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Bernoulli, Ramanujan, Toeplitz e le matrici triangolari
Carmine Di Fiore, Francesco Tudisco, Paolo Zellini

Speaker: Carmine Di Fiore
By using one of the definitions of the Bernoulli numbers, we observe that they solve particular
odd and even lower triangular Toeplitz (1.t.T.) systems.

In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli
numbers; we observe that such system is equivalent to a sparse 1.t.T. system.

The attempt to obtain the sparse 1.t.T. Ramanujan system from the 1.t.T. odd and even
systems, leads us to study efficient methods for solving generic 1.t.T. systems.



Bernoulli numbers are the rational numbers satisfying the following identity

SR
So, they satisfy the following linear equations
_;j+[§ (2]2)32’“(0):0’ =2,3.4,...,
k=0
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In other words, the Bernoulli numbers can be obtained by solving (by forward substitution) a lower triangular
linear system (one of the above two). For example, by forward solving the first system, I have obtained the
first Bernoulli numbers:

1 1 1 1 5
By(0) =1, B2(0) = =, B4(0) = ——, Bg(0) = —, Bs(0) = ——, B1o(0) = —,
691 6 7 30 42 47021 30 66
B =-———. B =-—-=~1.16, B =~ 7.
12(0) 5730 14(0) 5 6, Bis(0) 5630 7.09,

Bernoulli numbers appear in the Euler-Maclaurin summation formula, and, in particular, in the expression of
the error of the trapezoidal quadrature rule as sum of even powers of the integration step h (the expression
that justifies the efficiency of the Romberg-Trapezoidal quadrature method).

Bernoulli numbers are also often involved when studying the Riemann-Zeta function. For example, well
known is the following Euler formula:

47| By, (0)|x*"

2emi "€ 1,2,3,...

+oo 1
(s)=D_ 750 <(2n)
k=1

(see also [Riemann’s Zeta Function, H. M. Edwards, 1974]).
The Ramanujan’s paper we refer in the following is entitled “Some properties of Bernoulli’s numbers” (1911).



The coefficient matrices of the previous two lower triangular linear systems are submatrices of the matrix X

displayed here below:

AL
0
1 1
0 1
2 2 2 [ 1
0 1 2 1 1
3 3 3 3 1 2 1
X = 0 1 2 3 1 3 3 1
4 4 4 4 4 1 4 6 4 1
0 1 2 3 4 1 5 10 10 5
5 5 5 5 5 5 - - . . .
0 1 2 3 4 5
6 6 6 6 6 6 6
0 1 2 3 4 5 6
One can easily observe that X can be rewritten as a power series:
0
N 10
X1 . 2 0
X_kz—o GV Y= 3 0
B 4 0
Proof: [X]--—#[Yi_j]--—#'---(i—2)(i—1)— o=l 1<j<i<n
B A ORI I -1
This remark is the starting point in order to show that
r(2
0
2 4 4
12 too . 0 2
30 — " = 6 6 6
56 ;;)(2k+2)!¢ 0 2 1
8 8 8 8
0 2 4 6
-1 ,
0
1 3 3
3 +oo . 0 2
5 — ¢k = 5 5 5
7 kzzo(ﬂf-l-l)!d) 0 2 4
7 7 7
0 2 4
0
2 0
12 0 f— . f— . fr— .
where ¢ = 30 0 ,2=1-2,12=3-4,30=5-6, ....
56 0




It follows that the linear systems solved by the Bernoulli numbers, can be rewritten as follows, in terms of

the matrix ¢:

1/2 1/2
goggg 2/12 1/6
= R g 3/30 1/10 .
D 2———=ob | Bu(0) | =2 =2 = q",
= (2k +2)! Bo(0) 4/56 1/14
- ° 5/90 1/18
1/1 1
n mo | e || e
Z 1 ¢k Bz(o) (5/2)/5 1/2 _. qo
e CLRR A (7/2))7 12 | 74
- 3 (9/2)/9 1/2
Now we transform ¢ into a Toeplitz matrix. We have that
0 _
dr 2 0 dy ' 1
dz 12 0 dz
D¢D™" = ds 30 0 dy!
da 56 0
. } .
24 0 10
1242 0 10
_ d _ _
- T o30s o =%z, Z= 10
d
5658 0 Lo
$k71d1
iff dy, = k=1,2,3,..., iff
1 k (2k — 2)'7 y &y Jy , 1
- ;
D=d,D,, D, = &
mnfl
(2n—2)!

