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0. Introduction

The idea of informational content of a matrix is a wide and not-well defined

concept, although Forsythe [14] suggested that a measure of it could be the

amount of memory required to store the matrix. Indeed, for several classes

of matrices, to identify a matrix it is sufficient a number of parameters k

smaller than the number of elements. During the last decades it has become

clear that a measure of the informational content of a matrix is related to

the structure of the matrix, as remarked in [5],[6].

Displacement decompositios are a tool that, besides computational benefits,

allows to point out different aspects of the informational content of some

classes of matrices, for example the number of parameters required to iden-

tify uniquely a matrix in such a class.

In literature there are several displacement formulas that can be usefull to

decompose a matrix as a combination of structured and low-complexity ma-

trices; these formulas find also some interesting applications, for example

to compute the solution of Toeplitz, Hankel or Toeplitz plus Hankel linear

systems. Most of these decompositions can be formulated in terms of Hes-

senberg algebras, as it has been demonstrated in [1]; although, several of the

algebras involved in displacement formulas are, not only Hessenberg algebras,

but also SDU algebras (algebras of matrices simultaneously diagonalized by

a unitary matrix U). For example we can cite the Gohberg-Olshevsky for-

mulas that decompose a matrix as combinations of ε-circulant matrices (that

are diagonalized by the ε-Fourier matrix [7]); other examples, found in [3],

are formulas involving the algebras τεϕ, which are related to the τ class and

diagonalized by different types of sine and cosine transforms.

Our aim was to prove some displacement theorems for generic SDU algebras;
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we have succeeded in it (see the contents of the first chapter) and we have

observed that our theorems can be applied to some low complexity SDU

algebras as the τεϕ. Thanks to our formulas it is possible to decompose a

generic matrix A as a sum of products of Hermitian matrices in two “near

each other” SDU algebras, U and V , plus one matrix in one of the two alge-

bras; the number of the terms in the sum is proportional to the rank of the

commutator of A with an Hermitian matrix in U .

In the second chapter, we have studied some particular low complexity ma-

trix algebras that are the Householder algebras; with the aim to apply our

displacement theorems to the Householder algebras, we have investigated

when they have some properties that can be interesting for an algebra of

matrices: closure by conjugation, symmetry, persymmetry and non trivial

intersection with algebras of the same class.

Working with the Householder matrices, we met the necessity to generalize

them, so in the third chapter we present our generalization, the Householder-

type matrices. We have noticed that this generalization had been already

proposed in the 90’ by Venkaiah, Krishna and Paulraj [11], although , in

literature, we have found just a small number of basic results of those that

we present in the third chapter.

We can say that the Householder-type matrices are a good generalization of

the Householder matrices mainly for four reasons:

• If w and v are two real vectors of equal 2-norm, there always exists

an Householder matrix U such that Uw = v. Nevertheless when w

and v are two vectors as above, but with complex entries, the above

property is true if and only if the scalar product <w, v> is real. The

Householder-type matrices have the capability to fill this gap of the

Householder matrices in the complex case; indeed, given w and v two

complex vectors of equal norm, there always exists an Householder-type

matrix Uα such that Uαw = v.

• The result described here, obtainable thanks to the introduction of the

Householder-type matrices, can be seen as a consequence of the above

one but, in our opinion, it is worth of consideration as much as the

above.

If U is a real unitary matrix, we know that U can be decomposed as

a product of Householder matrices; but, again, in the complex case
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this is not true anymore. Indeed a generic complex unitary matrix can

be, at most, decomposed as a product of n − 1 Householder matrices

and a diagonal unitary matrix. Also in this case the Householder-

type matrices fill this gap and we can demonstrate that every complex

unitary matrix can be decomposed as a product of n Householder-type

matrices.

• An Householder-type matrix has the shape I − αuuh, where u is a

unitary vector and α is a coefficient that can move on the circumference

(in the complex field) with center in 1 and radius 1. Fixed the vector

u, the set of Householder-type matrices that we can define by such

vector is a commutative group that contains the identity I and the

Householder matrix I − 2uuh.

• Any unitary matrix that is a 1-rank variation of the identity matrix

must be an Householder-type matrix. So the 1-rank matrix perturbing

I must be Hermitian unless a complex factor α.

In the first part of the third chapter, after a presentation of the above results,

we deepen some related questions. In particular we describe an optimal de-

composition of a generic unitary matrix U in terms of Householder-type ma-

trices, underlining its link with the spectral decomposition of U . Moreover,

we find the best approximation, in both Frobenius and 2-norm, of a generic

unitary matrix U by the product of a fixed number k of Householder-type

matrices. This is obtained by simply removing the n − k smallest singular

values of I − U . We prove also that if two matrices, A and B, have the

same Gram-matrix (i.e. AhA = BhB) then it is possible to transform A in B

through a number of Householder-type matrices equal to the rank of A (this

result is a generalization of an analogous one, for real matrices, found in [9]

and usefull in conceving optimization and preconditioning procedures).

In the second part of the third chapter we investigate two possible numerical

applications of the Householder-type matrices. However the study of both

the applications needs still some work to be concluded.

The first one is a modification of the classical Householder QR decomposi-

tion of a matrix A(see [8],[15]) that, in order to define Ai at step i of the

triangularization, uses the Householder-type matrix “closest” to the identity

I to map in span{e1} the first column of the (n + 1 − i) × (n + 1 − i) tail

submatrix of Ai−1 (A0 = A). This version of the QR algorithm could have
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the capability to bound the expansion of the errors as much as possible, but

this is still to prove. An interesting fact that comes from the study of this, in

principle, optimal QR algorithm is that, before each step, it seems convenient

to introduce a partial or a total pivoting, as it happens for the LU algorithm.

In the second application, which has yet to be investigated in many details,

Householder-type matrices are used to conceive an iterative procedure for

the construction of the normal matrix closest to a generic matrix A (the

problem is studied also in [12],[13]). The fact that every normal matrix is

diagonalized by a unitary transform and the fact that every unitary matrix

can be decomposed as a product of (at most n) Householder-type matrices,

lead naturally to the proposed algorithm, which, starting from A0 = A, at

the generic step k, computes the Householder-type matrix Uα that minimizes

the distance of a certain matrix Ak from its projection in the Householder-

type SDU algebra defined by Uα. Such projections turn out to be normal

matrices that approximate A better and better.

Apart the applications already described we expect that algebras SDU with

U = Householder-type or U = products of Householder-type can be used

to construct new efficient displacement formulas, and that the results of the

first chapter (or some their improvements) can help to reach this aim, but

this needs further work to be verified.



1. SDU Algebras

In the first part of this chapter we recall some properties and definitions of the

algebras of matrices simultaneously diagonalized by a unitary matrix (SDU

algebras) and then discuss the way an SDU algebra can be characterized by

a combination of his rows or columns. In the second part of the chapter we

present some new displacement theorems that allow to decompose a generic

matrix into a sum of products of matrices in two different SDU algebras,

which have the property to contain two matrices whose difference is a rank

one Hermitian(symmetric) matrix with some good properties.

1.1 Definitions and basic properties

Definition. : If U is a unitary matrix we can define the space U = sdU

as the algebra of the matrices simultaneously diagonalized by the matrix U .

In particular ∀ z ∈ Cn let’s define U [z] = UD(z)Uh the matrix ∈ U with

eigenvalues λi = zi. (So D(z) = D(zi) = diag(z1, . . . , zn)).

Remark 1.1.1. : The space sdV is equal to the space sdU iff V = UPD,

where D is a unitary diagonal matrix and P a permutation matrix. Indeed

V [z] = V D(z)V h = UPDD(z)DP TUh = UPD(z)DDP TUh = UD(Pz)Uh = U [Pz] .

On the other hand, if sdV = sdU then ∀ z ∃yz s.t. U [z] = V [yz]. Noting

that (z)i and (yz)i are the eigenvalues of U [z], they have to be uniquely

defined and so necessarily there exists a permutation matrix P z s.t yz = P zz.

So

UD(z)Uh = U [z] = V [P zz] = V P zD(z)(P z)TV h.
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Moreover, if we choose z s.t. ∀i 6= j zi 6= zj , we can observe that the i-th

columns of U and V P z are both eigenvectors of the eigenvalue zi and so they

have to be unitary multiples one of the other; that is Uei = eiθiV P zei ∀i =

1, ..., n or, equivalently, in matrix form : U = V PD with P = P z (so P

doesn’t depend on z) and D unitary diagonal matrix.

Theorem 1.1.2. Let A ∈ Cn×n. Then the best approximation in Frobenius

norm of A in U is UA := UD
(
(UhAU)ii

)
Uh.

Proof. Consider the Hilbert space Cn×n with the Frobenius inner product

(<M,N >F=
∑n

i,j=1M ijNij). Then U is a closed subspace of Cn×n and so,

thanks to the Hilbert projection theorem, it is well defined the projection of

A in U , that is also its best approximation in the Frobenius norm

(||M ||2F =
∑n

i,j=1 |Mij|2).
We want to minimize:

||A− UD(z)Uh||2F = ||UhAU −D(z)||2F (1.1)

So we have to take z = Diag(UhAU) .

Let’s state a result that follows from the definition of UA and the linearity of

the projection:

Corollary 1.1.3. UA is real whenever A is real (A = A) if and only if

U = U .

Proof. (⇐) ||UA − A|| = ||UA − A|| = ||UA − A||
then since UA ∈ U and the projection is unique: UA = UA .
(⇒) Consider a generic U [z] , then it exists a matrix A such that

U [z] = UA (Diag(UhAU) = z). Now decompose:

U [z] = URe(A) + i UIm(A) = U [z′] + i U [z′′].

Since Re(A) and Im(A) are real matrices, URe(A) and UIm(A) have to be real;

this implies that:

⇒ U [z] = UA = URe(A) − i UIm(A) = UD(z′)Uh − i UD(z′′)Uh ∈ U
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1.2 Characterization of a SDU Algebra

Let’s now analyze when the algebra U is characterized uniquely by a combi-

nation of its rows or columns and let’s introduce the notations U (v)(z) and

U(w)(z). Similiar definitions can be found in [4] where is presented the con-

cept of space of class V, these are n-dimensional spaces such that each matrix

of the space is uniquely identified thanks to its product by a fixed vector v.

Definition 1.2.1. Let v be a vector s.t. (Uhv)i 6= 0 ∀i ; ∀z ∈ Cn let’s

define U (v)(z) := UD(Uhz)D(Uhv)−1Uh.

It is the only matrix of U s.t. U (v)(z)v = z; indeed:

UD(Uhz)D(Uhv)−1Uhv = UD(Uhv)−1D(Uhz)Uhv = UD(Uhv)−1D(Uhv)Uhz = z.

To demonstrate the uniqueness assume by contradiction that ∃ U [y1],U [y2]

s.t. U [yi]v = z, i = 1, 2 ⇒ (U [y1]− U [y2]) v = 0

⇒ UD(y1 − y2)Uhv = 0⇒ D(y1 − y2)Uhv = 0⇒ (y1 − y2)i = 0 ∀i.

Note moreover that U (v)(z)q = U (v)(q)z (see also [1]).

Similarly we can define U(w)(z) :

Definition 1.2.2. If w is a vector s.t. (wTU)i 6= 0 ∀i;
∀z ∈ Cn let’s define U(w)(z) := UD(UT z)D(UTw)−1Uh.

It is the only matrix of U s.t. wTU(w)(z) = zT :

wTUD(UT z)D(UTw)−1Uh = zTUD(UTw)D(UTw)−1Uh = zT .

The uniqueness can be easily demonstrated as above.

Note moreover that qtU(w)(z) = ztU(w)(q).

Proposition 1.2.3. If v characterizes U by columns, i.e. (Uhv)i 6= 0 ∀i,
then:

{ w s.t. characterizes U by columns } = { U [z]v | U [z] is nonsingular }

Proof. (⊆) If w characterizes U by columns (Uhw)i 6= 0 ∀i, then

∃ U [z] nonsingular s.t. U [z]v = w
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⇔ D(z)Uhv = Uhw ⇔ ∀i zi =
(Uhw)i
(Uhv)i

.

The vector z is well defined and U [z] is nonsingular because product of non-

singular matrices.

(⊇) If U [z] is nonsingular we want to show that (UhU [z]v)i 6= 0 ∀i. But

(UhU [z]v)i = (D(z)Uhv)i = zi(U
hv)i 6= 0 ,

indeed U [z] is nonsingular iff zi 6= 0 ∀i and (Uhv)i are non zero because v

characterizes U .

A similar result can be easily formulated for a vector that characterizes U by

rows.

Corollary 1.2.4. Let v characterize U by columns and w = U [z]v with U [z]

nonsingular. Then:

U (w)(y)U (v)(w) = U (w)(y)U [z] = U (v)(y).

Proof. It is easy to observe that the three matrices have all the property to

be in U and to map v in y. So, because of the uniqueness, they have to be

equal.

Example 1.2.5. If U = I − 2uuh, ||u|| = 1, is an Householder matrix and

ui 6= 0 ∀i , then {w that characterize U} = {U [z]u | U [z] is nonsingular }.
Indeed, Uhu = Uu = −u and so we can apply Proposition 1.2.3.

Proposition 1.2.6. Note that, if v characterizes U by columns, v charac-

terizes U by rows indeed:

(Uhv)i 6= 0 ∀ i ⇐⇒ (vtU)i 6= 0 ∀i .

In particular we can observe that U (v)(z) = U(v)
(
UD

((Uhv)i
(Uhv)i

)
Uhz

)
:

vhU (v)(z) = vhUD(Uhv)−1D(Uhz)Uh

= vhUD(U tv)−1D(U tv)D(Uhv)−1D(Uhz)Uh = ztUD

(
(Uhv)i
(Uhv)i

)
Uh .
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1.3 Displacement Formulas

Now we will present two new diplacement theorems, the second one is a

complex generalization of the first, but we have distinguished the two cases

because, in order to demonstrate the complex version, one needs some extra

work. The idea of the proofs is similar to the one adopted in [1], where some

general displacement theorems, involving Hessenberg algebras, are proved;

as a consequence of them, the authors deduce the displacement formulas

of Gohberg-Semencul, Gader, Bini-Pan, Gohberg-Olshevsky and some other

formulas, for example formulas involving matrices of the same algebra but of

different dimensions. Our new theorems seem not to be a generalization of

any of the above known results, nevertheless, their hypotheses are satisfiable

for example by some low complexity SDU algebras as the ones presented in [2]

and [3]. However, these are just an example that ensures that the theorems

can be applied; it is an open problem to look for other low complexity unitary

matrices such that the associated SDU algebras satisfy our hypotheses.

Lemma 1.3.1. (See also [1], [2])

Given A ∈ Cn×n, if CU [z](A) = AU [z]− U [z]A =
∑k

i=1 xiy
t
i ,

then
∑k

i=1 x
t
iU t[w]yi = 0 ∀w ∈ Cn.

Proof.

k∑
i=1

xtiU t[w]yi =
k∑
i=1

n∑
h,j=1

xihU t[w]hjyij =
n∑

h,j=1

k∑
i=1

xihU t[w]hjyij =

n∑
h,j=1

U [w]jh

k∑
i=1

(xiy
t
i)hj =

n∑
h,j=1

U [w]jh(AU [z]− U [z]A)hj =

Tr
(
U [w](AU [z]− U [z]A)

)
= Tr

(
U [w]AU [z]− U [z]U [w]A)

)
= 0 ,

where the last equality follows since the matrices U [w]AU [z] and U [z]U [w]A

have the same characteristic polynomial.

