 1)) — 2(sin1p cos)(1 — 2cos? @),

cos 0 =(cos 2p)(cos 2¢) + (sin 2¢)(sin 2¢)) ,
sin @ =(sin(—2¢))(cos 2¢)) + (sin 2¢))(cos 2¢) ,

cosf =(cos(2¢ — 2¢)),
sin 6 =(sin(2¢ — 2¢)) .
Hence, to satisfy (3.9), we can take
v = \/isingpa:—ir\/icosgpy and w = \/§sinwx+\/§coswy,

where ¢ and 1 are such that 0 = 2(¢) — ).
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Remark 3.3.6. We can easily observe from the preceding theorems that the
algorithm that comes from the demonstration of Theorem 3.3.1 can also be
used to reduce the problem of computing the eigenvalues and eigenvectors
of a n X n unitary matrix, U, to the problem of computing eigenvalues and
eigenvectors of a m X m unitary matrix where m is equal to number of
eigenvalues of U different from 1.

Indeed, given a unitary matrix U, we can do the following steps:

1. define U' := U and u7 it’s first column.

2. fori=1,...,n

(a) find the Householder-type matrix U,, = I — o;u;ul of dimension
n+ 1 —14, such that U,,ul = e

(b) define U™ the tail submatrix of dimension n — i of the matrix
(U, U') and uif] its first column.

end for

3. after at most n steps we can say that:

1 0 ...
1 0
U= Us . lo - o0 (3.12)
0 Usy .
. O UW
= Us (3.13)

(3.14)

I
== EN
— .
~
|
8l
Isg1
=g
SN—

s
Il
i

0
where ; is defined as the vector | = |. In particular, thanks to Theo-
U

rem 3.3.5, we can say that only n—k of the terms in the above equation
are non-trivial, where £ is the multiplicity of 1 as eigenvalue of the ma-

trix U .
4. Write in matrix form the above equation
U=I1-vQav"

where V' is defined as the n x (n — k) matrix having as columns the «;

relative to a; # 0.
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5. Observe that

U=1-V(VhW) 2 (Vhv)2QVhv) (viv) v

-

and define V' = V (V*V) "2 and @ = (VIV)2Q(VhV)? .

NG

6. Compute the spectral decomposition of the (n — k) x (n — k) unitary
matrix [ — ':
I—Q =WD("wWh.

7. The columns of the matrix VW are the eigenvectors of the matrix U
relative to the eigenvalues different from 1. The eigenvalues of I — €V

are all the eigenvalues different from 1 of the matrix U .

Lemma 3.3.7. Let be given A, B € C™™  m <n, s.t. A"A = B"B. Then

o V{i;}f_, C {1,..,m} we have k(A ;) = rk(Bi.. ), where

.....

(Aiy...i.) is the submatriz of A obtained selecting the columns iy, ..., 1.
o If A, i 15 asubmatriz of A with mazimum rank, then 3T € Ckxm
st. A=A, T and B=DB; ;T.

Proof. Let be given {i;}s_; C {1,...,m}; at first we can observe that, unless
of permutations of columns, it is allowed to assume that

{i;}f_, = {1,...,k}. Now it is easy to note that the columns Ay, ..., A; are
independent iff det((AhA) > # 0 where (AhA) is the head submatrix
of A"A of dimension k x k.

Indeed, if the k-th column is combination of the first £ — 1, it should follow
Al = ZZ 1 Lo, A, and, from this, the k-th row of (AhA) would be of the

type:

k—1 k—1 k—1 k—1
(Zm <A Ar>, ) W <A Apa> Y <A Y oA ) .
i=1 i=1 =1

i=1

But the latter is a combination of the first £ — 1 rows of (AhA) ok and so

the determinat should be equal to zero.
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On the other hand it is true also the contrary;
indeed if det(AhA)ka =0, then Jv e CFsit. (AhA) ,v =10. So:

k
ZUJ'<A¢,AJ'>:O Vi = Z<A1,U1A> 0
[

= <Z’UZ'A1', UjAj>:0 szz i =Y,
=1 =

that means that the {A;} are linearly dependent.

From the above equivalence we can observe that, if A”A = B"B, the k-th
column of A is a combination of the first & — 1 iff the same is true about B,
in particular it is possible to conclude that A; and Bj are combinations of
the first k¥ — 1 columns iff Jv € CF t.c

" (AhA)kxk (BhB)kxk =0
iff
k k
ZviAi = ZULBZ =0
i=1 i=1
that means

k-1 k—1
i=1 =1

This in matrix form can be expressed as

A= An ..... ZkT and B = BZ1 7777 ikT7
where 7' is the same matrix for both A and B and A, ., B .. are
submatrices of maximum rank. OJ

Theorem 3.3.8. Let be given A, B € C™™ with m <n s.t. A"A=B"B.
Then 3 U, WUy st U, Uy A=B.