(almosteven)

(almostodd)

We are ready to introduce the two even and odd lower triangular Toeplitz (1.t.T.) systems solved by the

Bernoulli numbers. Set

By(0)
Bs(0

_ )
b= By4(0)

where the Bs;(0),7=0,1,2,..., are the Bernoulli numbers.



Then the (almosteven) system Zk o (2k+2), #*b = q° is equivalent to the system Zk o 2735 (2k+2), (D¢ D;1)*(D,b) =
D,q°, i.e. to the following 1.t.T. even system:

+oo xk
kz QWZk (Dmb) = que (eVen)
=0

Idem, the (almostodd) system >0 mgﬁkb = q° is equivalent to the system > ;0 M(DIqSD;l)k(DIb) =
D,q° i.e. to the following 1.t.T. odd system:

+o00 k

kzzo mzk (Dyb) = Dpq°. (odd)

So, Bernoulli numbers can be computed by using a l.t.T. linear system solver. Such solver yields the following
vector z:

1-Bo(0) ]
2; B2 (0)
x—B4(O)

7 = ow = (26)1826 (O) )

(2n 2)!BQn 2(0)

from which one obtains the vector of the first n Bernoulli numbers:

{b}, = {D;lz}n.

Why « positive different from 1 may be useful?
A suitable choice of x can make possible and more stable the computation via a 1.t.T. solver of the entries z;
of z for very large 4. In fact, since

i i 2i

T Y~ A /2 = S
le( ) ( 1) p’L7 pl_ (27,)'4\/%(#63)22, pi - 471'27

T

(20)!

we have that \%321(0)\ — 0 (+00) if z < 4% (z > 47?), both bad situations. Instead, for x ~ 47? =

39.47.. the sequence |(§7Z)IB%(O)|, 1=0,1,2,..., should be lower and upper bounded.

|(4), 4(0)] < 1iff 2] < 26.84
I(8 Bs(0)] < 1iff 2] < 33.2

|(16)' 16(0)] < 1iff |z| < 36.2
|(32)' 32(0)] < 1 about iff mw < T3 (i 5%4(29 iff || < 37.82

(28)! (mwe)*®
|(25), s(0)] <1 about iff |55 N (ﬂe)25| < 1iff |z < 322 (4\/%

More generally, the parameter x should be used to make more stable the 1.t.T. solver.



Ramanujan in a paper states that the Bernoulli numbers Bs(0), B4(0), Bg(0), ..., satisfy the following lower
triangular sparse system of linear equations:

1 B(0) 1/6
0 1 B4(0) ~1/30
0 0 1 Bs(0) 1/42
£ 0 0 1 Bg(0) 1/45
0 2 0 0 1 B1o(0) —1/132
0 0 11 0 0 1 Bi2(0) | | 4/455
0 0 ¥ 0 o0 1 Bus(0) | — | 1/120
04 0 0 25 90 0 1 Bi6(0) —1/306
0 0 2 0 0 221 0 0 1 Bis(0) 3/665
i 0 o0 18 o o0 20 0 01 Ba(0) 1/231
0 4 o0 0 T 9 0 32 0 0 1 B»(0) —1/552

(actually, since Ramanujan-Bernoulli numbers are the moduli of ours, his equations, obtained by an analytical
proof, are a bit different).

So, for example, from the above equations I have easily computed the Bernoulli numbers B15(0), B2o(0), B22(0)
(from the ones already computed):

43867 174611 854513
Blg(o> = W ~ 5497, BQQ(O) = — 330 ~ —529.12, BQQ(O) = 138

~ 6192.12.

Problem.

Is it possible to obtain such Ramanujan lower triangular sparse system of equations from our odd and even
1.t. T. linear systems ¢ Is it possible to obtain other sparse equations (hopefully more sparse than Ramanujan
ones) defining the Bernoulli numbers ?

Note that the Ramanujan matrix, say R, has nonzero entries exactly in the places where the following Toeplitz
matrix

. 0
ZOO 3k 110
Pt ’Yk (Z ) ) Z - 1 0

has nonzero entries. But R it is not a Toeplitz matrix !
... break for some months ...