Lemma 1.3.2. Ker(CU [z]) = {A ∈ Cn×n s.t. AU [z] − U [z]A = 0} =

{UAUh with A ∈ Cn×n s.t. AD(z)−D(z)A = 0} .

Proof. Trivial.

Definition 1.3.3. A matrix A is non derogatory if and only if there is only

one eigenvector associated with each distinct eigenvalue λ, if and only if its

minimum polynomial is equal to its characteristic polynomial.
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Note that if A is a diagonalizable nonderogatory matrix, then it has all dis-

tinct eiegnvalues.

Theorem 1.3.4. (I displacement theorem for SDU algebras)

Let U, V ∈ Rn×n be two unitary real matrices and w ∈ Rn a vector s.t.

characterizes U by colums and V by rows; assume that there exists z ∈ Rn

such that U [z] + wwt = V [z′] ∈ V . Then we can say :

1. Given A ∈ Rn×n , if CU [z](A) = AU [z]− U [z]A =
∑k

i=1 xiy
t
i

1, then

A =
∑k

i=1 U (w)(xi)V(w)(yi) + C where C is a matrix that commutes

with U [z] .

2. If U [z] is non-derogatory, that is zi 6= zj ∀i 6= j, then

C = U (w)
(
Aw −

∑k
i=1

(
U (w)(xi)yi

))
.

Proof. Let’s show that CU [z](
∑k

i=1 U (w)(xi)V(w)(yi)) =
∑k

i=1 xiy
t
i = CU [z](A):

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
U [z]− U [z]

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
=

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(V [z′]− wwt)−

k∑
i=1

(
U (w)(xi)U [z]V(w)(yi)

)
=

k∑
i=1

(
U (w)(xi)V [z′]V(w)(yi)

)
−

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(wwt)−

−
k∑
i=1

(
U (w)(xi)U [z]V(w)(yi)

)
=

k∑
i=1

(
U (w)(xi)

(
V [z′]− U [z]

)
V(w)(yi)

)
−

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(wwt) =

k∑
i=1

(
U (w)(xi)

(
wwt

)
V(w)(yi)

)
−

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(wwt) =

k∑
i=1

(
xiy

t
i

)
−

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(wwt).

So, if we show that
∑k

i=1

(
U (w)(xi)V(w)(yi)

)
(wwt) = 0 , we have proved the

first statement.

1We assume the xi and yi real vectors.
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Let’s analyze the j-th row of the above equation (remind that V(w)(yi),
U (w)(xi) are symmetric and remind Lemma 1.3.1):

etj

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
(wwt) =

k∑
i=1

(
etjU (w)(xi)V(w)(yi)w

)
wt =

k∑
i=1

(
etjU (w)(xi)

(
wtV(w)(yi)

)t)
wt =

k∑
i=1

((
U (w)(xi)ej

)t(
yti
)t)

wt =

k∑
i=1

((
U (w)(ej)xi

)t
yi

)
wt =

k∑
i=1

(
xti
(
U (w)(ej)

)t
yi

)
wt = 0 .

To prove the second statement we can observe that, thanks to Lemma 1.3.3,

if U [z] is non-derogatory, it generates the whole algebra U and the commu-

tator of U [z] is the algebra U . From this it follows that C is a matrix of the

algebra U ; that is ∃z′′ ∈ Cn s.t. C = U (w)(z′′). Since

C = A−
k∑
i=1

U (w)(xi)V(w)(yi) ,

it follows that:

z′′ =
(
A−

k∑
i=1

U (w)(xi)V(w)(yi)
)
w = Aw −

k∑
i=1

(
U (w)(xi)V(w)(yi)

)
w =

= Aw −
k∑
i=1

(
U (w)(xi)V(w)(yi)w

)
= Aw −

k∑
i=1

(
U (w)(xi)yi

)
.

Remark. :

If A is a complex matrix we can apply the preceding theorem, where U [z] ∈
Rn×n, to the matrices Re(A) and Im(A) .

If CU [z](A) = AU [z] − U [z]A =
∑k

i=1 xiy
t
i , decomposing each xi and yi as

xi = Re(xi) + iIm(xi), yi = Re(yi) + iIm(yi), it follows that:

CU [z](A) =
k∑
i=1

Re(xi)Re(yi)
t − Im(xi)Im(yi)

t

+ i
( k∑
i=1

Re(xi)Im(yi)
t + Im(xi)Re(yi)

t
)
,
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where
( k∑
i=1

Re(xi)Re(yi)
t − Im(xi)Im(yi)

t
)

is a (non optimal) skeleton de-

composition of CU [z](Re(A)) and
( k∑
i=1

Re(xi)Im(yi)
t + Im(xi)Re(yi)

t
)

is a

skeleton decomposition of CU [z](Im(A)). So A can always be decomposed as:

A =
k∑
i=1

U (w)(Re(xi))V(w)(Re(yi))− U (w)(Im(xi))V(w)(Im(yi))

+ i

(
k∑
i=1

U (w)(Re(xi))V(w)(Im(yi)) + U (w)(Im(xi))V(w)(Re(yi))

)
+ C1 + iC2 ,

where C1 and C2 are matrices that can be determined as in Theorem1.3.4.

Now we want to generalize Theorem 1.3.4 to the complex case; to do it

we want two matrices U [z], V [z′] such that V [z′] − U [z] = wwh, where w

characterizes U by columns and w characterizes V by rows.

Assume that U [z] ∈ U and w ∈ Cn is such that characterizes U by columns;

if U [z] + wwh ∈ V for some space SDV (i.e. A + wwh is a normal matrix),

then z has to be such that z − z = k1.

Indeed if w characterizes U by columns, thanks to Def 1.2.1, it can be written

as w = Ux where xi 6= 0 ∀i.
So we are looking for a matrix U [z] such that U [z] + UxxhUh ∈ V ;

let’s impose that U [z] + UxxhUh is a normal matrix:

U
(
D(z) + xxh

)
UhU

(
D(z) + xxh

)
Uh = U

(
D(z) + xxh

)
UhU

(
D(z) + xxh

)
Uh ,

D(|z|2) + ||x||2xxh +D(z)xxh + xxhD(z) = D(|z|2) + ||x||2xxh +D(z)xxh + xxhD(z) ,

D(z)xxh + xxhD(z) = D(z)xxh + xxhD(z) ,

D(z − z)xxh = xxhD(z − z) .

Since D(z − z) has to commute with xxh, that is a full non-zero matrix,

D(z − z) must be equal to kI for some k ∈ C.

Hence, as new hypotheses for the generalization of Thm 1.3.4, let’s assume

that z and z′ are real vectors (i.e. U [z], V [z′] are Hermitian matrices), in

this way the above condition is easily satisfied.

Another important property that we have used in the proof of Theorem 1.3.4

is the symmetry of the matrices U (w)(xi) and V(w)(yi); so, to generalize it in
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the complex case, we want to make them Hermitian matrices.

The matrix U (w)(x) is an Hermitian matrix iff D(Uhw)−1Uhx is a real vector

and the matrix Vw(y) is an Hermitian matrix iff D(V tw)−1V ty is a real

vector. So, analogously to before when we have applied the theorem to the

real matrices, now we want to apply the theorem to matrices A such that

D(Uhw)−1UhCU [z](A)V D(V tw)−1

is a real matrix.

The next lemma is usefull to understand which frame have such matrices A.

Lemma 1.3.5. :

Let U, V ∈ Cn×n be two unitary matrices, w ∈ Cn a vector s.t. characterizes

U by colums and w characterizes V by rows, and z ∈ Rn a real vector such

that U [z] + wwh = V [z′] ∈ V.

If D(Uhw)−1UhAVD(V tw)−1 is a real matrix, then

D(Uhw)−1Uh
(
AU [z]− U [z]A

)
V D(V tw)−1 is still a real matrix.

Proof. Let’s consider the real skeleton decomposition

D(Uhw)−1UhAVD(V tw)−1 =
k∑
i=1

hik
t
i ,

then we can consider the following skeleton decomposition of A:

A =
∑k

i=1 UD(Uhw)hik
t
iD(V tw)V h =

∑k
i=1 xiy

t
i ,

where we have defined xi := UD(Uhw)hi and yi := V D(V tw)ki.

Then

D(Uhw)−1Uh
(
AU [z]− U [z]A

)
V D(V tw)−1 =

D(Uhw)−1Uh
( k∑
i=1

xiy
t
i U [z]− U [z]

k∑
i=1

xiy
t
i

)
V D(V tw)−1 =

( k∑
i=1

D(Uhw)−1Uhxiy
t
i U [z]V D(V tw)−1 −

k∑
i=1

D(Uhw)−1UhU [z]xiy
t
iV D(V tw)−1

)
.

Here we already know that D(Uhw)−1Uhxi = hi and ytiV D(V tw)−1 = kti
are real vectors; so, to demonstrate the thesis, it is enough to observe that

yti U [z]V D(V tw)−1 and D(Uhw)−1UhU [z]xi are real vectors.
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Let’s analyze D(Uhw)−1UhU [z]xi:

D(Uhw)−1UhU [z]xi = D(Uhw)−1UhUD(z)Uhxi =

D(z)D(Uhw)−1Uhxi = D(z)hi

Since both z and hi are real, D(Uhw)−1UhU [z]xi is real.

Now analyze yti U [z]V D(V tw)−1:

yti U [z]V D(V tw)−1 = yti

(
V [z′]− wwh

)
V D(V tw)−1 =

ytiV D(z′)V hV D(V tw)−1 − ytiwwhV D(V tw)−1 =

ytiV D(V tw)−1D(z′)− ytiw
(
V tw

)t
D(V tw)−1 =

ktiD(z′)−
(
whV(w)(yi)w

)
1t

Here, ki is real by construction, z′ is real since V [z′] is an Hermitian ma-

trix and2 whV(w)(yi)w is real since, as we can easily observe, V(w)(yi) is an

Hermitian matrix :

V(w)(yi) = V D(V tw)−1D(V tyi)V
h = V D(V tw)−1D(V tV D(V tw)ki)V

h =

V D(V tw)−1D(V tw)D(ki)V
h = V D(ki)V

h =
(
V D(ki)V

h
)h

=
(
V(w)(yi)

)h
.

So also yti U [z]V D(V tw)−1 is a real vector.

Theorem 1.3.6. (II displacement theorem for SDU algebras)

Let U, V ∈ Cn×n be two unitary matrices, w ∈ Cn a vector s.t. characterizes

U by colums and w characterizes V by rows. Assume that ∃z ∈ Rn such that

U [z] + wwh = V [z′] ∈ V. Then:

1. Given A ∈ Cn×n such that D(Uhw)−1UhAVD(V tw)−1 is a real ma-

trix, if CU [z](A) = AU [z]−U [z]A =
∑k

i=1 xiy
t
i , where

(
D(Uhw)−1Uhxi

)
and

(
D(V tw)−1V tyi

)
are real vectors,3 then

A =
∑k

i=1 U (w)(xi)V(w)(yi) + C where C is a matrix that commutes

with U [z].

21 :is the vector with each component equal to 1
3this is possible thanks to Lemma 1.3.5
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2. If U [z] is non-derogatory, that is zi 6= zj ∀i 6= j, then

C = U (w)
(
Aw −

∑k
i=1

(
U (w)(xi)yi

))
.

Proof. C commutes with U [z] iff CU [z](A) = CU [z]

(∑k
i=1 U (w)(xi)V(w)(yi)

)
.

Hence, let’s analyze the right side of the latter equality :

k∑
i=1

U (w)(xi)V(w)(yi)U [z]− U [z]
k∑
i=1

U (w)(xi)V(w)(yi) =

k∑
i=1

U (w)(xi)V(w)(yi)
(
− wwh + V [z′]

)
−

k∑
i=1

U (w)(xi)U [z]V(w)(yi) =

k∑
i=1

U (w)(xi)
(
V [z′]− U [z]

)
V(w)(yi)−

k∑
i=1

U (w)(xi)V(w)(yi)
(
wwh

)
=

k∑
i=1

U (w)(xi)
(
wwh

)
V(w)(yi)−

k∑
i=1

U (w)(xi)V(w)(yi)
(
wwh

)
=

k∑
i=1

xiy
t
i −

k∑
i=1

U (w)(xi)V(w)(yi)
(
wwh

)
= CU [z](A)−

k∑
i=1

U (w)(xi)V(w)(yi)
(
wwh

)
.

Thus we have only to show that
∑k

i=1 U (w)(xi)V(w)(yi)
(
wwh

)
= 0.

Look at its j-th row:

etj

k∑
i=1

U (w)(xi)V(w)(yi)
(
wwh

)
=

k∑
i=1

etjU (w)(xi)V(w)(yi)w
(
wh
)

=

k∑
i=1

((
U (w)(xi)

)h
ej

)h(
wh
(
V(w)(yi)

)h)h(
wh
)
. (1.2)

But, both
(
D(Uhw)−1Uhxi

)
=: ξi and

(
D(V tw)−1V tyi

)
=: ηi are real vec-

tors, so it is easy to demonstrate that the matrices
(
U (w)(xi)

)
and

(
V(w)(yi)

)
are Hermitian matrices :

(
U (w)(xi)

)
= UD(Uhw)−1D(Uhxi)U

h =

UD(Uhw)−1D(UhUD(Uhw)ξi)U
h = UD(ξi)U

h ,

(
V(w)(yi)

)
= V D(V tw)−1D(V tyi)V

h =

V D(V tw)−1D(V tV D(V tw)ηi)V
h = V D(ηi)V

h .
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So, using Lemma 1.3.1, the (1.2) becomes:

k∑
i=1

((
U (w)(xi)

)h
ej

)h(
wh
(
V(w)(yi)

)h)h
=

k∑
i=1

((
U (w)(xi)

)
ej

)h(
wh
(
V(w)(yi)

))h
=

k∑
i=1

((
U (w)(ej)

)
xi

)h(
yti

)h
=

k∑
i=1

xhi
(
U (w)(ej)

)h
yi =

conj
( k∑
i=1

xti
(
U (w)(ej)

)t
yi

)
= 0 .

If the matrix U [z] is non derogatory, the commutator of U [z] is the algebra

U ; thus C is in the algebra U ,

C = U (w)(ϕ) = A−
k∑
i=1

U (w)(xi)V(w)(yi) ,

and it can be characterized by the combination of his columns given by the

multiplication on the right by w, that is:

ϕ =

(
A−

k∑
i=1

U (w)(xi)V(w)(yi)
)
w

= Aw −
k∑
i=1

U (w)(xi)
(
wh(V(w)(yi))h

)h
= Aw −

k∑
i=1

U (w)(xi)yi.

This proves also the second statement.

Remark. This theorem is a generalization of Theorem 1.3.4; indeed, in the

real case, it is easy to observe that the term D(Uhw)−1UhAVD(V tw)−1 is

real if and only if A is real.

Remark. If A is a generic matrix, we can always decompose it as a sum of

two matrices A = A1 + iA2 where A1 and A2 are defined as:

A1 = UD(Uhw)

(
Re
(
D(Uhw)−1UhAVD(V tw)−1

))
D(V tw)V h ,

A2 = UD(Uhw)

(
Im
(
D(Uhw)−1UhAVD(V tw)−1

))
D(V tw)V h .

Both A1 and A2 satisfy the hypotheses of the theorem; so, to find a decom-

position of the matrix A, we can apply the previous result separately to the
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matrices A1 and A2.