Ork(A)? " Qrk(A)""

Proof. Recalling Lemma 3.3.7 it follows that exist T € C**™ and two
submatrices of maximum rank of A and B, A, B in C"**, that are obtained

selecting some columns of A, B, s.t.
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Let’s consider {e;} , {f;}, the orthonormalization of the columns of A, B
obtained with the Gram Schmidt algorithm:
A Az_ i~:1<€‘,Ai>€'
1= ——— 6= — Zgj Al (3.15)
[ Aq ] 14 = 2250 < e Ai > e
1= 7= 7> y Ji — ~ i— 5 . .
1By ]| 1B; = 520 < £ Bi > £yl

Note that
B"B=A"A = <B;, Bj>=<A;,, A;> Vi,j,

Then, from the above equations, it follows that the coefficients of ¢;, f; , each
one with respect to the basis {A;}, {B,} are the same. Thus (3.15),(3.16) can
be similary formulated saying that exists only one matrix C, non singular,
S.t.

E = AC
F = BC,

where E and F' are the matrices having {e;} and {f;} as columns.
So:

EC™'T = A,
FC~'T =B.

Now it is easy to conclude because, thanks to Theorem 3.3.1,

3U.,, ..U,

Ark(A)

st. F=Uy,.Uy E =

rk(A)

B = FC'T = U,,..U

QrkgA

ECT'T = U,,..U,, A

rk(A)

]

Theorem 3.3.9. : the best approrimation of a unitary matrix with
k-Householder-type matrices

Let U be a unitary matriz and [~ Uy, its decomposition in Householder-
type matrices defined by orthogonal vectors as in Theorem 3.3.5. Then the
best approzimation of U (in Frobenius and 2-norm ) with k Householder-type
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matrices is U* = HZ:1 U, where the {ai, }i_, are the k ones with bigger

absolute values among the ;. And

U -U 5= loylP= Y [1—€"],

j=k+1 j=k+1
1U = U3 = o] = |1 — ™17,

where {a;}7_,., are the ones with smaller absoulte value among the oy and

Q41 08 the one with bigger absolute value among the {a;}j_; ;.

Proof. Let
U=VDM\)V"

be the spectral decomposition of U; as in Theorem 3.3.5 it can be written as
U=1-VDV"

where D is the diagonal matrix € C"*™ s.t. Dy =a; =1 — \;.

Still from the previous results, we can say that to approximate U with a
product of k Householder-type matrices is the same thing that to approximate
U with a matrix of the type I — WQW?", where W € C***, Q0 € C*** upper
triangular.

So our problem is equivalent to approximate the matrix V. DV" with a matrix
of rank < k of the form WQW™".

It is well known that the best approximation (in both the 2-norm and the
Frobenius norm, see the appendix) of a matrix with a rank k& matrix is the

truncation of its SVD that leaves the k bigger singular values.
It is also well known that the SVD of VDV’ is?

VD(yaiy)D<|Zf|>vh,

(2

Q;

where the |a;| are the singular values and the matrices V, D( )Vh are the

il
left and right singular matrices.
So we have that the best approximation of V. DV" with a matrix of rank < k

18 :

o VDV"if k > rank(D) where rank(D) is the number of eigenvalues

different from 1;

2we adopt the convention % =1ifa; =0
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o VD'V if k < rank(D) where D’ is the diagonal matrix with zeros in
place of the (rank(D) — k) smaller singular values, that correspond to
the rank(D) — k smaller «;, that are also the eigenvalues of the matrix

U closer to 1.

Hence we have that
U*=1-vD'V"

and

U-ur=v|. . aa . .|V

O

where {a;}7_; ., are the ones with smaller absoulte value among the a;. In

particular we can conclude observing that

U= =) lafP= ) 1P,

and
U~ U = Janal? = [1 - 012

where .11 is the one with bigger absolute value among the {a;}7_,,;. O

3.4 Improving stability of QR Decomposition

Usually to obtain the QR decomposition of a matrix A, we apply a (n — 1)-
steps triangularization procedure to A in which at the i-th step an House-
holder matrix U; is introduced such that Ua! = ee; where a! is the nor-
malized first column of the tail (n +1 — ¢) x (n + 1 — i)-submatrix of
Ui_y...U;A) 3, and € is chosen in order to have < aﬁ,eiaiel > R (see
8], [15)).
Now, with the Householder-type matrices, at each step we don’t need any
more to fix 6; in order to have < a!,e"e; > real; in fact V0, HUW(Q) such
that ﬁi@(g)(lé = ee;. So we can choose 6; such that Um(ei) is as “good” as

possible.