Note that the vector of the indeterminates in the Ramanujan system is Z7 times our vector b:

Bs(0) 0 1 By(0)
Ba(0) | _ 0 1 By(0) | _
= 0 . B (0) =Z"b.

So, the Ramanujan system can be rewritten as follows

R(Z™b)=f, f=[fif2fs-]".



Remark
The Ramanujan matrix R satisfies the following identity involving a sparse lower triangular Toeplitz matrix
R:

+oo 3s
4 = ~ ~ 2x 3
x = x = Z S.
R & 6 R, R Z (6s+2)!1(25s+ 1)

3 3
z z 5=0

2! [z T
"y 2! 2
R SRR a4 ZTb =f iff
a? )
2 - Z
£ 4! 2 z2
=g R R ZTb=f iff
z3 )
IR [ B>(0) a fi
R % 3 B4(0) - % 3 f2
z Bg(0) & I3
So, the Ramanujan system is is equivalent to the following sparse I.t.T. system:
2 bil
. z? fo
R(ZTD,b) = T, . where
Gr f3
S - S
0 1 0
0 0 1 0
e 0 0 1 &’
0 T 0 0 1 0
S 0 0 Zad 0 0 1 R _ 0
B=L@)=1 2.6 0 24 0 0 1 AT 2.8
0 2=’ 0 0 &t 0 0 1 0
0 0 28 0 0 2 23 0 0 1 0
2 9 1419 2 6 83 2 .3 2 9
mx 20 0 0 ml’ 20 . 0 mf 20 5 0 1 20!7$
0 5222 0 0 225 0 0 Z2° 0 0 1 0
ago ao
Note the new notation : a= | °! = L(a)= @ o
as az a1 a2



THEOREM

Notations: Z is the lower shift matrix

i)
i)

L(a) is the lower triangular Toeplitz matrix with first column a, i.e.

ag
ao
a +oo ) ay Qo
a= a | L(a):ZaiZ: as ap ap ,
. 1=0 az a2 ai; Qo
d(z) is the diagonal matrix with z; as diagonal entries.
Set
By(0) ‘
_ | B2(0) — dine( T i
b= Bi0) | Dx—dlag(@ﬂ—o,l,&...),mER,
where By;(0), i =0,1,2,..., are the Bernoulli numbers.

Then the vectors D,b and ZT Db solve the following L.t.T. linear systems
L(a) (D;b) = D,;q.  L(a) (27 Dyb) = d(z) 2" D,q,

where the vectors a = (a;)1%, q = (¢;);55, and z = (2;);-°7, can assume respectively the values:

22 1 .
a; :5i=0m0d3m’ Q?:m(l—fsi:zmod?,g)’ 1=0,1,2,3,...
zﬁ=1—5i20m0d3%,i:1,2,3,...,
. 27" . 1 ,
ai:m, ?i:m,z:0,1,2,3,...
= i=1,23,...,
1+ 1
o ! ‘ 0 o 1 .
ai:m,Z:O,l,Q,&...,qO:l, qi:5,1:1,2,3,...
Lo2i—1
W= = L2



Problem (regarding the computation of the Bernoulli numbers).

Can the Ramanujan I.t.T. sparse system
L(a®)D,b = D,q",
be obtained as a consequence of the even and odd I.t.T. system
L(a®)D;b = D.q°, L(a°)D,b=D,q° ?

— find 4%, 4° such that L(a®)L(a®) = L(alV) = L(a%)L(a%),
i.e. such that L(a®)a® =aV = L(a®)a°,

O =

with a® =aff = | 0 or a(® more sparse than a’t.

Important: the computation of such vectors a¢, a° and al*) should be cheaper than solving the original even
and odd (dense) systems.

A more general problem: is it possible to transform efficiently a generic I.t.T. matriz into a more sparse I.t.T.
matriz ?

— Question: given a;, i = 1,2,3,..., is it possible to obtain “cheaply” a; and al(-l) such that
1 1 1
al 1 dl 0
as al 1 dg = agl) ;
as az a1 1 as 0
M1 17 1 7 1
al 1 dl 0
az a1 1 a2 0
as az ail 1 &3 = a<11) ;
as as a2 ai 1 Q4 0
as Qa4 as a2 al 1 d5 0
M1 17 1 7 [1 7
ar 1 ax 0
az al 1 &2 agl)
a3 a2 ai 1 as = 0 =7, 0€ Rb_l ?
as a3 a2 ap 1 G4 agl)
as a4 as a2 al 1 &5 0

If the answer is yes, then a dense 1.t.T system can be transformed efficiently into a sparse 1.t.T. system:

La)z=c iff L(a)L(a)z= L(a)c iff L(y)z= L(a)c.