In particular, if

CU [z](A) =
k∑
i=1

ϕiψ
t
i ,

is a skeleton decomposition of CU [z](A), we can decompose each of ϕi and ψi

as:

ϕi = UD(Uhw)

(
Re
(
D(Uhw)−1Uhϕi

))
+iUD(Uhw)

(
Im
(
D(Uhw)−1Uhϕi

))
,

ψi = V D(V tw)

(
Re
(
D(V tw)−1V tψi

))
+iV D(V tw)

(
Im
(
D(V tw)−1V tψi

))
;

for simplicity, if we rename

xi := UD(Uhw)

(
Re
(
D(Uhw)−1Uhϕi

))
,

yi := UD(Uhw)

(
Im
(
D(Uhw)−1Uhϕi

))
,

hi := V D(V tw)

(
Re
(
D(V tw)−1V tψi

))
,

ki := V D(V tw)

(
Im
(
D(V tw)−1V tψi

))
,

then we have CU [z](A) =
k∑
i=1

(
xih

t
i − yikti

)
+ i

k∑
i=1

(
xik

t
i + yih

t
i

)
,

where
k∑
i=1

(
xih

t
i − yikti

)
is a not-optimal skeleton decomposition of the matrix A1

and
k∑
i=1

(
xik

t
i + yih

t
i

)
is a not-optimal skeleton decomposition of the matrix A2.

Thus

A =
k∑
i=1

(
U (w)(xi)V(w)(hi)− U (w)(yi)V(w)(ki)

)
+

i

k∑
i=1

(
U (w)(xi)V(w)(ki)− U (w)(yi)V(w)(hi)

)
+ C1 + iC2, (1.3)

where, if U [z] is nonderogatory, C1 and C2 can be determined as in the the-

orem .
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Remark. Note that if U [z] +UxxhUh = V [z′], the unitary matrix W = UhV

is such that UhV D(z′)V hU = D(z) + xxh; so the columns of W , {wi}, are

the eigenvectors of D(z) + xxh:

λiwi = (D(z) + xxh)wi ,

wi = (xhwi)(λiI −D(z))−1x.

Thus:

Wij = (xhwj)
xi

(λj − zi)
;

this means that W must be a unitary Cauchy-like matrix (see [18] section

12.1).

We can also define the real unitary Cauchy-like matrix

N :=

(
diag

( |xi|
xi

))
W

(
diag

( |xhwi|
xhwi

))
that is :

Nij = |xhwj|
|xi|

λi − zj
.

So, if we want to look for SDU algebras that satisfy the hypotheses of Theo-

rems 1.3.4 and 1.3.6, we could try to study when a Cauchy-like matrix (real

or complex) is also unitary.

1.3.1 Applications

Let’s start recalling some results; these will ensure that some SDU algebras

satisfy all the hypotheses of Theorems 1.3.6 and 1.3.4.

• By proposition (2.1) of [1] we know that an Hessenberg matrix X is

non-derogatory if and only if bi 6= 0 ∀ i.

X =



r11 b1 0 . . . 0

r21 r22 b2
...

...
. . . . . . .

. . . . bn−1

rn1 . . . . . rnn
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• By proposition (4.2) of [2] we know that the algebra generated by T β,βε,ϕ

is a symmetric 1-algebra if the matrix Iβϕ is nonsingular.

A 1-algebra is an algebra characterized by its first row; note that, since

the algebra is symmetric, if e1 characterizes the algebra by rows then

it characterizes the algebra also by columns.

T β,βε,ϕ =



ε 1 0 . . β

1 0 1 . 0

0 1 . . . .

. . . . . . .

. . . . 1 0

0 1 0 1

β 0 . . 0 1 ϕ



Iβϕ =


β

.

.

.

β

+


1

1 −ϕ
. .

1 .

1 −ϕ



• From [3] we know the matrices that diagonalize the algebra generated

by Tε,ϕ:

Tε,ϕ =



ε 1 0 . 0

1 0 1 . 0

0 1 . . .

. . . . . .

0 1 0 1

0 0 . 0 1 ϕ


1. T0,0 = τ is diagonalized by the matrix:

M00 =

√
2

n+ 1

(
sin

ijπ

n+ 1

)
, i, j = 1, . . . , n,

M00T00M00 = 2Diag
(

cos
jπ

n+ 1

)
, j = 1, . . . , n.
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2. T1,1 is diagonalized by the matrix:

M11 =

√
2

n

(
kj cos

(2i+ 1)jπ

2n

)
, i, j = 0, . . . , n− 1,

M t
11T11M11 = 2Diag

(
cos

jπ

n

)
, j = 0, . . . , n− 1,

where kj =
1√
2

for j = 0, n− 1 and kj = 1 otherwise.

3. T−1,−1 is diagonalized by the matrix:

M−1−1 =

√
2

n

(
kj sin

(2i− 1)jπ

2n

)
, i, j = 1, . . . , n,

M t
−1−1T−1−1M−1−1 = 2Diag

(
cos

jπ

n

)
, j = 1, . . . , n,

where kj =
1√
2

for j = 1, n and kj = 1 otherwise.

4. T1,−1 is diagonalized by the matrix:

M1−1 =

√
2

n

(
cos

(2i+ 1)(2j + 1)π

4n

)
, i, j = 0, . . . , n− 1,

M1−1T1−1M1−1 = 2Diag
(

cos
(2j + 1)π

2n

)
, j = 0, . . . , n− 1.

5. T−1,1 is diagonalized by the matrix:

M−1 1 =

√
2

n

(
sin

(2i+ 1)(2j + 1)π

4n

)
, i, j = 0, . . . , n− 1,

M−1 1T−1 1M−1 1 = 2Diag
(

cos
(2j + 1)π

2n

)
, j = 0, . . . , n− 1.

All of these cosine and sine transforms are fast transforms. Moreover,

all the algebras generated by these Tε,ϕ, thanks to the previous remark,

are 1-algebras and the matrices Tε,ϕ, from the first remark, are non-

derogatory matrices.

Note also that, for example:

T−1,−1 + 2e1e
t
1 = T1,−1 T−1,1 + 2e1e

t
1 = T1,1,
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So we can apply our diplacement theorems to this algebras.

Note that it is also possible to apply our results to the algebras gener-

ated by two matrices T β,βε,ϕ and T β,βε′,ϕ such that Iβ,ϕ is non singular and

ε, ε′, ϕ, β are real, indeed:

T β,βε,ϕ + (ε′ − ε)e1et1 = T β,βε′,ϕ

Nevertheless in this case we have the problem that we don’t know the

matrix that diagonalize a generic T β,βε,ϕ .

It’s right to indicate that the formulas in terms of the algebras τε,ϕ that we

can obtain as corollaries of Theorems 1.3.6, 1.3.4 are basically weaker than

the ones that are presented in [3]; here “weaker” means that the number of

terms of the sum, in our case is more or less 4-times the rank of ATε,ϕ−Tε,ϕA,

whereas, in [3], it is equal to the rank of the above commutator. This is due

to the fact that we use less hypotheses on the algebras than the ones used in

[3]; indeed Bozzo and Di Fiore always use the symmetry or persymmetry of

the algebra (or both of them).

So we can state that, even if our strategy is slightly more expensive, our

theorems are much more adaptable.



2. Householder Algebras

In this chapter we study the particular case of the Householder-SDU algebras

(the algebras of matrices simultaneously diagonalized by an Householder ma-

trix). In particular we study some basic properties of these algebras: sym-

metry, closure by conjugation and intersections with algebras of the same

class.

2.1 Householder Matrices

Definition. : Let u ∈ Cn be a vector such that ||u||2 = 1, then it is possible

to define the Householder matrix: U := I − 2uuh.

Remark 2.1.1. : We can observe that U is not uniquely defined by u, indeed,

if we consider the vector u′ = eiθu, where θ 6= 0, it is easy to note that

U ′ = U .

Similarly, if U ′ = U , looking at the element (i, i), we can observe that |ui|2 =

|u′i|2 so ∀j u′j = uje
iθj for some θj ∈ [0, 2π); and looking at the element

(i, j), it follows that uiuj = u′iu
′
j, that is uiuj = uie

iθiuje
−iθj , so ei(θi−θj) =

1⇒ θj = θi := θ ⇒ u′ = ueiθ

Properties 2.1.1. :

1. U is a unitary matrix ;

2. U is an Hermitian matrix ;

3. U is the reflection matrix with respect to the hyperplane orthogonal to

u.
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Proposition 2.1.2. U is real iff uiuj = ujui ∀i, j = 1, ..., n iff u = eiθv

with v ∈ Rn.

Proof. (1)⇒(2) If U is real , thanks to the property (2), U is symmetric and

so Uij = Uji ∀i, j ⇒ uiuj = ujui

(2)⇒(3) Assume without loss of generality that u1 6= 0, then we have:

∀i ∃ θi s.t. ui = |ui|eiθi

⇒ ∀i, j s.t. ui, uj 6= 0 , e2iθi =
ui
ui

=
uj
uj

= e2iθj

⇒ fixed i = 1 ∀j s.t. uj 6= 0 θj = θ1 or θj = θ1 + π

⇒ ∀i ui = ±|ui|eiθ1

this relation can obviously be extendend also to the ui = 0

(3)⇒(1)trivial.

Theorem 2.1.3. (See [9])

Let be given A,B ∈ Rn×m non singular matrices with m ≤ n s.t. AtA =

BtB . Then ∃ Um, ..., U1 s.t. Um...U1A = B.

Proof. Prove it by induction on m.

m = 1 it is easy true taking U = I − 2
(a1 − b1)(a1 − b1)t

||a1 − b1||2
.

Supposing it is verified for m− 1, study the case m.

Let’s consider a generic unitary matrix Q;

and define ui :=
Qai − bi
||Qai − bi||

, and Ũi = I − 2uiu
h
i ⇒ Ũi

(
Qai) = bi ∀i =

1, ...,m.

If it exists a matrix Q product of m−1 Householder matrices, s.t. u1 = ... =

um, then

Ũ1 = ... = Ũm =: Ui and it will be true the thesis. ∃Q as above iff:

Qai − bi = Qa1 − b1
⇐⇒ Q(ai − a1) = bi − b1

But the last one is true by induction since the matrices(
a2 − a1 , a3 − a1 , . . . , am − a1

)
and

(
b2 − b1 , b3 − b1 , . . . , bm − b1

)
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still satisfy the hypotheses of the theorem. So the theorem is proved.

In particular it follows that the vector ui that defines the i-th Householder

matrix, can be obtained by setting :

ui := (−1)m−i[Ui−1 . . . U1(Am−i+1 − Am−i)− (Bm−i+1 −Bm−i)]

ui :=
ui
||ui||

where we set w0 = v0 = 0 .

2.2 Householder SDU-Algebras

and their properties

When U is an Householder matrix, exploiting the structure of U [z] we can

observe that :

U [z] = (I − 2uuh)D(z)(I − 2uuh) =

D(z)− 2(uuh)D(z)− 2D(z)(uuh) + 4(uhD(z)u)uuh =

D(z) + 2(uuh)
(
(uhD(z)u)I −D(z)

)
+ 2
(
(uhD(z)u)I −D(z)

)
uuh =

D(z) + 2uuhM + 2Muuh (2.1)

where M is the diagonal matrix defined as:

M :=
(

(uhD(z)u)I −D(z)
)
. (2.2)

From (2.1) it’s easy to note that U [z] is always a 2-rank variation of a diagonal

matrix.

Remark 2.2.1. : If U = I−2uuh and ui = 0 for some i, let’s assume, without

loss of generality, ui = 0 ∀i = m+1, ..., n ; then U [z] has a block-structure

and can be taken back to a direct sum of matrices of smaller dimension. Let

u′ ∈ Cm be the vector s.t. u′i = ui ∀i = 1, ...,m, then ||u′|| = ||u|| = 1

and taking z′ ∈ Cm the vector s.t. z′i = zi ∀i = 1, ...,m , we can note that:
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U [z] = U

[
z′

z′′

]
=

D(z)− 2D(z)uuh − 2uuhD(z) + 4(uhD(z)u)uuh =(
D(z′) 0

0 D(z′′)

)
− 2

(
D(z′)u′

0

)(
u′h, 0

)
− 2

(
u′

0

)(
u′hD(z′), 0

)
+ 4(u′hD(z′)u′)

(
u′

0

)(
u′h , 0

)
=(

D(z′)− 2D(z′)u′u′h − 2u′u′hD(z′) + 4(u′hD(z′)u′)u′u′h 0

0 D(z′′)

)
=(

U ′[z′] 0

0 D(z′′)

)
= U ′[z′]

⊕
D(z′′).

Theorem 2.2.2. (Householder algebras closed under conjugation)

Let be given u ∈ Cn , n > 4, ui 6= 0 ∀i:
The Householder algebra U is closed under conjugation ⇔ U is real.

Remark. It’s easy to observe that even though ui = 0 for some i, thanks to

Remark 2.2.1, it is possible to come back to the case ui 6= 0 ∀i. Indeed U
is closed under conjugation iff U ′ is closed under conjugation, where u′ is the

subvector of u with all non-zero entries.

I Proof.

(⇐):

U [z] = UD(z)U = UD(z)U = U [z] .

(⇒) : U is closed under conjugation ⇔ ∀i , U [ei] ∈ U

⇔ ∀i ∃{αij}nj=1 s.t. U [ei] =
n∑
j=1

αijU [ej] ,

that is

(I − 2uut)eie
t
i(I − 2uut) =

n∑
j=1

αij(I − 2uuh)eje
t
j(I − 2uuh) ,

(ei − 2uiu)(eti − 2uiu
t) =

n∑
j=1

αij(ej − 2uju)(etj − 2uju
h) .
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Selecting the element (k, l), with l 6= k, we obtain:

(δik−2ukui)(δil−2uiul) =
n∑
j=1

αij(−2ujuk)(δjl−2ujul)+α
i
k(δlk−2ukul) . (2.3)

From (2.3), if we take k = i, l 6= i,

and define Cl :=
n∑
j=1

αij

(
− 2

uj
ul

)
(δjl − 2ujul)

it follows that:

(1− 2|ui|2)(−2uiul) + 2αiiuiul

=
n∑
j=1

αij(−2ujui)(δjl − 2ujul)

(
ul
ul

)
=: Cluiul ,

⇒ (1− 2|ui|2)
(
− 2

ui
ui

)
+ 2αii

(
ul
ul

)
= Cl . (2.4)

From (2.3), taking k, l 6= i with k 6= l we obtain:

(4|ui|2ukul) + 2αikukul

=
n∑
j=1

αij(−2ujuk)(δjl − 2ujul)

(
ul
ul

)
=: Clukul ,

⇒ (4|ui|2)
(
uk
uk

)
+ 2αik

(
ul
ul

)
= Cl . (2.5)

Now let’s equal the (2.4) with the (2.5), then:

(1− 2|ui|2)
(
−2

ui
ui

)
+ 2αii

ul
ul

= 4|ui|2
uk
uk

+ 2αik
ul
ul
,

2
ul
ul

(αik − αii) = 4|ui|2
(
ui
ui
− uk
uk

)
− 2

ui
ui
. (2.6)

From the latter equality we have to distinguish two cases :

1. αik − αii = 0 ∀k 6= i .

Taking out
uk
uk

we can observe that, changing k,

uk
uk

is constant for k 6= i, so:

uk
uk

= −1

2

ui
ui

1

|ui|2
+
ui
ui

; (2.7)
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2. ∃ ki s.t. αiki − α
i
i 6= 0 .