3U; is the n x n Householder matrix direct sum of the identity matrix I;_; and of Ui
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We say that the matrix U, = I — auu” is better than the matrix Wz = I —
Bwwh if it is closer to the identity matrix, that is, since ||[uu”|| = [Jlww?|| =1,
if || is smaller than |3|. Indeed, given a unitary vector v, our aim is to have
the equality (I —auu”)v = ¢?e; and to bound, as much as possible, the error
that affects the vector (I — auu”)z because of an error ¢ generated by the

computation of (u"z). Looking at the equation:
(I — auu)z ~ 2 — a(%)u =z —a'z+e)u= (I —auu")z — cau

we can observe that, smaller is ||, smaller is the perturbation of (I —auu”)z
caused by e.
If we want the matrix Uyg) s.t. Uyg)v = ee;, thanks to Lemma 3.1.1, we
have to choose Uyg) = I — a(f)uu” where
Y (v—e?e) <wv,efe; > —1 _ e — 1

|(v — ;)] <eer,v>—1  we -1
Set a(f) = ay. Then:

_ 2Re(vie”?) —2

and «a(f) —1=

. , 3.17
ao vie” ¥ —1 (3.17)
gl = 4(Re(vie) — 1)2 _ 4(Re(vie ) — 1)?
(Ule—ie _ 1)(1)_16"9 — 1) |Ule—i9|2 +1— U—leie — Ule—ie

4(Re(vie™ — 1))2
- Re?(vie?) 4+ Im?(vie=%) — 2Re(vie %) + 1
4(Re(vie™ — 1))2
(Re(vie) — 1)2 4+ Im?(v1e~ )

1
= 4(1 T e ) . (3.18)
+ (Re(vie=1—1))2

Now, since we want to minimize ||, let’s maximize
Im2 —i6
mi{ve) ) (3.19)
(Re(vie= —1))2

Note that the derivative of I'm(vie=?) is —Re(vie~?) and the derivative of
Re(vie™) is Im(vie~%), in fact:

16 0

iy d vie " — pie —ivie” " — jpre? »
7 0y _ _ - R i0
g e = g 2 2 e(vie™),
d , d vie " +77e? —ivie ™ +ivre?  ve ™ — e 4
_R —16 = — — — — [ —i0 .
agelve ™) = o 2 2 2i m(vie™")



Capitolo 3 59

So we can calculate the derivative of (3.19):

i( Im?(vye= ) > B
df \ (Re(vie=® —1))2
—2Im(vie ) Re(vie™) (Re(vie ") = 1)° = 2Im(vre~ ) Im? (vie~ ") (Re(vye ) — 1)
(Re(vie=i0) — 1)4
~2(Im(vre™)) (Im?(v:=) + (Re(vre™) — 1) (Re(vre™))
(Re(viei0) — 1)3 '

Thus (3.19) has minimum for 6 s.t. Im(vie?) = 0 (this follows since the
function (3.19) is non negative)

and maximum for 6 s.t. (Im2(v16_i9) + (Re(vie™™) — 1) (Re(vle_w))> =0,
that is v |2 = Re(vie™%).

So if we rename e = fop> then the 6 for which |ag| is minimum can be

obtained as:

Re(e®e ™) =|v| = Re(ei(‘p_e)) = |vq]
= cos(p—0)=|vi] = 0=p=xarcos(|v|).