DEFINITIONS:

1 1
a=| " |e Ct*®, L(a) = a1 ,
as as ap 1
1 0 0 1 0 0
0 0 O 0 0 O
0 1 0 s _| 0 1 0 .
E= 00O . ) O_Ob—17 E° = 0 0 O . ) O_Obs—la
0 0 1 0 0 0 1 0
1 [ 1
1] 0 0o I
_ Ul _ (5% o _ U1 OT 1 _
u= ws | Fu = o | 0=0,_1, L(Eu)= 0 wl 0 I , 0=0,_1.
-] Uo us 0T wy 07 1
[ 1 1
LEMMA: If u=| “* |, v=| " |, then
U2 (%)

L(Euw)Ev = EL(u)L(v), L(E°u)E°v=FE°L(u)v, VseN.

1 1 1
aq dl a(l)
PROBLEM: Given a = ,find a=| . and a(t) = (2 | such that
az az as
1
0
Laa=Fa" = | ¢ |, 0=0,_1, L(a)L(a) = L(Ea")

Questions:

Is it possible to obtain “cheaply” a; and agl) ?
(1) o

i

There exist explicit formulas for the a; and a

At the moment, let us see in detail, with two examples, how
the solutions of the above Problem can lead to efficient methods for solving generic [.t.T. linear systems.

10



EXAMPLE: n =8 (n=0b"b=2 k=3)
F 17 M1 ] M1
al al 1 0
a2 a2 a1 1 1
as as a2 ai 1 0
a=a®=|as |, L@)=| aa a3 a2 ar 1 , BE= 1
as as a4 a3 az a; 1 0
ae ae as a4 as a2 al 1 1
ar ar as as a4 a3 G2 Q1 0
step 1: From a = a(® find a = a(® such that
1 1] (1]
ai 1 dl 0
as ai 1 &2 agl)
a3z a2 a1 1 as 0
La)a=| as a3 a2 a1 1 G4 | = Ea® = aél) ,
as Q4 as a2 al 1 &5 0
ae as Qa4 as az al 1 d6 aél)
ar ae as a4 as az al 1 d7 0
L(a)L(a) = L(EaM); ) i
step 2: From a™ find 4V such that
- Tr 1T
1 0
a(ll) 1 A(ll)
agl) 1 0
L(EaW)Ea® = a(21) agl) 1 [1(21) = E%a® =
as" af” 1 0
o) o) o) ! a0
aél) aél) a(ll) 1 0
L(EaMW)L(EaW) = L(E*a®);
step 3 = log, 8: From a® find 4 such that
S Trog - )
1 0
1 0
1 0
L(EQa(Q))EQ:&(Q) _ a52> 1 dgz) —. 32 —
a52) 1 0
a:(l2) 1 0
a§2) 1 0
L(E*a®)L(E%a®) = L(E%a®). '
24\ (Ba) L (3 3.0y | I8 O
= L(E*a®)L(FaV)L(a)[ L(a) | = L(E*a®)) = . ,

so, one realizes that we have performed a kind of Gaussian elimination.

11
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How many arithmetic operations (a.o.) ?

Actually, given a; = af;o), i=1,...,7, we have to compute
[ 1 17 17 1
a1 1 dl ?1)
ay ap 1 as aq
as ag aip 1 &3 0
L (0) (1) 1 ~ — (1)
a; =a; ', a; | as a3 az ai ay | = | ay , g a.0.,
as a4 az az a; 1 as 0
ag a5 a4 Qa3 a2 Q1 1 dﬁ agl)
ary Qg a5 Qa4 az ag Q1 1 &7 0
1 [ 1 1
a1 alt 0
(1 2 1 1 (1 2
a, o? | aV a1 a | =1 a? |, ¢aao,
aél) aél) agl) 1 Agl) 0
1 0 T 1
. (2 .
ag ) | a§2) 1 52) =10 |, 2 a.0.
The general case: n = 2F
Given a; = ago), i=1,...,n—1=2F -1, we have to compute
i 1 1T 1 1 (1)
agf) 1_ &57) QU+
. agj) a(lj) 1 dgj) 10
dgj), aZ(JJrl) . . . 1 . = ) ; $pm a0,
(4) (") (4) (") a1V
a / ! a'l Ean
a2] 1 ay ay G/E 1 27 0

j=01,....k—2k—1 (j=k—1: only a?)