In this case, taking out
ul
ul

, we can observe that, varying l,
ul
ul

is con-

stant for l 6= i, ki , so :

ul
ul

=
1

2(αiki − α
i
i)

(
4|ui|2

(
ui
ui
− uki
uki

)
− 2

ui
ui

)
. (2.8)

I claim Varying i ∃ not more than a unique k0 s.t.
uj
uj

is constant for

j 6= k0 , and
uk0
uk0
6= uj
uj
, j 6= k0 .

proof of claim I

If there exists some i such that (2.9) is true, there is nothing to prove.

Otherwise, if ∀i it is true the (2.8) ∃ki and Ci constants

s.t.
uj
uj

=: Ci ∀j 6= i, ki. Let’s fix i0 and the corresponding ki0 ; considering

i1 6= i0, ki0 it has to be true that one among ki0 and i0 is different from k1.

Without loss of generality let’s assume that it is i0, so

ui0
ui0

= C1 =
uj
uj

= C0 =
ui1
ui1

where we have considered j 6= i0, i1, k0, k1.

So ∀j 6= ki0
uj
uj

=: C constant.

This completes the proof of the first claim.

II claim If ∃ !k0 s.t.
uj
uj

is constant for j 6= k0, and
uk0
uk0
6= uj
uj
, j 6= k0

then ∀i 6= k0, α
i
k = αii ∀k 6= k0.

proof of claim II

By contradiction suppose that ∃k1, ĩ 6= k0 s.t. αĩk1 6= αĩ
ĩ
; then,

from (2.8) it follows that

uk0
uk0

=
uj
uj

∀j 6= ĩ, k1 .

This completes the proof of the II claim.

Note that if it is true the thesis of claim II, we would have that ∀ i 6= k0

U [ei] = αii
∑
j 6=k0

U [ej] + αik0U [ek0 ].

From this it follows the absurd because
{
U [ei]

}
i are linearly independent

and so it can’t be true that U [ei] ∈ span
{
U [v],U [ek0 ]

}
, ∀i 6= k0
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with v =
∑
j 6=k0

ej. Hence, ∀j, uj
uj

is constant and therefore, thanks to Propo-

sition 2.1.2, U is real.

II proof. (⇐) Easy, as in the first proof.

(⇒) U [z] ∈ U ∀z implies that ∀z ∃ vz s.t. U [z] = U [vz], that means that

the algebra U is a subalgebra of U . On the other hand, since both of them

are n-dimensional algebras, they have to be the same algebra, sdU = sdU .

Hence, thanks to Remark 1.1.1, ∃ a permutation matrix P and a diagonal

unitary matrix D s.t.

U = UPD .

So ∀j ∃ θj, kj s.t. multiplying on the right by ej:

ej − 2uju = eiθj
(
ekj − ukju

)
⇒ ej − eiθjekj = 2uju− 2eiθjukju. (2.9)

If, by contradiction ej − eiθjekj 6= 0 ∀j, consider the set {ej − eiθjekj}j ; this

one would contain a set of more than dn
2
e linearly independent vectors and

at the same time it would be contained in span{u, u}, which is absurd for

n > 4.

So ∃j s.t. kj = j and θj = 0; replacing in (2.9) we obtain:

2uju− 2uju = 0

⇒ uiuj = ujui ∀i

⇒ ui
ui

= Constant ∀i

and, thanks to Proposition 2.1.2, we can conclude that U is real.

Corollary 2.2.3. In the same hypotheses of Theorem 2.2.2, the algebra U is

closed under transposition iff U is real.

Proof. U is closed under transposition iff it is closed under conjugation:

U [z]T = (D(z) + 2Muuh + 2uuhM)T = D(z) + 2Muut + 2uutM = U [z].

Proposition 2.2.4. The algebra U is symmetric iff U is real.
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Proof. As we have observed in the previous corollary, we have U [z]T = U [z].

So if U [z] = U [z] ∀z ∈ Cn, it follows that the i-th column of U has to be

a multiple of the i-th column of U (since both of them are the eigenvectors

relative to the eigenvalue zi). So let’s impose ∀i ei− 2uiu = ei− 2uiu, that

is uiuj = ujui, but this means that U is real because of Proposition 2.1.2.

The inverse is trivial.

Proposition 2.2.5. The algebra U is never persymmetric if n > 4.

Proof. U is persymmetric iff ∀z ∈ Cn U [z]t = JU [z]J , where J is the

exchange matrix (Jij = δi,n+1−j). This means UD(z)U = JUD(z)UJ , where

JU is still a unitary matrix. So it has to be true that the i-th column of JU

is a unitary multiple of the i-th column of U , that is :

JUei = eiθiUei ,

J(I − 2uuh)ei = eiθi(I − 2uut)ei ,

Jei − 2uiũ = eiθi(ei − 2uiu) ,

en+1−i − 2uiũ = eiθi(ei − 2uiu) .

Thus it should be true that {eiθiei − en+1−i}ni=1 ⊂ span{ũ, u}, but this is

absurd if n > 4.

Theorem 2.2.6. (Intersections of Householder algebras)

Let’s be given two distinct Householder algebras U ,V s.t. ui, vi 6= 0 ∀i, n > 4.

Then we have:

dim(U ∩ V) ≤ 2 .

Assume U [z] = V [z], where z =
(
α, . . . , α, β, . . . , β

)
; let u be a vector

that defines the Householder matrix U , and consider the partition of u =(
u1, u2

)
where the dimension of (u1) is equal to number of entries of z

equal to α. Then it has to be true one of the following assertions:

1. The vector v =

(
||u2||
||u1||

u1, −
||u1||
||u2||

u2

)
defines the matrix V .

2. ||u1||2 = ||u2||2 = 1/2, and if v is a vector that defines the Householder

matrix V , then ∃ ψ, ϕ such that v =
(
eiψu1 , eiϕu2

)
Proof. We want to show that if A ∈ U ∩ V then, A = kI or A generates a

subalgebra of dimension 2 that is the whole U ∩ V .
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If A ∈ U ∩ V , then ∃z, y ∈ Cn s.t. A = U [z] = V [y] and, since {zi} and {yi}
are the eigenvalues of A, it has to exist a permutation matrix, P , s.t. Pz = y,

hence:

A = U [z] = V [Pz]

⇒ UD(z)U = V D(Pz)V ⇔ V UD(z) = D(Pz)V U (2.10)

⇔ ∀(i, j) (V U)ijzj = (V U)ij(Pz)i .

So we can assert that :

∀i, j s.t. (V U)ij 6= 0 ⇒ zi = (Pz)j .

Define ∀i the index hi s.t. Pehi = ei and let’s consider the graph G s.t.

∃ edge (i←→ j) ⇔ (V U)hij 6= 0 and/or (V U)hji 6= 0.

It is easy to observe that if ∃(i←→ j) than zj = zi.

So if the graph is connected, then necessarily z = k1, k ∈ C, and U ∩V = kI.

In detail, we can say that the graph has as many connected components as

many different elements has z.

If the graph is totally disconnected the matrix V U must have just one non

zero entry in each row and column and therefore it has to be verified the

equality

V U = QD′

where Q is a permutation matrix and D′ is a diagonal unitary matrix.

Thus the equation (3.26) becomes:

V UD(z) = D(Pz)V U

⇔ QD′D(z) = D(Pz)QD′ = PD(z)P tQD′

⇔ P tQD′D(z) = D(z)P tQD′ .

The latter equality is true ∀z taking P = Q but, then, it has to be true

U = V . So we can restrict to the case of a disconnected graph but not totally

disconnected.

Let be

I1 = {i1, ..., ih}, I2 = {j1, ..., jk} s.t. I1 ∪ I2 = {1, ..., n}, I1 ∩ I2 = ∅



Capitolo 2 31

and without loss of generality assume

zi = α ∀i ∈ I1, zi 6= α ∀i ∈ I2 .

Thanks to the above observation (the graph is not totally disconnected) it is

admissible to assume ]I1 ≥ 2.

Now, by the definition of G, it has to be true

∀i ∈ I1, j ∈ I2 (V U)hij = (V U)hji = 0

and this relation, if we define

J1 = {hi|i ∈ I1}, J2 = {hj|j ∈ I2} ,

can be written as

(V U)ij = 0 ∀(i, j) ∈ (J1 × I2) ∪ (J2 × I1).

Let’s define

vJ1 := v|J1 , vJ2 := v|J2 , vI1 := v|I1 , vI2 := v|I2

and L1, L2, G1, G2 the rectangular matrices s.t.

L1v = vJ1 , L2v = vJ2 , vtG1 = vI1 , vtG2 = vI2 .

Then we can state the following equivalent statement:

(V U)ij = 0 ∀(i, j) ∈ J1×I2∪J2×I1 ⇔ L1UV G2 = L2UV G1 = 0 .

Thus it has to be true:

 L1G2 − 2uJ1u
h
I2
− 2vJ1v

h
I2

+ 4vhuvJ1u
h
I2

= 0

L2G1 − 2uJ2u
h
I1
− 2vJ2v

h
I1

+ 4vhuvJ2u
h
I1

= 0
,

 L1G2 + 2((vhu)vJ1 − uJ1)uhI2 + 2vJ1((v
hu)uhI2 − v

h
I2

) = 0

L2G1 + 2((vhu)vJ2 − uJ2)uhI1 + 2vJ2((v
hu)uhI1 − v

h
I1

) = 0
. (2.11)
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Let’s note that the matrices L1G2 and L2G1 are matrices with not more than

one entry equal to 1 in each row and column and, since they have to be equal

to matrices of rank 2, we can immediately say that it is not possible that

they have more than two nonzero entries.

At the same time we can also say that the number of rows plus the number

of columns of L1G2 and L2G1 has to be equal to n.

claim If ]I2 > 1, then L1G2 and L2G1 are the null matrices.

proof of the claim

If we assume n > 4, we have an equation of the type A + u1v
h
1 + u2v

h
2 = 0,

where A has not more than two non zero entries in two different rows and

columns and both v1 and u2 have all entries different from zero. So we can

analyze just the two following cases

1) A =

[
1 0 0 ...

0 1 0 ...

]
2) A =

[
1 0 0 ...

0 0 0 ...

]
In the first case, looking at the third column, u1 and u2 should be lin.dep.

whereas, from the first two columns, they should be lin.indep. taking to a

contradiction.

In the second case, looking at the second column, u1 and u2 should be lin.dep.

and, looking at the first one, they should be both multiples of e1 against the

hypothesis that u2 has all non zero entries. This completes the proof of the

claim.

It remains to study the cases :

1)]I2 = 1

2)L1G2 = 0 and L2G1 = 0

In the first case z must have n − 1 components equals to each other and so

dim(U ∩ V) ≤ 2.

In the second case, if

L1G2 = 0 and L2G1 = 0 ,

we are in the situation that J1 = I1 and J2 = I2.

Note that we can assume without loss of generality that I1 = {1, . . . , k} and

I2 = {k + 1, . . . , n}.
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The equalities in (2.11) became: ((vhu)vJ1 − uJ1)uhI2 + vJ1((v
hu)uhI2 − v

h
I2

) = 0

((vhu)vJ2 − uJ2)uhI1 + vJ2((v
hu)uhI1 − v

h
I1

) = 0

and multiplying them on the right and on the left the equation by the per-

mutation matrices that switch the indexes J2 with I2 and I1 with J1, we

obtain:  ((vhu)vJ1 − uJ1)uhI2 + vJ1((v
hu)uhI2 − v

h
I2

) = 0

((vhu)vI2 − uI2)uhJ1 + vI2((v
hu)uhJ1 − v

h
J1

) = 0 .

Let’s redefine uI2 =: u2, vI2 =: v2, vJ1 =: v1 and uJ1 =: u1. Observing that

the vectors u1, u2, v1 e v2 are a partition of the vectors u and v, the system

of equations becomes:
((vhu)v1 − u1)uh2 + v1((v

hu)uh2 − vh2 ) = 0

((vhu)v2 − u2)uh1 + v2((v
hu)uh1 − vh1 ) = 0

||u1||2 + ||u2||2 = 1

||v1||2 + ||v2||2 = 1

. (2.12)

Note that the above system of equations is equivalent to impose that the

non-diagonal blocks of the matrix V U are equal to 0:

V U =

(
I − 2

[
v1

v2

] [
vh1 vh2

])(
I − 2

[
u1

u2

] [
uh1 uh2

])
(2.13)

=

(
I − 2

[
v1v

h
1 v1v

h
2

v2v
h
1 v2v

h
2

]
− 2

[
u1u

h
1 u1u

h
2

u2u
h
1 u2u

h
2

]
+ 4vhu

[
v1u

h
1 v1u

h
2

v2u
h
1 v2u

h
2

])
. (2.14)

Using the equations of (2.12) and computing the difference between the sec-

ond equation and the conjugate of the first one, we have:

− 4(vhu)v1u
h
2 + 4(uhv)u1v

h
2 = 0 , (2.15)

from this it follows that must exist α and β such that

u1 = αv1 and u2 = βv2.
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Now use the third equation to obtain :

|α|2||v1||2 + |β|2||v2||2 = 1 ; (2.16)

replace again in the (2.15) and remind that v1v
h
2 is a full matrix:

− (αvh1v1 + βvh2v2)βv1v
h
2 + (αvh1v1 + βvh2v2)αv1v

h
2 = 0

⇒ − (αβ||v1||2 + |β|2||v2||2)v1vh2 + (|α|2||v1||2 + βα||v2||2)v1vh2 = 0

⇒ (|α|2||v1||2 + βα||v2||2)− (αβ||v1||2 + |β|2||v2||2) = 0

⇒ ((|α|2 − αβ)||v1||2 + (βα− |β|2)||v2||2 = 0. (2.17)

Now, without loss of generality, we can divide by β(α− β):

((|α|2 − αβ)

β(α− β)
||v1||2 +

(βα− |β|2)
β(α− β)

||v2||2 = 0

⇒ α

β
||v1||2 +

(α− β)

α− β
||v2||2 = 0 . (2.18)

Let’s define
(α− β)

α− β
=: eiθ ,

replace it in (2.18) and obtain :

α

β
= −||v2||

2

||v1||2
eiθ

⇒ α = −||v2||
2

||v1||2
eiθβ. (2.19)

Now consider again the identity (2.16) which yields:

||v2||4

||v1||2
|β|2 + |β|2||v2||2 = 1

⇒ ||v2||2|β|2
(
||v2||2

||v1||2
+ 1

)
= 1

⇒ ||v2||2

||v1||2
|β|2 = 1

⇒ |β|2 =
||v1||2

||v2||2
, |α|2 =

||v2||2

||v1||2
. (2.20)
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So we can assume

β =
||v1||
||v2||

eiψ, α =
||v2||
||v1||

eiϕ (2.21)

where ϕ must be different from ψ, otherwise U = V .

This is sufficient to prove that dim(U ∩ V) ≤ 2; indeed, replacing the last

two formulas and the equations u1 = αv1 , u2 = βv2 in (2.14), we obtain:

(
I−2

[
v1v

h
1 v1v

h
2

v2v
h
1 v2v

h
2

]
−2

[
|α|2v1vh1 αβv1v

h
2

αβv2v
h
1 |β|2v2vh2

]
+4(α||v1||2+β||v2||2)

[
αv1v

h
1 βv1v

h
2

αv2v
h
1 βv2v

h
2

])

=

[
I − 2(1 + |α|2 − 2(α||v1||2 + β||v2||2)α)v1v

h
1 −2(1 + αβ − 2(α||v1||2 + β||v2||2)β)v1v

h
2

−2(1 + αβ − 2(α||v1||2 + β||v2||2)α)v2v
h
1 (I − 2(1 + |β|2 − 2(α||v1||2 + β||v2||2)β)v2v

h
2

]

=

[
I − 2(1 + |α|2 − 2(α||v1||2 + β||v2||2)α)v1v

h
1 0

0 (I − 2(1 + |β|2 − 2(α||v1||2 + β||v2||2)β)v2v
h
2

]

=

I − 2

(
1− 2||v2||2||v1||2(1 + ei(ψ−ϕ)

||v1||2

)
v1v

h
1 0

0 (I − 2

(
1− 2||v2||2||v1||2(1 + ei(ϕ−ψ)

||v2||2

)
v2v

h
2

 .

