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Multi-agent estimation problem with consensus

Designing differential equations for time-varying vectors Θ̂[i](t), i = 1, . . . , p –
namedΘ-estimates at each node i = 1, . . . , p – such that all of them
exponentially converge to the unknown constant parameter vectorΘ ∈ Rm

(consensus) defined by the set of linear time-varying equations:

y1(t) = ϕT
1 (t)Θ (1)

yi(t) = ϕT
i (t)Θ, i = 2, . . . , p− 1 (2)

yp(t) = ϕT
p (t)Θ, (3)

where yi are the locally measured outputs and ϕi(·) : R+
0 → Rm are the local

regressor vectors, i = 1, . . . , p, each of them assumed to be available at the
running time at each node of an undirected chain graph and under the condition
that each estimation scheme at the node (agent) can share information – namely,
its ownΘ-estimate – with the neighbours only.
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Illustrative example

Consider the case in which a set of agents – a swarm of drones – at nodes face
the local identification problem in which they cannot consistently estimate the
parameter vector (position of a target object in the space) in isolation while
having to engage in communication with their neighbours.
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Illustrative example (details)

In particular, at least two drones with positions (xi, yi, zi) in the space (at least
one of them constant in time, i = 1, . . . , p) have to identify the position (xo, yo, zo)
of the target object in the space by just sharing information with the neighbours;
each drone knows its own position in the space andmeasures its (Euclidean)
distance Di(t) =

√
(xi − xo)2 + (yi − yo)2 + (zi − zo)2 from the target object, which

leads to the output:

yi = D2
i − x2i − y2i − z2i

=

ϕT
i︷ ︸︸ ︷

[−2xi,−2yi,−2zi, 1]

Θ︷ ︸︸ ︷
xo
yo
zo

x2o + y2o + z2o


in form (1)-(3).
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Θ-identifiability conditions (even when p < m)

Assumption A1

Theelements of the regressor vectors are assumed tobe continuousanduniformly bounded
over [0,+∞) as functions of time.

Assumption A2

The corresponding regressor matrixΦT(·) ∈ Rp×m

ΦT(·) =

 ϕT
1 (·)
. . .

ϕT
p (·)

 (4)

is assumed to be persistently exciting (PE), i.e., there exist (known) positive reals cp and Tp
such that the following condition [I ∈ Rm×m] holds:∫ t+Tp

t
Φ(τ)ΦT(τ)dτ ≧ cpI, ∀ t ≥ 0. (5)
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Original aim and contribution

Aim

Toshowhow thepositivedefinitenature of aquadratic formassociatedwith
the tridiagonal block structure

T =


I −I O . . . . . . . . . O
−I 2I −I O . . . . . . O
O −I 2I −I O . . . O
. . . . . . . . . . . . . . . . . . −I
O O O O . . . −I I

 . (6)

is crucial to innovatively prove the exponential achievement – with an ex-
plicit characterization of the exponential convergence – of the distributed
parameter estimation task on an undirected chain graph, in which an origi-
nal neighbourhood-based decentralized parallel architecture (reducing the
computational burden of a centralized estimation scheme on the graph) is
adopted.
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Contribution

Inplaceofweaker contradictionarguments toprove that theCooperativePE
Condition guarantees exponential consensus, here original proofs of con-
vergenceareable toprovideanexplicit characterizationof theexponentially
achieved consensus.

Extension

Nevertheless, the problem of asymptotically identifying time-varying pa-
rameters that are periodic with known periods can be innovatively solved
as well when p ≥ m and Φ is constant. Adaptive tools have just to be re-
placed by repetitive learning tools within the same theoretical framework.
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Design of Estimators

Penalization of the mismatch between the parameter estimates

Design

˙̂
Θ[i](t) = ϕi(t)

(
yi(t)− ϕT

i (t)Θ̂
[i](t)

)
− ηi(t). (7)

Taking into account that any internal i-th estimation scheme (i = 2, . . . , p − 1) can use only
the information coming from the (i− 1)-th and the (i+ 1)-th estimation schemes, whereas
the 1-st and the p-th estimation schemes can use only the information provided by the 2-nd
and the (p− 1)-th, respectively, we determine

η1 =
(
Θ̂[1] − Θ̂[2]

)
ηi =

(
Θ̂[i] − Θ̂[i−1]

)
+

(
Θ̂[i] − Θ̂[i+1]

)
, i = 2, ..., p− 1

ηp =
(
Θ̂[p] − Θ̂[p−1]

)
. (8)
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Error system

A crucial tridiagonal block matrix

Defining the estimation errors Θ̃[i] = Θ− Θ̂[i], the error system reads

˙̃Θ[1](t)
˙̃Θ[2](t)
˙̃Θ[3](t)
. . .

˙̃Θ[p](t)

 = − (Λ(t) + T)


Θ̃[1](t)
Θ̃[2](t)
Θ̃[3](t)
. . .

Θ̃[p](t)

 (9)

where Λ(t) + T is a tridiagonal block matrix inRpm×pm with

Λ(t) = diag[ϕ1(t)ϕT
1 (t), . . . , ϕp(t)ϕ

T
p (t)]. (10)
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Theoretical results

Lemma

Assume thatΦ(t), besidesAssumptionA1, satisfies the followinghypothesis:
A3. the entries ofΦ(t) are analytical functions of time t.
Consider system (9) and assume that there exist (known) positive reals cpG
and TpG such that the condition:∫ t+TpG

t
G(τ)dτ ≧ cpGI, ∀ t ≥ 0 (11)

holds. Then the n-dimensional extended error vector Θ̃[e](t) =
[Θ̃[1]T(t), . . . , Θ̃[p]T(t)]T (n = pm) globally exponentially converges to
zero.

9/14



Meaningfully, the theorem below shows how the weakest and least restrictive
condition (5) actually implies condition (11) and thus, used in conjunction with
the previous Lemma, provides the proof that the solution to the error system,
under Assumptions A1-A3, globally exponentially converges to zero.

Theorem

Under Assumption A2 [namely, condition (5)], there exist explicitly com-
putable positive reals cpG and TpG such that the condition (11) holds true.
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Application to electrical motors

Figure: First components of the estimate vectors Θ̂[1] and Θ̂[2], both of them converging to the first
component ofΘ, namelyΨe (SI units).

Figure: Second components of the estimate vectors Θ̂[1] and Θ̂[2], both of them converging to the
second component ofΘ, namely ωTL (SI units).
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Extension to periodic parameters

Learning-based design of estimators

Design

Θ̂[i](t) = Θ̂[i](t, α) + ϕiỹi(t)− ηi(t) (12)

where: α is the vector [α1, . . . , αm]
T; ηi(t) is the same vector in (8);

Θ̂[i](t, α) = [θ̂
[i]
1 (t− α1), . . . , θ̂

[i]
m (t− αm)]

T,

leading to  Θ̃[1](t)
. . .

Θ̃[p](t)

 =

 Θ̃[1](t, α)
. . .

Θ̃[p](t, α)

− (Λ + T)

 Θ̃[1](t)
. . .

Θ̃[p](t)


where

Θ̃[i](t, α) = [θ̃
[i]
1 (t− α1), . . . , θ̃

[i]
m (t− αm)]

T.
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Illustrative example (continued)

Figure: Two drones with shared information: θ̂[i]1 (t), i = 1, 2, converging to θ1(t) (time in seconds).

Figure: Two drones with shared information: θ̂[i]2 (t), i = 1, 2, converging to θ2(t) (time in seconds).

13/14



Questions?