From this it follows that, defining v' = (0, Vg, . .. ,vn),

(’U _ 61’961) (U — et i(oxarcos(|vi])) )
u = -
||(U _ 61961)” ||(U — eilpEarcos(|vi])) )
B (v — ke Filarcos(fnil)e, ) B (v1 — 4 (|v1| + isen(arcos(|vi]))))er + v/
(= yeEiaresiole) || (v — 2y (Jor| £ isen(arcos(juil))) e + /]|

Fi 1o lsen(arcos (Jv1]))er + '

Y ‘f}i|sen(arcos(|v1|))61 +v||

In the end let’s evaluate |ag|? in the point of minimum; when |v;|? = Re(v;e~)
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we have Im?(vie™®) = |v1|? — |v1|* and thus:

(Re(vie™® —1))2

2
=4 . .
ol (Re(vie=?) — 1)2 4+ Im?(vie~%)
B (et N (1
(lor =12+ Jor 2 = Jou [t (L= 0 ?)
=4(1— |v ). (3.20)

If we think ag as 1+ €', since |ag|? = 2Re(ay), still from (3.20) we have:

2(1+ cos(1)) = 4(1 — [n1]?)
= cos(7) = 1 — 2|v; |2
= 7 = Farcos(1 — 2|v, [*).
Hence we can state the following theorem:

Theorem 3.4.1. Given a unitary vector v, the Householder-type matrix U,

closest to the identity matriz I such that Uyv € span{e;} is :
Upe = I — () uu
where

( + i 2sen(arcos(|vi]))er + v’)

[v1]

o = <1 + eii arcos(172|v1\2)>7

H +i ﬁsen(@rcas(\vl\))el +

/
v = (O,vz,...,vn>.

o[ = |Uar = I1|* = 4(1 = [01]*).

And it is true:

( if we choose “+7” in the formula of ax we have to choose “+” also in the

formula for u )

Proof. 1t comes from the previous 2 pages.

]

Observe that as big it is |v;| as small we can get |« * |; hence it comes quite
spontaneous to apply before each step of the triangularization procedure a

pivoting in such a way to have |v;| as big as possible.
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In detail, after the i-th step we have that

it
Ug, ... Us A = A (3.21)
0 0 e .
0 0 0 A

So if we consider the permutation matrix P; s.t. ’(PiAi)H’ is the biggest

possible we have:

e
I 0
Ug, .. . Uy, A= 0 o (3.22)
0 F 0 0 €% ..

0 0 0 A

where |(A§)H| is the biggest among the absolute values of the elements of

I 0
the first column of A] and the matrix Uy, ... U,, is still a unitary

i
matrix. So after n-steps of this method we will still have a QR decompo-
sition of the matrix A but the matrix Q will be a product of alternating

Householder-type matrices and permutation matrices.

Instead of considering the pivoting only on the column, at the i-th step it
could also be possible to consider a total-pivoting on the submatrix A;, that
is to find the two permutation matrices P} and P? such that |(P!A;P?)11| is

the biggest possible. In this case we would have

61’91

I 0 I 0
L) Ui Us A , | = 0 B (3.23)
0 P 0 P 0 0 % ...
0 0 0 A

where |(A%)11| is the biggest among the absolute values of the elements of
the matrix A}. But, differently from before, after n-steps of this method we
will have a QRP decomposition of the matrix A where @) is a unitary matrix
product of alternating Householder-type matrices and permutation matrices,
R is an upper triangular matrix and P is a permutation matrix.

Note that in both the cases the alternating product of permuation ma-

trices and Householder-type matrices can be expressed as a product of k
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Householder-type matrices by a permuation matrix. Indeed, since it is true
(I — avv")P = P(I — aP'w"P),

we can easily show that

Panl.PQUa2 .. 'PkUak = P1P2 .. 'PkUal e Uak

Let’s make a final remark. From (3.20) one observes that it is required an
Householder matrix (to realize the minumum distance from I) if and only
if vy is zero, that is the same thing of saying v L e;. This was predictable,

h can be written also as 1 — e for some 6, ||

indeed, since « in I — auu
is always smaller than 2, thus the Householder case is the “worst” possible.
Moreover, from Theorem 4.0.1 and from the comments in the introduction
to this chapter, it follows that one needs an Householder matrix to send v in
ey if <v,e;> is real; but as we said before, the Householder case is the worst
possible, hence we don’t want that the above scalar product is real; any time
0

<w,e;># 0 we can always get it complex multiplying e; for some e? so it is

a Householder-type with |o| < 2 that realizes the minimum.

3.5 Best normal approximation via

projection on Householder-Type algebras

In this section we will present just an idea of a possible way to find one best
normal approximation, in the Frobenius norm, of a generic matrix A. Some
possible algorithms have been already found in [12],[13], however they seem
to be not so cheap.