So the matrix V U belongs to the commutator of every diagonal matrix with

all equal elements in the first part and all equal elements in the second part

of the diagonal, that means that dim
(
U ∩ V

)
= 2. At the same time, since

it is easy to observe that necessarily(
1− 2||v2||2||v1||2(1 + ei(ψ−ϕ)

||v1||2

)
6= 0 ,

(
1− 2||v2||2||v1||2(1 + ei(ϕ−ψ)

||v2||2

)
6= 0

and

vi 6= 0 ∀i,

the two blocks in the head and in the tail of the matrix V U are full matrices.

Hence this matrix cannot belong to the commutator of none diagonal matrix

that has more than two distinct elements in the diagonal. Indeed the commu-

tator of a diagonal matrix that is direct sum of identity matrices multiplied
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by different scalars, is made of blocks-diagonal matrices with as many blocks

on the diagonal as many different elements there are in the direct sum.

Now it is also easy to demonstrate the second part of the theorem, indeed we

are already in its hypotheses; so let’s replace in the first equation of (2.12),

at first the (2.16) and then the equations for α and β in (2.21):

2β(α||v1||2 + β||v2||2)v1vh2 − αβv1vh2 − v1vh2 = 0

⇒ 2β(α||v1||2 + β||v2||2)− αβ − 1 = 0

⇒ 2βα||v1||2 + 2− 2|α|2||v1||2 − αβ − 1 = 0

⇒ 2(|α|2 − βα)||v1||2 − 1 + αβ = 0 ,

⇒ 2

(
||v2||2

||v1||2
− ei(ϕ−ψ)

)
||v1||2 = 1− ei(ϕ−ψ)

⇒ 2(||v2||2 − ei(ϕ−ψ)||v1||2) = 1− ei(ϕ−ψ)

⇒ 2(1− ||v1||2 − ei(ϕ−ψ)||v1||2) = 1− ei(ϕ−ψ)

⇒ (1− (1 +−ei(ϕ−ψ))||v1||2) =
1− ei(ϕ−ψ)

2

⇒ (1 +−ei(ϕ−ψ))||v1||2) =
ei(ϕ−ψ)

2
+

1

2

⇒ ||v2||2 =
1

2
or (ϕ− ψ) = π.

Now, if ||v2||2 = 1/2, then also ||v1||2 = 1/2.

Whereas in the case (ϕ− ψ) = π, we have that

u1 =
||v2||
||v1||

eiϕv1

u2 =
||v1||
||v2||

eiϕ−πv2 = − ||v1||
||v2||

eiϕv2

and, since u is defined unless unitary multiples (because of Remark 2.1.1),

we can assume

u1 =
||v2||
||v1||

v1 u2 = − ||v1||
||v2||

v2 ,

that is the first possibility in the statement of the theorem (note that in this

case u⊥v).
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In the other case, when ||v2||2 = ||v1||2 = 1/2 , then |α| = |β| = 1,

hence u1 = eiψv1, u2 = eiϕv2 , that is the second possility in the statement

of the theorem.

As a consequence of this theorem we can formulate the following conjecture:

If U is the product of k Householder matrices and V is the product of h

Householder matrices it could be true that dim
(
U ∩ V

)
≤ k + h.

The results in the next Lemma and Corollary could be usefull to find an

extension of Theorems 1.3.4, 1.3.6 that involves two Householder SDU alge-

bras.

Lemma 2.2.7. Let be given u ∈ Cn, ||u|| = 1 e z ∈ Cn. Then, ∀ u′ ∈ Cn

such that ||u′|| = 1, u′D(z)u′h = uD(z)uh and D(z)(u′ − u) = λ(u′ − u), we

have that U [z]− U ′[z] is a two rank matrix.

Proof. Defining w = u′ − u and using (2.1):

U ′[z] = D(z)− 2Mu′u′h − 2u′u′hM

= D(z)− 2M(u+ w)(u+ w)h − 2(u+ w)(u+ w)hM

= D(z)− 2M(u)(u)h − 2(u)(u)hM − 2M(w)(w)h−
− 2(w)(w)hM − 2M(uwh + wuh)− 2(uwh + wuh)M

= U [z]−Mw(wh + 2uh)− (Mw + 2Mu)wh − w(whM + 2uhM)− (w + 2u)whM.

Now since D(z)w = λw and M := ((uhD(z)u)I − D(z)), it follows that

Mw = νw and so:

U ′[z] = U [z]− νw(wh + 2uh)− (Mw + 2Mu)wh − w(whM + 2uhM)− (w + 2u)νwh

= U [z]− w(wh + 2uh)(νI +M)− (νI +M)(w + 2u)wh .

Corollary 2.2.8. If w = u′ − u = kei where k = ui(e
iθ − 1), then all the

hypotheses of the above lemma are satisfied:

u′ =
n∑
j=1

ujej + ui(e
iθ − 1)ei =

n∑
j 6=i,j=1

ujej + ui(e
iθ)ei .
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So it follows :

||u′|| = ||u|| = 1, u′D(z)u′h = uD(z)uh

and

Mkei = k(uD(z)uh − zi)ei .



3. Householder-Type

3.1 Householder-Type Matrices

It is well known that, if we have two vectors u, v ∈ Cn s.t. ||w|| = ||v||,
then there exists an Householder matrix U such that Uw = v if and only if

the scalar product <w, v> is real; so if w and v are real vectors it’s always

possible. A consequence of this fact is also that each real unitary matrix is

a product of Householder matrices, whereas to represent a generic complex

unitary matrix, we need a product of Householder matrices and a unitary

diagonal matrix. In this chapter we will study a new class of unitary matri-

ces that generalize the Householder matrices and that work, in complex case,

as well as the Householder matrices do in the real case; it is right to point

out that these matrices and some of their basic properties have already been

introduced in the past (see [10], [11]). To understand how to define these

matrices let’s understand why the Householder matrices fail in the complex

case. A good explanation of this fact can come from Theorem 4.0.1 that says

us that if we have two vectors as above, it exists an orthonormal basis ui and

n+1 coefficients :{αi}n−1i=1 , β, γ (β 6= γ) such that w =
∑n−1

i=1 αiui+βun and

v =
∑n−1

i=1 αiui + γun and, since ||w|| = ||v||, it has to be true that |γ| = |β|.
Now, if we want a matrix that maps w in v, it is sufficient a matrix that sends

βun in γun and leaves invariate the other {ui}. It is easy to observe that

<w, v> is real iff β = −γ, so, if <w, v> is real, we just need a matrix that

sends un in −un, that is exactly the Householder matrix generated by un.

Nevertheless, in the general case, (since γ = eiθβ) what we need is a matrix

that sends un in eiθun and leaves invariate the subspace orthogonal to un.

To meet this requirement we have introduced the Householder-type matrices.
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Definition. : Similarly as we did for the Householder matrices, we can define

the matrix Uα = I − αuuh where α = 1 − eiθ and ||u|| = 1. We name this

class of matrices Householder-type.

Remark. Let α be defined as above, it’s easy to note that:

• Uα is unitary and Uh
α = Uα = I − αuuh

Uh
αUα = UαUα = (I − αuuh)(I − αuuh) = I − αuuh − αuuh + |α|2uuh =

I +
(
|α|2 − 2Re(α)

)
uuh = I +

(
Re(α)2 + Im(α)2 − 2Re(α)

)
uuh =

I +
(
(Re(α)− 1)2 + Im(α)2 − 1

)
uuh =

I +
(
Re2(eiθ) + Im2(eiθ)− 1

)
uuh = I

• Uα is Hermitian iff α = 0, 2

Uh
α = I − αuuh = Uα = Uα ⇐⇒ α = α ⇐⇒ α = 0, 2 (3.1)

• Uαu = eiθu and Uαv = v ∀ v ⊥ u .(
I − (1− eiθ)uuh

)
u = u− (1− eiθ)u = eiθu (3.2)

Lemma 3.1.1. Let be given w, v ∈ Cn s.t. ||w|| = ||v||. Then ∃u ∈
Cn, ||u|| = 1 and α with |α− 1| = 1 (|α|2 = 2Reα) s.t. Uαv = w:

u :=
v − w
||v − w||

and α = 1 +
< v, v − w >

< v − w, v >
= 1 +

< v,w − v >
< w − v, v >

Proof. Without loss of generality assume ||w|| = ||v|| = 1 and define u :=
v − w
||v − w||

.

To get α let’s impose :

(
I − α

||v − w||2
(
v − w

)
(
(
v − w

)h)
v = w

⇒ v −
(

α

||v − w||2
(1− < w, v >)

)
(v − w) = w ,
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from which it follows:

α

||v − w||2
(1− < w, v >) = 1 ,

α(1− < w, v >) = ||v − w||2 ,
α(1− < w, v >) =< v − w, v − w >= 2− < v,w > − < w, v > ,

(α− 1)(1− < w, v >) = 1− < v,w > ,

(α− 1) =
1− < v,w >

1− < w, v >
=
< v, v − w >

< v − w, v >
.

Note that : |α− 1| = 1.

Theorem 3.1.2. If u ∈ Cn is a unitary vector and we define the function

α(θ) := 1− eiθ, then the set of the Householder-type matrices

Uα(θ) := I − (1 − eiθ)uuh , θ ∈ R , is a commutative subgroup of the unitary

matrices.

Proof. The thesis follows from the following equalities:

Uα(0) = I ,

Uα(−θ) = Uh
α(θ) = U−1α(θ) ,

Uα(θ)Uα(ϕ) =
(
I − (1− eiθ)uuh

)(
I − (1− eiϕ)uuh

)
= I − (1− eiθ)uuh − (1− eiϕ)uuh + (1− eiθ)(1− eiϕ)uuh

= I +
(
− (1− eiθ + 1− eiϕ) + (1− eiθ − eiϕ + ei(θ+ϕ))

)
uuh

= I − (1− ei(θ+ϕ))uuh = Uα(θ+ϕ) = Uα(ϕ)Uα(θ) .
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3.2 Characterization of Householder-Type

Matrices

Theorem 3.2.1. : In Cn×n, n > 2

1. If a matrix is a rank-1 variation of a diagonal matrix it has to be the

product of an Householder-Type matrix by a unitary diagonal matrix

2. The Householder-type matrices are the only unitary matrices that are

a 1-rank variation of the identity matrix.

Proof. Let U = D(z)−vwh be a unitary matrix; we want to show that there

exist a diagonal unitary matrix D, u ∈ Cn s.t. ||u|| = 1 and α = 1− eiθ ∈ C
such that U = (I − αuuh)D. Impose that U is unitary:(

D(z)− vwh
)(
D(z)− vwh

)h
=
(
D(z)− vwh

)h(
D(z)− vwh

)
= I .

This can be written as:

D(|z|2)−D(z)wvh − vwhD(z) + ||w||2vvh = I , (3.3)

D(|z|2)−D(z)vwh − wvhD(z) + ||v||2wwh = I , (3.4)

That are equivalent to:

D(|z|2)− I +
( ||w||2

2
v −D(z)w

)
vh + v

( ||w||2
2

vh − whD(z)
)

= 0 , (3.5)

D(|z|2)− I +
( ||v||2

2
w −D(z)v

)
wh + w

(
− vhD(z) +

||v||2

2
wh
)

= 0 . (3.6)

From this it follows that D(|z|2)− I can have rank not bigger than 2, so we

can assume that ∃j s.t.
(
D(|z|2)− I

)
ej = 0 and this implies:

(( ||w||2
2

v −D(z)w
)
vh + v

( ||w||2
2

vh − whD(z)
))
ej = 0 .

From this it follows that D(z)w//v ⇒ D(z)w = αv.

Now replacing it in (3.3), it follows that :

D(|z|2)− I − αvvh − αvvh + ||w||2vvh = 0 (3.7)

⇒
(
D(|z|2)− I

)
+
(
||w||2 − 2Re(α)

)
vvh = 0 . (3.8)
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From the last equality, noting that it is allowed to assume that v 6= ei ∀i
(otherwise it should be U = D(z′)), it follows that

D(|z|2)− I = 0

and

||w||2 − 2Re(α) = 0 .

So ∀j ∃θj s.t. zj = eiθj ; moreover, assuming without loss of generality 1

||v|| = 1 , we have

||w|| = ||D(z)w|| = |α|||v|| = |α| .

Thus

|α|2 − 2Re(α) = 0 ⇒ (Re(α)− 1)2 + Im(α)2 = 1 ⇒ α = 1 + eiθ

⇒ U = D(eiθj)− v
(
αD(eiθj)−1v

)h
= D(eiθj)− αvvhD(e−iθj)h

=D(eiθj)− αvvhD(eiθj) =
(
I − αvvh

)
D(eiθj) .

If D(z) = I we have D(z)w = w = αv and so U is an Householder-Type

matrix.

Corollary 3.2.2. Let be given A ∈ Cn×n normal and non-derogatory. If

∃v ∈ Cn and {(hi, ki)}ni=1 ∈ C2 s.t. {hiei − kiv}ni=1 are eigenvectors of A,

Then ∃ α = 1− eiθ and u ∈ Cn, ||u|| = 1 s.t. A ∈ Uα = SDUα.

Proof. Since A is normal ∃ U unitary matrix which diagonalizes A, that is:

A = UD(λi)U
H ;

moreover, since it is non derogatory and diagonalizable, each eigenspace must

have dimension equal to 1. So, unless permutations of columns, it has to be

verified that

UP = D(βi)− vwh where (βi, wi) = ci(hi, ki) ∀i ,

and, since UP is unitary, thanks to Theorem 3.2.1, we obtain:

UP = UαD(eiθj) .

1U = D(z)− vwh = D(z)− v
||v|| ||v||w

h = D(z)− v′w′h .
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From this it follows that:

A = UαD(eiθj)P tD(λi)PD(e−iθj)Uh
α

and thanks to Remark 1.1.1 one has A ∈ Uα.

3.3 Decomposition of Unitary Matrices

Note that every unitary matrix, U , since is a normal matrix, can be diag-

onalized by another unitary matrix, V , and, since all the eigenvalues of U

have absolute value equal to 1, we can write:

U = V D(eiθj)V h = V V h − V
(
I −D(eiθj)

)
V h

= I − V D(1− eiθj)V h =
n∏
j=1

(
I − (1− eiθj)vjvhj

)
where the last equality holds since the columns of V are orthogonal.

So, every unitary matrix U can be decomposed as product of Householder-

type matrices and more eigenvalues of U are equal to 1 less are the not-trivial

Householder-Type matrices we need to represent U . We will show that the

one above is an “optimal decomposition”; optimal means that the number of

not-trivial Householder-type matrices involved is the minimum possible. We

will also show that the QR algorithm adapted to work with the Householder-

Type matrices can be usefull to find an optimal decomposition of a unitary

matrix in terms of Householder-type matrices.

Theorem 3.3.1. Let be given V,W ∈ Cn×m s.t. V HV = WHW = Im×m, m ≤
n. Then ∃ Uαm ...Uα1 s.t. W = Uαm ...Uα1V.

