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Preliminary results — under review.
Proofs and derivations are included in the Master’'s Thesis

Motivation and context

The 1D Laplace eigenvalue problem (Dirichlet/Neumann/Mixed) is a classical benchmark for
spline Galerkin methods. Conventional spline spaces may produce spurious outliers in the discrete
spectrum, affecting accuracy and stability. Outliers-free optimal spline spaces S, ;, introduced in
recent literature, remove this effect.

Kolmogorov n-width and optimal spaces

Let (X, || - ||) be a normed space, A C X, and let X, C X be an n-dimensional subspace. The
distance of A from X, is

E(A, X,) :=sup inf ||u—v|.

ucA VEXy
The Kolmogorov n-width of A relative to X is

d,(A) ;= i)rgf E(A X,).
A subspace X, is said to be optimal for A if
d,(A) = E(A, X,).

In the context of isogeometric analysis, taking A as the range of a compact self-adjoint integral
operator associated with the Laplace problem, the optimal subspaces S, ; realizing d,(A) are the
optimal spline spaces. These spaces, first introduced for approximation-theoretic reasons,
were later found to produce outliers-free discretizations of eigenvalue problems.

What was known and what is new

Known: Optimal spline spaces S, ; and their canonical bases E/ (Manni-Sande-Speleers, 2022
and E.Di Vona, 2019) were already known to be outliers-free.

New (this thesis): The property of being outliers-free is shown to be intrinsic to the space.
For any admissible basis B of S, ; satisfying the natural constraints,
[MB,KB]:O —> B:QE,-'D, QEO(H)

Thus, the outliers-free condition does not depend on the specific basis, but on the space itself.

Explicit optimal spline spaces and knots

For degree p € N and dimension n, the uniform partitions 7, ; reflect the boundary conditions:
Dirichlet-type (even derivatives zero):

Spo=15€ Spr,,: 0%s(0) =0%(1) =0, 0<a <p, aeveny,

1 n
_ (O’—n—|—1""’—n—|—1’1)7 p odd,
Pl = 1/2 3/2 n+1/2
(0, 2%, 44, "> 1), peven.

Neumann-type (odd derivatives zero):
Sp1=1s€ Spr,, 1 0%s(0) =0%s(1) =0, 0<a<p, aodd},
(0,232 "2 1) p odd,

' n ' n?

(0,12, ..., m11) p even.

Mixed (even at x=0, odd at x=1):
Sep=1s€ S5, 07(0) =0, 9"s(1) =0, 0 <, a1 < p, g even,a; odd},

Tpl =

2 4 2n
S (O’2n+1’2n+1""72n+171)7 p odd,
P2 1 3 2n—1
(0, 312 20417+ 1 20710 1), P @ven.

Thm. 3.1.10 (S,0), Thm. 3.2.11 (S,;1), Thm. 3.3.10 (S5,>)
If a basis B of S, ; satisfies the natural constraints (locality, normalization, partition of unity,

etc.) and [Mp, Kg] = 0, then
B=QEP with Q € O(n).

Hence, the commutator condition [Mp, Kg] = 0 characterizes all outliers-free bases of S, ;.

Unified proof sketch

Let B = Rg E be any basis of 5p.i and define W := R;RB. Then
Mg = RgMerRg, Kg = ReKerRg.

The commutator condition becomes

ME,-p WKE,P — KE,P WME,p — O (*)

Because Mgr and Kpgr are simultaneously diagonalizable by an orthogonal U, (x) implies W must
be diagonal in that basis. Thus W = c/. The normalization constraint forces ¢ = 1, hence

Rg € O(n) and B = Q E/.

Interpretation: the commutator and natural constraints completely determine the structure of
admissible bases.

Spectral meaning: no outliers

When [M, K] = 0, M and K share orthogonal eigenvectors:

U'MU = Ay, U'KU = Ak,
yielding
)\_ L (AK)././
p= .
(/\/\/l)jj

The generalized eigenproblem decouples, producing exactly the expected spectrum without
spurious outliers.

Concept map (spaces, bases, commutator, characterization)

{Optimal spline spaces S ,,-J

(Kolmogorov n-width)

/

Canonical bases E”

(from literature)

- J

joint diagonalization = outliers-free

{ [ME,P7 KE,P] =0 J

Intrinsic characterization
If [Mg, Kg] = 0 and constraints hold = B = Q E/

Implications and outlook

» Qutliers-free spectra are an intrinsic feature of optimal spline spaces.
» Uniqueness (up to orthogonal change) of admissible discrete bases.
» Foundations for higher-dimensional generalizations and polyharmonic operators.
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