Our idea is based on the following results:
e Every normal matrix can be diagonalized by a unitary matrix.

e We know the shape of the best approximation of a matrix in a fixed
SDU space (Theorem 1.1.2).

e We can decompose every unitary matrix as a product of Householder-

type matrices (Theorem 3.3.1).
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So the problem is the following: find

Nope = argminyexs |4 = NI = Upye D (Ul Aoyt ) U

opt

where N denotes the set of n x n normal matrices. This problem can be
equivalently formulated in terms of U,, and then, in terms of its decompo-

sition as a product of Householder-type matrices:

Uspt = argmin g ynisary||A — UD((U"AU);)U"|| = (3.24)

A— <Ua1 . Uan)D(((Uan . Ugl)A(Ual e Uan))ii) (Uo}jn e U&)

(Ugn . U£1>A(Ua1 . Uan) — D(((Uc]fn . Ugl)A(qu . Ua")>ii>

= (Ua1)0pt T (Uan)OPt :

argmln(Uai yi=1, )

..... n)

i

argmin g, ;-

Note that if we assume that U = (Us, )opt - -+ (Ua,, 1 )opt 18 already known,

then the last equation can be formulated as:
(Uan)oznf = argmin(Uan) ‘ ‘ (Ugn> UhAU(Uan) - D <(Ugn (UhAU) Uan)n’) H :

So it comes quite spontaneous to imagine an iterative algorithm that, at
each step k, computes the Householder-type matrix (U, ), that minimizes an

equation like the following:

(Ua)r = argming;

’ (Uj:) Ay (Ua> - D((UfjAkUa)ii> ' ‘ (3.25)

where:

A= (Ut (UD"AUL): .. (Ug)per

We still have not solved the above equation in both a and u s.t. U, =
I — auu”, but we can suggest a possible iterative solver for such equation.
Our idea is, fixed a vector u, to look for the value of o that minimizes the

equation (3.25); i.e. to look for

a = argmina‘ | (I- ozuuh)hA(I — auuh) - D(((I - auuh) hA(I - auuh))ii> H
(3.26)

where for the sake of simplicity we have set A := Ay.

Then look for

U= argminu‘ ‘ (I—duuh)hA(I—duuh) —D(((I—ézuuh)hA(I—ézuuh))m.) :
(3.27)
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set u = 4 and repeat until
I — aaa" = (Uy)p.

Let us see some preliminary results in solving (3.26). If we work with the

Frobenius norm, the minimization problem (3.26) is equivalent to maximize
2

112 = HD((UC’;‘AUQ)Z.JH in a.

Expanding the function || - [|* and computing its derivative, we have found

two different equations that the optimal o has to satisfy:

e Using the hypothesis 2Rea = |a|?, one obtains the following expression

for || - ||* in terms of z := Re(«)
'8x\/x(2 —x)Cy + 4y/2(2 — 2)Cy + 422C3 + 42Cy + Cs
1P = (if Ima > 0)
—8xy/x(2 — x)Cy — 4y/2(2 — 2)Cy + 422C3 + 42Cy + Cs
L (if Ima < 0)
where:
C= Z (fzgz + 771‘771‘) : Cy = Z (&(Rean‘) +n; (Imaii)> ;

i=1 i=1
n n

Cs = Z (522 + 7 — & — 7722) ) Cy = Z (gi(Reaii) +ﬁi(1maii) + 2(522 + 773)) ,

i=1 i=1

n
Cs = Z \CL¢¢|2
i=1

and
A4 AP - A+ A A+ A
fiZIm<ﬂi€§ —; ul, & = |u;l* u® i U_R€<ﬂi€§ —; u),
A— AP A— A A-A
ni = Im (T ¢;— U>, i = |wi*u" U—Re@ief 57 U)
7 [

Computing the derivative of || - ||* with respect to z = Rec, we have

-2 |4 - AL (if Ima > 0)

x(2—x
T

i

d 4p (z) + 4522(?

(if Ima <0)

i
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where
p1(x) = 22C5 + Cy and po(x) = 42%0C, — (6C) — Cy)x — Cy.

Thus the optimale value of x = Rea must be 0, 2 or must be a real zero

of the following fourth degree algebraic equation

pi(z)’x(2 — x) = pa(x)*. (3.28)

We can observe that the coefficients {&}, {m}, {&}, {@} have

the following good property (we use ||u|| = 1 and the fact that
A+ A A AR

are Hermitian matrices):

2 7 2
ifi:Im(uhA—;Ahu> =0,
36 - (A5 e (A o
énz = Im(uhA;ZA u> =0,
zzn;ﬁl - ||u”2<“hA;¢Ah“) N Re(“ - 2¢Ah“) =0

Hence it follows that all the equations become easier if
Ay = A;; Vi # 54, indeed in this case :