Total cost: Z;:é pu < ?

Remark. Note that, at step j, the a§j+1) are the 57+ nonzero entries of a matrix 2+ x £ (2877 x 2~7J)

1.t.T. by vector product. So, if we assume such matrix by vector product computable in at most ¢2¥~7(k — )
a.0., for some constant ¢, then

k-1 k-2 k-1
pn < CZ 28I (k — 4) + Z CostCompOf(&l(»J) )
=0 =0 =0
k-1 ‘ "
< O(2K) +Zcostcomp0f(a§3>, i=1 5 1) — 9
=0

12



Computing the first column of L(a)™!

Let v = [vg vy vg-]T

(n=2%=38)

be any vector. From the identity

L(E%®)L(FaV)L(a)[ L(a)] = L(E*a®) = [ o }

and from the Lemma, it follows that

L(a)z = E?v iff
L(E?a®)z

= L) L(EaM)L(E?a®)E?v
= L@A)L(EaME?L(a?)v

L(Z)EL( aEL(a?)v.

So, the system L(a)z = E?v is equivalent to the system

Thus the vector

<0
21
22
<3
Z4
z5
26
27

is such that

1
a1
as
as
Q4
as
ae
ar

a1
az
aq
as
ae

Ig

= {z}s = {L(é)}s{E}s{L(A

az
as
a4

)}S{E}s{L(A N}s{v}s

= {L(@)}s{F}sa{L@"V)}a{E}ao{L(@?)}2{v}o.

1
0
1 1
al? o1
1 1 dgl) Agl) 1
C:ll Al 0 dgl) dél) dgl) 1
az ai 1 1
as s a1 | | 0
1 1T 20 ] [ Vo i
a; 1 21 0
ag aq 1 Z9 0
az az Qi 1 z3 . 0
ay az a2 ai 1 zZ4 - U1
as a4 a3 a2 aj 1 zZ5 0
ag as ag4 az az a; 1 26 0
ar ag a5 ag az ax ap 1 | [ 27 | | 0 ]

How many arithmetic operations (a.0.) ?

Case n = 2F

It is clear that the above procedure requires the computation of matrix 27 x 27 1.t.T. by vector products,

with j =1,...,

k (the vectors are sparse for j = 2,...,

computable in at most ¢27j a.o., for some constant ¢, then the above procedure requires at most

arithmetic operations.

k
¢y 27§ <O2%)

Jj=1

13

k). So, if we assume such matrix by vector product



EXAMPLE: n =9 (n

1
ai
a2
a3
aq
as
a6
ar
as

a=a"% =

3, k=
1

al 1
a2 ail
as as
a4 as
as a4
ae as
ar ae

a2
as
a4

step 1: From a = a(® find a4 = a(® such that

L(a)L(a) = L(Ea');

1
ai
asz
as
a4
as
ag
ar
as

1
ai
a2
as
a4
as
ag
ar

1
ai
az
as
a4
as
ae

1
ai
az
as
Q4
as

ai
a2
as
G4

step 2 = log3 9: From a(!) find a(!) such that

L(EaM)Ea® =

L(Ba®)L(EAM) = L(

a2
as
[e2]

ai
az
as

1
al 1
a ail
as a
1
al 1
a2 al
1
(1)

ai

=: Fa® =

EOO)—‘
1

s}

j=33

o ovoo o

= LE)LE L) = ) = [ ),

so, one realizes that we have performed a kind of Gaussian elimination.

14
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0
0
1
0
0
-1
0
0
al
0
0
ol
0
0
=: E2a® =

OO OO OO OO




How many arithmetic operations (a.o.) ?