Proof. Let us name {vi}mi=1, {wi}mi=1 the columns of V and W . Proceed by

induction on m.

By lemma 3.1.1 , ∃ Uα1 = I − α1u1u
h
1 s.t. Uα1v1 = w1 where u1 = (v1−w1)

||v1−w1|| ,

so the thesis is true for m = 1 .

(k ⇒ k + 1): Let Uαk , ..., Uα1 be s.t. Uαk ...Uα1vi = wi ∀i = 1, ..., k , then

consider the vectors
(
Uαk ...Uα1vk+1

)
, wk+1 . Thanks to Lemma 3.1.1, we can

say that:

∃ Uαk+1
= I − αk+1uk+1u

h
k+1
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where

uk+1 =
(Uαk ...Uα1vk+1 − wk+1)

||Uαk ...Uα1vk+1 − wk+1||
such that

Uαk+1

(
Uαk ...Uα1vk+1

)
= wk+1 .

Since the image of orthogonal vectors, through unitary tranformations, are

still orthogonal vectors, we can observe that ∀i = 1, ..., k :(
Uαk ...Uα1vi

)
= wi is orthogonal to the vectors

(
Uαk , ..., Uα1vk+1

)
and wk+1 .

Hence (
Uαk ...Uα1vi

)
⊥
(
Uαk , ..., Uα1vk+1

)
− wk+1 .

From this and (3.2) it follows that

Uαk+1

(
Uαk ...Uα1vi

)
=
(
Uαk ...Uα1vi

)
= wi , ∀i = 1, ..., k ,

and, thanks to the definition, Uαk+1

(
Uαk ...Uα1vk+1

)
= wk+1 .

Corollary 3.3.2. Each unitary matrix can be decomposed as a product of n

Householder-type matrices.

Remark 3.3.3. (This note will be usefull later).

If we want to decompose a unitary matrix Q as product of Householder-type

matrices we can find Uα1 , . . . , Uαn such that

Uαn ...Uα1Q = I .

We can note that the vector that defines the (k + 1)-th Householder-type

matrix in the proof of the preceeding theorem is

uk+1 := (Uαk ...Uα1qk+1 − ek+1) ,

where both (Uαk ...Uα1qk+1) and ek+1 are orthogonal to {ei}ki=1 .

So uk+1 must have the shape
(

0 . . . 0 u′k+1

)
.

From this it is easy to note that the k-th Householder-type matrix has the

shape

Uαk =

(
I 0

0 U ′αk

)
where U ′αk is the Householder-type matrix of dimension n+ 1− k generated

by the vector u′k+1 and with the same α of Uαk .
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Hence, to find the decomposition of a unitary matrixQ as product of Householder-

type matrices, it is enough to find at the k-th step the Householder-type

matrix U ′αk of dimension n+ 1− k such that

U ′αkq
k
k = e1

where qkk is the first column of the tail-submatrix Qk of dimension n+ 1− k
of the matrix

(
Uαk−1

. . . Uα1Q
)

:

(
Uαk−1

. . . Uα1Q
)

=

(
I 0

0 U ′k−1

)
...

(
1 0

0 U ′2

)
U ′1Q =

(
I 0

0 Qk

)
.

Note: this algorithm is equivalent to the QR algorithm.

Remark. With the Householder matrices it is possible to prove the same

theorem if the matrices are real, whereas, in the complex case it is only

possible to decompose a unitary matrix as product of n − 1 Householder

matrices and a unitary diagonal matrix.

Lemma 3.3.4. :

• If U = I − V ΩV h is a unitary matrix where V is a matrix in Cn×k

s.t. V hV = Ik×k, then ∃W ∈ Cn×k s.t. W hW = Ik×k and D ∈ Ck×k

a diagonal matrix with Djj = 1 − eiθj such that U = I −WDW h =∏k
j=1

(
I −Djjwjw

h
j

)
=
∏k

j=1 Uαj .

• If U = I − V ΩV h is a unitary matrix where V is matrix in Cn×m ,

then ∃W ∈ Cn×k with k = rk(V ) s.t. W hW = Ik×k and D ∈ Ck×k a

diagonal matrix with Djj = 1− eiθj such that U = I −WDW h.

• If U = I − V ΩV h is a unitary matrix where V ∈ Cn×m has full rank

m, Ω ∈ Cm×m is non singular, then U can be decomposed as a product

of m non-trivial Householder-type matrices s.t. the vectors that define

the Householder-type matrices are orthogonal.

Proof. Let’s consider the Schur decomposition of Ω

Ω = V ′TV ′h .

Then

U = I − V V ′TV ′hV h
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and thanks to the unitarity of V ′ we have (V V ′)h(V V ′) = V ′hV hV V ′ = I,

so we can define

W := V V ′ .

Now let’s impose that I −WTW h is unitary:(
I −WTW h

)(
I −WT hW h

)
=
(
I −WT hW h

)(
I −WTW h

)
= I

⇒ I −W
(
T + T h − TT h

)
W h = I −W

(
T + T h − T hT )W h = I

⇒ T + T h − TT h = T + T h − T hT = 0

⇒ T + T h = TT h = T hT .

Since T is a triangular matrix that has to be also normal, T is a diagonal

matrix.

From the last equation we have also that |Tii|2 = 2Re(Tii) , that is, each Tii

is equal to 1− eiθi for some θi.

If

U = I − V ΩV h

and the {vi} are not linearly independent, V could be written as V = V ′X

where V ′ ∈ Cn×k is a full rank matrix and X ∈ Ck×m is an upper triangular

matrix, and so, defining

Ω′ := XΩXh ,

U can be written as

U = I − V ΩV h = U = I − V ′XΩXhV ′h = I − V ′Ω′V ′h .

Now with an easy ploy we can bring the above equation to the hypotheses

of the first statement of the lemma; we use the fact that V ′hV ′ is positive

definite and so we can consider it’s square root. Thus

U =I − V ′Ω′V ′h

= I − V ′
(
V ′hV ′

)− 1
2
(
V ′hV ′

) 1
2 Ω′
(
V ′hV ′

) 1
2
(
V ′hV ′

)− 1
2V ′h

and, if we define the matrices

W ′ := V ′
(
V ′hV ′

)− 1
2 ,

Ω′′ =
(
V ′hV ′

) 1
2 Ω′
(
V ′hV ′

) 1
2 ,
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then W ′ is such that

W ′hW ′ =
(
V ′hV ′

)− 1
2V ′hV ′

(
V ′hV ′

)− 1
2 = Ik×k .

Now we are in the hypothesss of the first statement of the lemma, and there-

fore ∃Wand D s.t. U = I−WDW h , where W hW = Ik×k and Djj = 1+eiθj .

The third statement follows from the two above: from the last one we observe

that U can be decomposed as

U = I −WDW h , where W hW = Im×m ,

Djj = 1− eiθj ;

we can easily observe that D is nonsingular (Djj 6= 0 ∀j) since Ω is non

singular and we have used only non singular transformations. Now it is

simple to observe that if we decompose the last matrix equation in a product

of Householder-type matrices (as we did in the first part of the theorem) all

of them are non trivial.

Theorem 3.3.5. Let U be a unitary matrix whose eigenvalues are 1 with

multiplicity k and {eiθj}n−kj=1 , then:

1. ∃{αj}n−kj=1 , {uj}n−kj=1 s.t. ||uj|| = 1 ∀j and uj⊥ui ∀ i 6= j s.t. U =∏n−k
j=1 Uαj =

∏n−k
j=1 (I − αjujuhj ) .

2. If U is product of m non-trivial Householder-type matrices U =
∏m

i=1 Uαi
s.t. the vectors that define the matrices Uαi are orthogonal,

then m = n− k .

3. U can’t be decomposed as a product of less than n−k Householder-type

matrices.

4. The algorithm that comes from Theorem 3.3.1 converges in exactly n−k
not-trivial steps.

Proof. Let’s consider the spectral decompostion of

U = V D(λ)V h = V V h − V
(
I −D(λ)

)
V h = I − V

(
I −D(λ)

)
V h ;

we can observe that the matrix I − D(λ) is a diagonal matrix with n − k

non-zeros entries each one of the type 1− eiθj := αj.

So U = I −
∑n−k

h=1 αjhvjhv
h
jh

=
∏n−k

h=1

(
I −αjhvjhvhjh

)
where the latter equality
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is true since the eigenvectors vjh are orthogonal.

To demonstrate the second statement it’s enough to observe that if

U =
m∏
i=1

(
I − αiuiuhi

)
with ui ⊥ uj ∀i 6= j

then U has n−m eigenvalues equal to 1 so n−m = k.

To demonstrate the third statement let’s consider an optimal decomposition

of U , that is a decompositin in terms of a number of nontrivial Householder-

type matrices as minimum as possible

U =
m∏
j=1

Uαj =
m∏
j=1

(
I − αjujuhj

)
.

If we define V the n×m matrix that has as columns the {ui}, it is easy to

see that the above equality can be written in matrix form as

U = I − V ΩV h ,

where Ω is an upper triangular not-singular matrix with the αj on the diag-

onal.

Because of Lemma 3.3.4 it’s necessary that V has maximum rank otherwise

the decomposition wouldn’t be optimal. So, again thanks to Lemma 3.3.4,

there exist W and D s.t.

U = I −WDW h

where

W hW = Im×m

and

Djj = 1 + eiθj .

But this means that U has only m eigenvalues different from 1 where m ≤ k,

so m = k.

The algorithm that comes from Theorem 3.3.1 is such that the vectors {uj},
which define the Householder-type matrices involved in the decomposition of

U , are linearly independent, as observed in Remark 3.3.3; so if

U =
m∏
j=1

(I − αjujuhj )
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is the decomposition that comes from the algorithm, then it can be written

as

U = I − V ΩV h

where both V and Ω (V is the n×m matrix having {uj} as columns and Ω is

an upper triangular matrix with the αj 6= 0 on the diagonal) are nonsingular

matrices. Thanks to Lemma 3.3.4, this has to be an optimal decomposition,

that is m = n− k .

Now we will show that, from the Householder-type decomposition of a real

unitary matrix, we can derive its decomposition in terms of real Householder

matrices. First of all let’s remember some basic properties of a real unitary

matrix. Consider U , a real unitary matrix, and λ one of its eigenvalues; then

if λ is not real (λ 6= ±1), also λ is an eigenvalue. In the same way if v is

an eigenvector related to an eigenvalue λ ∈ C \ R, then v is an eigenvector

associated to λ. Thus, if we look at the Householder-type decomposition of U

that is obtained from its spectral decomposition, if Uα = I −αuuh is one the

factors then, necessarily, in the decomposition there is also Uα = I − αuut.
So, to obtain a decomposition of U in terms of real Householder matrices,

it’s enough to find the decomposition, in terms of Householder matrices, of

a matrix like (UαUα), where u and u are orthogonal.

Hence we want to show that ∀θ ∈ [0, 2π), u ∈ Cn s.t. ||u|| = 1, utu = 0

there exist v, w ∈ Rn , ||v|| = ||w|| = 1 , such that:(
I − (1− eiθ)uuh

)(
I − (1− e−iθ)uut

)
=
(
I − 2vvt

)(
I − 2wwt

)
. (3.9)

Note that, since utu = 0, it has to be true:

(Reu)t(Reu) = (Imu)t(Imu) =
1

2
and (Reu)t(Imu) = 0 .

If we develop the first member of the equality (3.9) we obtain:

I − (1− eiθ)uuh − (1− e−iθ)uut =

I − 2
(

(1− cos θ)
(
(Reu)(Reu)t + (Imu)(Imu)t

)
+ (sen θ)

(
(Imu)(Reu)t − (Reu)(Imu)t

))
.

Similarly the second member of (3.9) becomes:

I − 2
(
vvt + wwt − 2(vtw)vwt

)
. (3.10)
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Now, if we rename Reu = x and Imu = y, we are looking for v and w such

that:

(1− cos θ)
(
xxt + yyt

)
+ (sen θ)

(
yxt−xyt

)
= vvt +wwt− 2(vtw)vwt . (3.11)

Let’s impose v =
√

2 sinϕ x+
√

2 cosϕ y

and w =
√

2 sinψ x+
√

2 cosψ y .

Then the second term of the above equality becomes:

vvt + wwt − 2(vtw)vwt =

2
(

(sin2 ϕ+ sin2 ψ)xxt + (cos2 ϕ+ cos2 ψ)yyt + (sinϕ cosϕ+ sinψ cosψ)(xyt + yxt)
)

− 4(sinϕ sinψ + cosϕ cosψ)
(

(sinϕ sinψ)xxt + (cosϕ cosψ)yyt
)

− 4(sinϕ sinψ + cosϕ cosψ)
(

(sinϕ cosψ)xyt + (cosϕ sinψ)yxt)
)
.

So ψ and ϕ have to satisfy the following equalities:

1− cos θ =2(sin2 ϕ+ sin2 ψ)− 4(sinϕ sinψ + cosϕ cosψ)(sinϕ sinψ)

=2(cos2 ϕ+ cos2 ψ)− 4(sinϕ sinψ + cosϕ cosψ)(cosϕ cosψ) ,

sin θ =2(sinϕ cosϕ+ sinψ cosψ)− 4(sinϕ sinψ + cosϕ cosψ)(sinϕ cosψ)

=− 2(sinϕ cosϕ+ sinψ cosψ) + 4(sinϕ sinψ + cosϕ cosψ)(cosϕ sinψ) ,

cos θ =(1− 2 sin2 ϕ)(1− 2 sin2 ψ) + 4(cosϕ cosψ sinϕ sinψ)

=(1− 2 cos2 ϕ)(1− 2 cos2 ψ) + 4(sinϕ sinψ cosϕ cosψ) ,

sin θ =2(sinϕ cosϕ)(1− 2 cos2 ψ) + 2(sinψ cosψ)(1− 2 sin2 ϕ)

=− 2(sinϕ cosϕ)(1− 2 sin2 ψ)− 2(sinψ cosψ)(1− 2 cos2 ϕ) ,

cos θ =(cos 2ϕ)(cos 2ψ) + (sin 2ϕ)(sin 2ψ) ,

sin θ =(sin(−2ϕ))(cos 2ψ) + (sin 2ψ)(cos 2ϕ) ,

cos θ =
(

cos(2ψ − 2ϕ)
)
,

sin θ =
(

sin(2ψ − 2ϕ)
)
.

Hence, to satisfy (3.9), we can take

v =
√

2 sinϕ x+
√

2 cosϕ y and w =
√

2 sinψ x+
√

2 cosψ y ,

where ϕ and ψ are such that θ = 2(ψ − ϕ).
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Remark 3.3.6. We can easily observe from the preceding theorems that the

algorithm that comes from the demonstration of Theorem 3.3.1 can also be

used to reduce the problem of computing the eigenvalues and eigenvectors

of a n × n unitary matrix, U , to the problem of computing eigenvalues and

eigenvectors of a m × m unitary matrix where m is equal to number of

eigenvalues of U different from 1.

Indeed, given a unitary matrix U , we can do the following steps:

1. define U1 := U and u11 it’s first column.

2. for i = 1, ..., n

(a) find the Householder-type matrix Uαi = I − αiuiuhi of dimension

n+ 1− i, such that Uαiu
i
i = e1

(b) define U i+1 the tail submatrix of dimension n − i of the matrix(
UαiU

i
)

and ui+1
i+1 its first column.

end for

3. after at most n steps we can say that:

U = Uα1

(
1 0

0 Uα2

)
. . .


1 0 . . .