C, is zero, Co=%1",2(8+n}) >0,

2054+ Cy =31, 2(512 +77) >0, 112 om0 || |1 |a=2,
and (3.28) can be reduced to a third degree algebraic equation.
Remark: 1t Cy =0, then & =n; =0Vi, C; =0,

Cy =" (&+72) >0, ||-|]>=42>Cs + Cs and thus & = 2.
Otherwise, if Cy > 0, the value a = 2 can be optimal only if C; = 0

41t should be in general possible to equal all the diagonal entries by applying a finite

number of Givens similarity transforms to A (to be verified).
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and 4C3 + Cy > 0 (this follows from a simple study of the behaviour of

|| - ||? in a neighborhood of a = 2); in all other cases the optimal & is

h

s.t. 0 < |a] < 2,1.e. I — duu™is not Householder.

e Writing o = 14-€%, we have that « is optimal if e satisfies the following
equation:
Im(em(C’) +ei9(D+B+C)> =0 (3.29)

where D, B and C' are defined as follows

B:;|Ui|2(|ki|2+’hi’2>’ C:QZ%?(MM)

and

n

k’i = (UhAhU)Ui — Z Uiji s h hAU Z u] i

j=1

Also in this case the {k;} and {h;} satisfy some good property:

n

> wiki = |lulP (" AM) = (A" u, =0,
=1

ij*l
n
Zﬂihi = ||u|)*(u" Au) — Z ;A ju; =0.
=1 1,j=1

So if we equalize the diagonal elements of A, the coefficient D becomes

equal to zero.

Regarding the minimization (3.27), we note here only that it is equivalent to a
minimization problem in R?"~! just set u = D(e?)z, 0 € R", 2 > 0, z'z = 1.
An open question is to understand if the solution (U, ), of (3.25) generates
the best possible approximation of type product of k& Householder-type of
the U,y in (3.24) (see Theorem 3.3.9). If this is true, the iterative algorithm,
generating (Uy)1(Uy)a -+ - (Us)r from (Uy)1(Uys)2 - - - (Us)k—1, should converge
to Ugppt in no more than n-steps. Otherwise, an infinite number of steps,
could be performed improving more and more the normal approximation to

A, but it’s not sure that the algorithm converges to U,p.



4. Appendix

Theorem 4.0.1. Given two vectors w,v € C", there exists an hyperplane T

of dimension n-1 s.t. w and v have the same projection on T.

Proof. Observe that the thesis is equivalent to say that exists an orthonormal
basis {u;}7, s.t. o =<v,u; >=<w,u; > ,¥i = 1,...,n—1, and w =
Z;:ll QU + YUy, V= Z?:_ll o;u; + Bu,. But the latter assertion is trivial
because it is enough to find a set of n — 1 orthogonal vectors {u;}"—}' s.t.
u; L (v —w) Vi.

m

Theorem 4.0.2. (see [18], [20]) Let A € C*™ and A = UXV" =577 oouol, o >

0, r <mn, it’s SVD decomposition. The best rank-k approximation of A in the

2-norm is Ay, = Zle o, (as usual we are assuming oy > 0y > -+ > 0,).
Proof. Observe that UM A — Ay)V = diag(0,...,0,0441,...,0,), So:

HA - AkH2 = Of+41-

If B € C"*"is a rank-k matrix, let’s consider z € ker(B)Nspan{vy, ..., vk}
s.t. ||z|]2 = 1. Then:

k+1
1A= BIP 2 (A= Bz = || 42[* = ) _ of|(v}2)* = oiyy
i=1

and this completes the proof.
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o; >

= 70

Theorem 4.0.3. Let A € C™" and A = USV" = ST ouof
0, r <mn, it’s SVD decomposition. The best rank-k approximation of A in
the Frobenius-norm is A, = Zle aiuivfl, (as usual we are assuming oy >
09 2 e Z UT‘)‘

Proof. Observe that U"(A — A,)V = diag(0,...,0,0%41,...,0.), SO:

1A= Alfz= ) of.

i=k+1

Recall the Weyl’s inequality for singular values (see [19]) which says that

0irj-1(A+ B) < 0i(A) + 0;(B).

Then for any rank-k matrix B, since oy,1(B) = 0, taking j = k+ 1, we have
that:
oik(A) <o (A-—B) Vi=1,....n—k.

So:
n n—k n T
IA=Bl}s =Y 0(A=B) =) 0}(A-B)> > ol(A)= > o}(A)
=1 i=1 i=k+1 1=k+1
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