0
. . . 0

... 0 Uαn

 (3.12)

= Ũα1 . . . Ũαn (3.13)

=
n∏
i=1

(
I − αiũũh

)
(3.14)

where ũi is defined as the vector

(
0

ui

)
. In particular, thanks to Theo-

rem 3.3.5, we can say that only n−k of the terms in the above equation

are non-trivial, where k is the multiplicity of 1 as eigenvalue of the ma-

trix U .

4. Write in matrix form the above equation

U = I − V ΩV h

where V is defined as the n× (n− k) matrix having as columns the ũi

relative to αi 6= 0.
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5. Observe that

U = I − V
(
V hV

)− 1
2
(
V hV

) 1
2 Ω
(
V hV

) 1
2
(
V hV

)− 1
2V h

and define V ′ := V
(
V hV

)− 1
2 and Ω′ :=

(
V hV

) 1
2 Ω
(
V hV

) 1
2 .

6. Compute the spectral decomposition of the (n − k) × (n − k) unitary

matrix I − Ω′ :

I − Ω′ = WD(eiθi)W h .

7. The columns of the matrix V ′W are the eigenvectors of the matrix U

relative to the eigenvalues different from 1. The eigenvalues of I − Ω′

are all the eigenvalues different from 1 of the matrix U .

Lemma 3.3.7. Let be given A,B ∈ Cn×m , m ≤ n , s.t. AhA = BhB . Then

• ∀{ij}kj=1 ⊆ {1, ...,m} we have rk(Ai1,...,ik) = rk(Bi1,...,ik), where

(Ai1,...,ik) is the submatrix of A obtained selecting the columns i1, ..., ik.

• If Ai1,...,ik is a submatrix of A with maximum rank, then ∃T ∈ Ck×m

s.t. A = Ai1,...,ikT and B = Bi1,...,ikT.

Proof. Let be given {ij}kj=1 ⊆ {1, ...,m}; at first we can observe that, unless

of permutations of columns, it is allowed to assume that

{ij}kj=1 = {1, ..., k}. Now it is easy to note that the columns A1, ..., Ak are

independent iff det
((
AhA

)
k×k

)
6= 0 where

(
AhA

)
k×k is the head submatrix

of AhA of dimension k × k.

Indeed, if the k-th column is combination of the first k − 1 , it should follow

Ak =
∑k−1

i=1 αiAi and, from this, the k-th row of
(
AhA

)
k×k would be of the

type:

( k−1∑
i=1

αi <Ai, A1>, ...,
k−1∑
i=1

αi <Ai, Ak−1> ,
k−1∑
i=1

αi <Ai,
k−1∑
j=1

αjAj>
)
.

But the latter is a combination of the first k − 1 rows of
(
AhA

)
k×k and so

the determinat should be equal to zero.
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On the other hand it is true also the contrary;

indeed if det
(
AhA

)
k×k = 0 , then ∃ v ∈ Ck s.t.

(
AhA

)
k×kv = 0. So:

k∑
j=1

vj<Ai, Aj>= 0 ∀i ⇒
k∑
j=1

<Ai, vjAj>= 0

⇒ <
k∑
i=1

viAi,

k∑
j=1

vjAj>= 0 ⇒
∣∣∣∣∣∣ k∑

i=1

viAi

∣∣∣∣∣∣2 = 0 ,

that means that the {Ai} are linearly dependent.

From the above equivalence we can observe that, if AhA = BhB, the k-th

column of A is a combination of the first k − 1 iff the same is true about B,

in particular it is possible to conclude that Ak and Bk are combinations of

the first k − 1 columns iff ∃v ∈ Ck t.c

vh
(
AhA

)
k×kv = vh

(
BhB

)
k×kv = 0

iff
k∑
i=1

viAi =
k∑
i=1

viBi = 0

that means

Ak =
k−1∑
i=1

αiAi iff Bk =
k−1∑
i=1

αiBi .

This in matrix form can be expressed as

A = Ai1,...,ikT and B = Bi1,...,ikT ,

where T is the same matrix for both A and B and Ai1,...,ik , Bi1,...,ik are

submatrices of maximum rank.

Theorem 3.3.8. Let be given A,B ∈ Cn×m with m ≤ n s.t. AhA = BhB .

Then ∃ Uαrk(A)
, ..., Uα1 s.t. Uαrk(A)

...Uα1A = B.

Proof. Recalling Lemma 3.3.7 it follows that exist T ∈ Ck×m and two

submatrices of maximum rank of A and B, Ã, B̃ in Cn×k, that are obtained

selecting some columns of A, B , s.t.

A = ÃT, B = B̃T .
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Let’s consider {ei} , {fi}, the orthonormalization of the columns of Ã, B̃

obtained with the Gram Schmidt algorithm:

e1 =
Ã1

||Ã1||
, ... , ei =

Ãi −
∑i−1

j=1 < ej, Ãi > ej

||Ãi −
∑i−1

j=1 < ej, Ãi > ej||
, (3.15)

f1 =
B̃1

||B̃1||
, ... , fi =

B̃i −
∑i−1

j=1 < fj, B̃i > fj

||B̃i −
∑i−1

j=1 < fj, B̃i > fj||
. (3.16)

Note that

BhB = AhA ⇒ <B̃i, B̃j>=<Ãi, Ãj> ∀i, j ,

Then, from the above equations, it follows that the coefficients of ei, fi , each

one with respect to the basis {Ãj}, {B̃j} are the same. Thus (3.15),(3.16) can

be similary formulated saying that exists only one matrix C, non singular,

s.t.

E = ÃC

F = B̃C ,

where E and F are the matrices having {ei} and {fi} as columns.

So:

EC−1T = A ,

FC−1T = B .

Now it is easy to conclude because, thanks to Theorem 3.3.1,

∃ Uα1 , ..., Uαrk(A)
s.t. F = Uα1 ...Uαrk(A)

E ⇒

B = FC−1T = Uα1 ...UαrkAEC
−1T = Uα1 ...Uαrk(A)

A .

Theorem 3.3.9. : the best approximation of a unitary matrix with

k-Householder-type matrices

Let U be a unitary matrix and
∏m

i=1 Uαi its decomposition in Householder-

type matrices defined by orthogonal vectors as in Theorem 3.3.5. Then the

best approximation of U ( in Frobenius and 2-norm ) with k Householder-type
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matrices is U∗ =
∏k

h=1 Uαih where the {αih}kh=1 are the k ones with bigger

absolute values among the αi. And

||U − U∗||2F =
n∑

j=k+1

|αj|2 =
n∑

j=k+1

|1− eiθj |2 ,

||U − U∗||22 = |αk+1|2 = |1− eiθk+1|2 ,

where {αj}nj=k+1 are the ones with smaller absoulte value among the αj and

αk+1 is the one with bigger absolute value among the {αj}nj=k+1.

Proof. Let

U = V D(λi)V
h

be the spectral decomposition of U ; as in Theorem 3.3.5 it can be written as

U = I − V DV h

where D is the diagonal matrix ∈ Cn×n s.t. Dii = αi = 1− λi.
Still from the previous results, we can say that to approximate U with a

product of k Householder-type matrices is the same thing that to approximate

U with a matrix of the type I −WΩW h, where W ∈ Cn×k, Ω ∈ Ck×k upper

triangular.

So our problem is equivalent to approximate the matrix V DV h with a matrix

of rank ≤ k of the form WΩW h.

It is well known that the best approximation (in both the 2-norm and the

Frobenius norm, see the appendix) of a matrix with a rank k matrix is the

truncation of its SVD that leaves the k bigger singular values.

It is also well known that the SVD of V DV h is2

V D(|αi|)D
(
αi
|αi|

)
V h ,

where the |αi| are the singular values and the matrices V,D
( αi
|αi|

)
V h are the

left and right singular matrices.

So we have that the best approximation of V DV h with a matrix of rank ≤ k

is :

• V DV h if k ≥ rank(D) where rank(D) is the number of eigenvalues

different from 1;

2we adopt the convention αi

|αi| = 1 if αi = 0
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• V D′V h if k ≤ rank(D) where D′ is the diagonal matrix with zeros in

place of the (rank(D)− k) smaller singular values, that correspond to

the rank(D)− k smaller αi, that are also the eigenvalues of the matrix

U closer to 1.

Hence we have that

U∗ = I − V D′V h

and

U − U∗ = V



0 . . . .

.
. . . . . .

. . αk+1 . .

. . .
. . . .

. . . . αn


V h ,

where {αj}nj=k+1 are the ones with smaller absoulte value among the αj. In

particular we can conclude observing that

||U − U∗||2F =
n∑

j=k+1

|αj|2 =
n∑

j=k+1

|1− eiθj |2 ,

and

||U − U∗||22 = |αk+1|2 = |1− eiθk+1 |2 ,

where αk+1 is the one with bigger absolute value among the {αj}nj=k+1.

3.4 Improving stability of QR Decomposition

Usually to obtain the QR decomposition of a matrix A, we apply a (n− 1)-

steps triangularization procedure to A in which at the i-th step an House-

holder matrix Ũi is introduced such that Ũia
i
i = eiθie1 where aii is the nor-

malized first column of the tail (n + 1 − i) × (n + 1 − i)-submatrix of(
Ui−1 . . . U1A

)
3, and eiθi is chosen in order to have < aii, e

iθie1 >∈ R (see

[8], [15]).

Now, with the Householder-type matrices, at each step we don’t need any

more to fix θi in order to have < aii, e
iθie1 > real; in fact ∀θ, ∃Ũi,α(θ) such

that Ũi,α(θ)a
i
i = eiθe1. So we can choose θi such that Ũi,α(θi) is as “good” as

possible.

3Ui is the n× n Householder matrix direct sum of the identity matrix Ii−1 and of Ũi
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We say that the matrix Uα = I − αuuh is better than the matrix Wβ = I −
βwwh if it is closer to the identity matrix, that is, since ||uuh|| = ||wwh|| = 1,

if |α| is smaller than |β|. Indeed, given a unitary vector v, our aim is to have

the equality (I−αuuh)v = eiθe1 and to bound, as much as possible, the error

that affects the vector (I − αuuh)z because of an error ε generated by the

computation of (uhz). Looking at the equation:

(I − αuuh)z ≈ z − α(ũhz)u = z − α(uhz + ε)u = (I − αuuh)z − εαu

we can observe that, smaller is |α|, smaller is the perturbation of (I−αuuh)z
caused by ε.

If we want the matrix Uα(θ) s.t. Uα(θ)v = eiθe1, thanks to Lemma 3.1.1, we

have to choose Uα(θ) = I − α(θ)uuh where

u =
(v − eiθe1

)
||(v − eiθe1

)
||

and α(θ)− 1 =
<v, eiθe1> −1

<eiθe1, v> −1
=

v1e
iθ − 1

v1e−iθ − 1
Set α(θ) = αθ. Then:

αθ =
2Re(v1e

−iθ)− 2

v1e−iθ − 1
, (3.17)

|αθ|2 =
4(Re(v1e

−iθ)− 1)2

(v1e−iθ − 1)(v1eiθ − 1)
=

4(Re(v1e
−iθ)− 1)2

|v1e−iθ|2 + 1− v1eiθ − v1e−iθ

=
4
(
Re(v1e

−iθ − 1)
)2

Re2(v1e−iθ) + Im2(v1e−iθ)− 2Re(v1e−iθ) + 1

=
4
(
Re(v1e

−iθ − 1)
)2

(Re(v1e−iθ)− 1)2 + Im2(v1e−iθ)

= 4

(
1

1 + Im2(v1e−iθ)
(Re(v1e−iθ−1))2

)
. (3.18)

Now, since we want to minimize |αθ|, let’s maximize(
Im2(v1e

−iθ)

(Re(v1e−iθ − 1))2

)
. (3.19)

Note that the derivative of Im(v1e
−iθ) is −Re(v1e−iθ) and the derivative of

Re(v1e
−iθ) is Im(v1e

−iθ), in fact:

d

dθ
Im(v1e

−iθ) =
d

dθ

v1e
−iθ − v1eiθ

2i
=
−iv1e−iθ − iv1eiθ

2i
= −Re(v1e−iθ) ,

d

dθ
Re(v1e

−iθ) =
d

dθ

v1e
−iθ + v1e

iθ

2
=
−iv1e−iθ + iv1e

iθ

2
=
v1e
−iθ − v1eiθ

2i
= Im(v1e

−iθ) .
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So we can calculate the derivative of (3.19):

d

dθ

(
Im2(v1e

−iθ)

(Re(v1e−iθ − 1))2

)
=

−2Im(v1e
−iθ)Re(v1e

−iθ)
(
Re(v1e

−iθ)− 1
)2 − 2Im(v1e

−iθ)Im2(v1e
−iθ)
(
Re(v1e

−iθ)− 1
)(

Re(v1e−iθ)− 1
)4 =

−2
(
Im(v1e

−iθ)
)(
Im2(v1e

−iθ) +
(
Re(v1e

−iθ)− 1
)(
Re(v1e

−iθ)
))

(
Re(v1e−iθ)− 1

)3 .

Thus (3.19) has minimum for θ s.t. Im(v1e
iθ) = 0 (this follows since the

function (3.19) is non negative)

and maximum for θ s.t.
(
Im2(v1e

−iθ) +
(
Re(v1e

−iθ)− 1
)(
Re(v1e

−iθ)
))

= 0,

that is |v1|2 = Re(v1e
−iθ) .

So if we rename eiϕ = v1
|v1| , then the θ for which |αθ| is minimum can be

obtained as:

Re
(
eiϕe−iθ

)
= |v1| ⇒ Re

(
ei(ϕ−θ)

)
= |v1|

⇒ cos(ϕ− θ) = |v1| ⇒ θ = ϕ± arcos(|v1|).

From this it follows that, defining v′ =
(

0, v2, . . . , vn

)
,

u =
(v − eiθe1

)
||(v − eiθe1

)
||

=
(v − ei(ϕ±arcos(|v1|))e1

)
||(v − ei(ϕ±arcos(|v1|))e1

)
||

=
(v − v1

|v1|e
±i(arcos(|v1|))e1

)
||(v − v1

|v1|e
±i(arcos(|v1|))e1

)
||

=
(v1 − v1

|v1|

(
|v1| ± isen(arcos(|v1|))

)
)e1 + v′

||(v1 − v1
|v1|

(
|v1| ± isen(arcos(|v1|))

)
)e1 + v′||

=
∓i v1

|v1|sen
(
arcos(|v1|)

)
e1 + v′

|| ∓ i v1
|v1|sen

(
arcos(|v1|)

)
e1 + v′||

.

In the end let’s evaluate |αθ|2 in the point of minimum; when |v1|2 = Re(v1e
−iθ)
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we have Im2(v1e
−iθ) = |v1|2 − |v1|4 and thus:

|αθ|2 = 4
(Re(v1e

−iθ − 1))2

(Re(v1e−iθ)− 1)2 + Im2(v1e−iθ)

=
(|v1|2 − 1)2

(|v1|2 − 1)2 + |v1|2 − |v1|4
= 4

(|v1|2 − 1)2

(1− |v1|2)

= 4
(
1− |v1|2

)
. (3.20)

If we think αθ as 1 + eiτ , since |αθ|2 = 2Re(αθ), still from (3.20) we have:

2(1 + cos(τ)) = 4
(
1− |v1|2

)
⇒ cos(τ) = 1− 2|v1|2

⇒ τ = ±arcos(1− 2|v1|2).

Hence we can state the following theorem:

Theorem 3.4.1. Given a unitary vector v, the Householder-type matrix Uα∗

closest to the identity matrix I such that Uα∗v ∈ span{e1} is :

Uα∗ = I − (α∗)uuh

where

α∗ =
(

1 + e±i arcos(1−2|v1|
2)
)
, u =

(
± i v1

|v1|sen(arcos(|v1|)
)
e1 + v′

)
∣∣∣∣∣∣± i v1

|v1|sen(arcos(|v1|)
)
e1 + v′

∣∣∣∣∣∣ ,
v′ =

(
0 , v2, . . . , vn

)
.

And it is true:

|α∗|2 = ||Uα∗ − I||2 = 4
(
1− |v1|2

)
.

( if we choose “+” in the formula of α∗ we have to choose “+” also in the

formula for u )

Proof. It comes from the previous 2 pages.

Observe that as big it is |v1| as small we can get |α ∗ |; hence it comes quite

spontaneous to apply before each step of the triangularization procedure a

pivoting in such a way to have |v1| as big as possible.
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In detail, after the i-th step we have that

Uαi . . . Uα1A =


eiθ1 . . . . . . . . .

0
. . . . . . . . .

0 0 eiθi . . .

0 0 0 Ai

 (3.21)

So if we consider the permutation matrix Pi s.t. |
(
PiAi

)
11
| is the biggest

possible we have:

(
I 0

0 Pi

)
Uαi . . . Uα1A =


eiθ1 . . . . . . . . .

0
. . . . . . . . .

0 0 eiθi . . .

0 0 0 A′i

 (3.22)

where |
(
A′i
)
11
| is the biggest among the absolute values of the elements of

the first column of A′i and the matrix

(
I 0

0 Pi

)
Uαi . . . Uα1 is still a unitary

matrix. So after n-steps of this method we will still have a QR decompo-

sition of the matrix A but the matrix Q will be a product of alternating

Householder-type matrices and permutation matrices.

Instead of considering the pivoting only on the column, at the i-th step it

could also be possible to consider a total-pivoting on the submatrix Ai, that

is to find the two permutation matrices P 1
i and P 2

i such that |(P 1
i AiP

2
i )11| is

the biggest possible. In this case we would have

(
I 0

0 P 1
i

)
Uαi . . . Uα1A

(
I 0

0 P 2
i

)
=


eiθ1 . . . . . . . . .

0
. . . . . . . . .

0 0 eiθi . . .

0 0 0 A′i

 (3.23)

where |(A′i)11| is the biggest among the absolute values of the elements of

the matrix A′i. But, differently from before, after n-steps of this method we

will have a QRP decomposition of the matrix A where Q is a unitary matrix

product of alternating Householder-type matrices and permutation matrices,

R is an upper triangular matrix and P is a permutation matrix.

Note that in both the cases the alternating product of permuation ma-

trices and Householder-type matrices can be expressed as a product of k
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Householder-type matrices by a permuation matrix. Indeed, since it is true

(I − αvvh)P = P (I − αP tvvhP ) ,

we can easily show that

P1Uα1P2Uα2 · · ·PkUαk = P1P2 · · ·PkŨα1 · · · Ũαk

Let’s make a final remark. From (3.20) one observes that it is required an

Householder matrix (to realize the minumum distance from I) if and only

if v1 is zero, that is the same thing of saying v ⊥ e1. This was predictable,

indeed, since α in I − αuuh can be written also as 1 − eiθ for some θ, |α|
is always smaller than 2, thus the Householder case is the “worst” possible.

Moreover, from Theorem 4.0.1 and from the comments in the introduction

to this chapter, it follows that one needs an Householder matrix to send v in

e1 if <v, e1> is real; but as we said before, the Householder case is the worst

possible, hence we don’t want that the above scalar product is real; any time

<v, e1>6= 0 we can always get it complex multiplying e1 for some eiθ so it is

a Householder-type with |α| < 2 that realizes the minimum.

3.5 Best normal approximation via

projection on Householder-Type algebras

In this section we will present just an idea of a possible way to find one best

normal approximation, in the Frobenius norm, of a generic matrix A. Some

possible algorithms have been already found in [12],[13], however they seem

to be not so cheap.

Our idea is based on the following results:

• Every normal matrix can be diagonalized by a unitary matrix.

• We know the shape of the best approximation of a matrix in a fixed

SDU space (Theorem 1.1.2).

• We can decompose every unitary matrix as a product of Householder-

type matrices (Theorem 3.3.1).
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So the problem is the following: find

Nopt = argmin(N∈N )||A−N || = UoptD
(

(Uh
optAUopt)ii

)
Uh
opt

where N denotes the set of n × n normal matrices. This problem can be

equivalently formulated in terms of Uopt and then, in terms of its decompo-

sition as a product of Householder-type matrices:

Uopt = argmin(U unitary)||A− UD
(
(UhAU)ii

)
Uh|| = (3.24)

argmin(Uαi , i=1,··· ,n)

∣∣∣∣∣∣∣∣A− (Uα1 · · ·Uαn
)
D
(((

Uh
αn · · ·U

h
α1

)
A
(
Uα1 · · ·Uαn

))
ii

)(
Uh
αn · · ·U

h
α1

)∣∣∣∣∣∣∣∣ =

argmin(Uαi i=1,...,n)

∣∣∣∣∣∣∣∣(Uh
αn · · ·U

h
α1

)
A
(
Uα1 · · ·Uαn

)
−D

(((
Uh
αn · · ·U

h
α1

)
A
(
Uα1 · · ·Uαn

))
ii

)∣∣∣∣∣∣∣∣
= (Uα1)opt · · · (Uαn)opt .

Note that if we assume that U = (Uα1)opt · · · (Uαn−1)opt is already known,

then the last equation can be formulated as:

(Uαn)opt = argmin(Uαn )

∣∣∣∣∣∣∣∣(Uh
αn

)
UhAU

(
Uαn

)
−D

((
Uh
αn

(
UhAU

)
Uαn

)
ii

)∣∣∣∣∣∣∣∣ .
So it comes quite spontaneous to imagine an iterative algorithm that, at

each step k, computes the Householder-type matrix (Uα)k that minimizes an

equation like the following:

(Uα)k = argminUα

∣∣∣∣∣∣∣∣(Uh
α

)
Ak

(
Uα

)
−D

((
Uh
αAkUα

)
ii

)∣∣∣∣∣∣∣∣ (3.25)

where:

Ak = (Uα)hk−1 . . . (Uα)h1A(Uα)1 . . . (Uα)k−1.

We still have not solved the above equation in both α and u s.t. Uα =

I − αuuh, but we can suggest a possible iterative solver for such equation.

Our idea is, fixed a vector u, to look for the value of α that minimizes the

equation (3.25); i.e. to look for

α̂ = argminα
∣∣∣∣(I−αuuh)hA(I−αuuh)−D(((I−αuuh)hA(I−αuuh))

ii

)∣∣∣∣
(3.26)

where for the sake of simplicity we have set A := Ak.

Then look for

û = argminu
∣∣∣∣(I− α̂uuh)hA(I− α̂uuh)−D(((I− α̂uuh)hA(I− α̂uuh))

ii

)∣∣∣∣ ,
(3.27)
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set u = û and repeat until

I − α̂ûûh = (Uα)k.

Let us see some preliminary results in solving (3.26). If we work with the

Frobenius norm, the minimization problem (3.26) is equivalent to maximize

|| · ||2 =

∣∣∣∣∣∣∣∣D((Uh
αAUα

)
ii

)∣∣∣∣∣∣∣∣2 in α.

Expanding the function || · ||2 and computing its derivative, we have found

two different equations that the optimal α has to satisfy:

• Using the hypothesis 2Reα = |α|2, one obtains the following expression

for || · ||2 in terms of x := Re(α)

|| · ||2 =


8x
√
x(2− x)C1 + 4

√
x(2− x)C2 + 4x2C3 + 4xC4 + C5

(if Imα ≥ 0)

−8x
√
x(2− x)C1 − 4

√
x(2− x)C2 + 4x2C3 + 4xC4 + C5

(if Imα ≤ 0)

where:

C1 =
n∑
i=1

(
ξiξ̃i + ηiη̃i

)
, C2 =

n∑
i=1

(
ξi
(
Reaii

)
+ ηi

(
Imaii

))
,

C3 =
n∑
i=1

(
ξ̃2i + η̃2i − ξ2i − η2i

)
, C4 =

n∑
i=1

(
ξ̃i
(
Reaii

)
+ η̃i

(
Imaii

)
+ 2
(
ξ2i + η2i

))
,

C5 =
n∑
i=1

|aii|2

and

ξi = Im
(
ui e

t
i

A+ Ah

2
u
)
, ξ̃i = |ui|2 uh

A+ Ah

2
u−Re

(
ui e

t
i

A+ Ah

2
u
)
,

ηi = Im
(
ui e

t
i

A− Ah

2i
u
)
, η̃i = |ui|2 uh

A− Ah

2i
u−Re

(
ui e

t
i

A− Ah

2i
u
)
.

Computing the derivative of || · ||2 with respect to x = Reα, we have

d|| · ||2

dx
=


4p1(x)− 4p2(x)√

x(2−x)
(if Imα > 0)

4p1(x) + 4p2(x)√
x(2−x)

(if Imα < 0)
,
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where

p1(x) = 2xC3 + C4 and p2(x) = 4x2C1 − (6C1 − C2)x− C2.

Thus the optimale value of x = Reα must be 0, 2 or must be a real zero

of the following fourth degree algebraic equation

p1(x)2x(2− x) = p2(x)2. (3.28)

We can observe that the coefficients {ξi}, {ηi}, {ξ̃i}, {η̃i} have

the following good property (we use ||u|| = 1 and the fact that
A+ Ah

2
,

A− Ah

2i
are Hermitian matrices):

n∑
i=1

ξi = Im
(
uh
A+ Ah

2
u
)

= 0,

n∑
i=1

ξ̃i = ||u||2
(
uh
A+ Ah

2
u
)
−Re

(
uh
A+ Ah

2
u
)

= 0,

n∑
i=1

ηi = Im
(
uh
A− Ah

2i
u
)

= 0,

n∑
i=1

η̃i = ||u||2
(
uh
A− Ah

2i
u
)
−Re

(
uh
A− Ah

2i
u
)

= 0.

Hence it follows that all the equations become easier if

Aii = Ajj ∀i 6= j 4, indeed in this case :

C2 is zero, C4 =
∑n

i=1 2
(
ξ2i + η2i

)
≥ 0 ,

2C3 + C4 =
∑n

i=1 2
(
ξ̃2i + η̃2i

)
≥ 0 , || · ||2 |x=0≤ || · ||2 |x=2,

and (3.28) can be reduced to a third degree algebraic equation.

Remark: If C4 = 0, then ξi = ηi = 0 ∀i, C1 = 0,

C3 =
∑n

i=1(ξ̃
2
i + η̃2i ) ≥ 0 , || · ||2 = 4x2C3 + C5 and thus α̂ = 2.

Otherwise, if C4 > 0, the value α = 2 can be optimal only if C1 = 0

4It should be in general possible to equal all the diagonal entries by applying a finite

number of Givens similarity transforms to A (to be verified).
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and 4C3 +C4 ≥ 0 (this follows from a simple study of the behaviour of

|| · ||2 in a neighborhood of α = 2); in all other cases the optimal α̂ is

s.t. 0 < |α̂| < 2, i.e. I − α̂uuh is not Householder.

• Writing α = 1+eiθ, we have that α is optimal if eiθ satisfies the following

equation:

Im
(
e2iθ(C) + eiθ(D +B + C)

)
= 0 (3.29)

where D,B and C are defined as follows

D =
n∑
i=1

ui
(
kiAii + hiAii

)
,

B =
n∑
i=1

|ui|2
(
|ki|2 + |hi|2

)
, C = 2

n∑
i=1

u2i

(
kihi

)
and

ki = (uhAhu)ui −
n∑
j=1

ujAji , hi = (uhAu)ui −
n∑
j=1

ujAij.

Also in this case the {ki} and {hi} satisfy some good property:

n∑
i=1

uiki = ||u||2(uhAhu)−
n∑

i,j=1

ui(A
h)ijuj = 0 ,

n∑
i=1

uihi = ||u||2(uhAu)−
n∑

i,j=1

uiAijuj = 0 .

So if we equalize the diagonal elements of A, the coefficient D becomes

equal to zero.

Regarding the minimization (3.27), we note here only that it is equivalent to a

minimization problem in R2n−1, just set u = D(eiθ)z, θ ∈ Rn, z ≥ 0, ztz = 1.

An open question is to understand if the solution (Uα)k of (3.25) generates

the best possible approximation of type product of k Householder-type of

the Uopt in (3.24) (see Theorem 3.3.9). If this is true, the iterative algorithm,

generating (Uα)1(Uα)2 · · · (Uα)k from (Uα)1(Uα)2 · · · (Uα)k−1, should converge

to Uopt in no more than n-steps. Otherwise, an infinite number of steps,

could be performed improving more and more the normal approximation to

A , but it’s not sure that the algorithm converges to Uopt.



4. Appendix

Theorem 4.0.1. Given two vectors w, v ∈ Cn, there exists an hyperplane τ

of dimension n-1 s.t. w and v have the same projection on τ .

Proof. Observe that the thesis is equivalent to say that exists an orthonormal

basis {ui}ni=1 s.t. αi =< v, ui >=< w, ui > , ∀i = 1, . . . , n − 1, and w =∑n−1
i=1 αiui + γun, v =

∑n−1
i=1 αiui + βun. But the latter assertion is trivial

because it is enough to find a set of n − 1 orthogonal vectors {ui}n−1i=1 s.t.

ui⊥(v − w) ∀i.

Theorem 4.0.2. (see [18], [20]) Let A ∈ Cn×n and A = UΣV h =
∑r

i=1 σiuiv
h
i , σi >

0, r ≤ n, it’s SVD decomposition. The best rank-k approximation of A in the

2-norm is Ak =
∑k

i=1 σiuiv
h
i , (as usual we are assuming σ1 ≥ σ2 ≥ · · · ≥ σr).

Proof. Observe that Uh(A− Ak)V = diag(0, . . . , 0, σk+1, . . . , σr), so:

||A− Ak||2 = σk+1.

If B ∈ Cn×n is a rank-k matrix, let’s consider z ∈ ker(B)∩span{v1, . . . , vk+1}
s.t. ||z||2 = 1. Then:

||A−B||2 ≥ ||(A−B)z||2 = ||Az||2 =
k+1∑
i=1

σ2
i |(vhi z)|2 ≥ σ2

k+1

and this completes the proof.
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Theorem 4.0.3. Let A ∈ Cn×n and A = UΣV h =
∑r

i=1 σiuiv
h
i , σi >

0 , r ≤ n, it’s SVD decomposition. The best rank-k approximation of A in

the Frobenius-norm is Ak =
∑k

i=1 σiuiv
h
i , (as usual we are assuming σ1 ≥

σ2 ≥ · · · ≥ σr).

Proof. Observe that Uh(A− Ak)V = diag(0, . . . , 0, σk+1, . . . , σr), so:

||A− Ak||2F =
r∑

i=k+1

σ2
i .

Recall the Weyl’s inequality for singular values (see [19]) which says that

σi+j−1(A+B) ≤ σi(A) + σj(B).

Then for any rank-k matrix B, since σk+1(B) = 0, taking j = k+1, we have

that:

σi+k(A) ≤ σi(A−B) ∀i = 1, . . . , n− k .

So:

||A−B||2F =
n∑
i=1

σ2
i (A−B) ≥

n−k∑
i=1

σ2
i (A−B) ≥

n∑
i=k+1

σ2
i (A) =

r∑
i=k+1

σ2
i (A)

(4.1)
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