Actually, given a; = af;o), i=1,...,8, we have to compute
o - A1 SRR
a
aq 1 &1 0
a2 Qi 1 d2 01
as az ap 1 &i (Zg
a = a9 M | as az az ap 1 as | = 0 o a0
’ v as a4 az az ay 1 e 0 ’ o
ag as a4 as as a; 1 i a(21
ay Qg a5 Qa4 Qa3 az Qi1 1 a 0
ag ay Qg a5 a4 a3 az Qi 1 d; 0
1 1 1
(1) (1)
& | a; 1 a; _ |0 a0
i G N O | PO 0 ¥3 a.0..
2 1 2
The general case: n = 3F
Given a; = ago), i=1,...,n—1=3F—1, we have to compute
_ 1 i
0
i 1 ) 1 0
HONESY & oI+
v . aé]) a(lj) 1 dé]) 0
dg])7 az(_ﬁ—l) . 1 = 0 R (‘Dﬁ a.o.,
(4) (4) (3) ~(7) (G+1)
a%_l as ay 1 a%_1 CLSJ%I 1
- - 0
n n - . -
— X —
37 37
j=01,....k—2k—1 (j=k—1: only a?)

Total cost: Z;:S pu <7

Remark. Note that, at step j, the a§j+1) are the 57%r nonzero entries of a matrix 3= x - (3F=7 x 3k=7)
1.t.T. by vector product. So, if we assume such matrix by vector product computable in at most ¢ 3%~7 (k — )

a.o., for some constant ¢, then

k-1 k—2 k-1
pn < CZ 379k — 4) + Z CostCompOf (4 )
=0 =0 =0
k-1 ‘ .
< O(3k) +Zcostcomp0f(a§”, P= Lo 1) — 7
=0

15



Computing the first column of L(a)~! (case n = 3% = 9):

Let v = [vgv1 v2-]T be any vector. From the identity
NONIE — L(R2a@ = | o O
L(EaV)L(a)[L(a)] = L(E*a®) = | 77

and from the Lemma, it follows that

L(a)z = Ev iff
L(E?a®)z = L(a)L(EaV)Ev
= L@A)ELEM)v.

So, the system L(a)z = Ev is equivalent to the system
{ o O ] { e } = L(E*a®)z = L(&)BL@QW)v

= {z}o = {L(a)}o{ E}o{L(@M)}o{v}e
={L(a)}o{E}o3{L(aW)}s{v}s.

Thus the vector

[ 20 ] [ 1 1T 1 i
zZ1 d1 1 O
22 az a1 1 0
23 as as a1 1 1 1 Vo
2o | =] a4 as Gz a1 1 0 [ a1 ] [ vy ]
zs as G4 asz G2 a1 1 0 aVoalh o1 U2
Z6 de ds d4 dg &2 &1 1 1
z7 d7 da &5 Q4 dg as ax 1 0
L %8 | L &8 d7 dg &5 fL4 ng dz &1 1 1 L 0 |
is such that ~ o _ ~ _
1 20 Vo
aq 1 21 0
az aq 1 V) 0
az az aj 1 zZ3 U1
ay a3z a2 ap 1 zZ4 = 0
as a4 a3z a2 ai 1 Z5 0
ag a5 a4 a3 a2 ai 1 Z6 V2
a7 ag as a4 a3 az ap 1 27 0
L ag a7 Qg Qa5 A4 a3z a2 Qi 1 1L z8 i L 0 i

How many arithmetic operations (a.0.) ?

Case n = 3F

It is clear that the above procedure requires the computation of matrix 3/ x 3/ 1.t.T. by vector products,
with j = 1,...,k (the vectors are sparse for j = 2,...,k). So, if we assume such matrix by vector product
computable in at most ¢37j a.o., for some constant ¢, then the above procedure requires at most

k
¢y 375 <O0(3")

j=1

arithmetic operations.

For the general case n = b* see the Appendix.

16



— PROBLEM

Answer to the quotation marks in the following equality:

ai
az
L(a)a= | a3
a4
as

- There is not a unique answer to the ?.

ai
az
as
a4

az
as

ai
az

ai

B IS IERCERECERC IS

0O N O O

=Ea", E= 1

- There exists an answer that allows to obtain from the even and odd systems, a system solved by Bernoulli
numbers where in the coefficient matrix null diagonals alternate with the non null ones. Find it ...
- If there exists an answer such that the first 27 entries of a can be computed in at most O(275) arithmetic

operations, for all j < k, then we have an algorithm of complexity O(2Fk) for solving generic 2F
triangular Toeplitz systems.

x 28 lower

Here below is an answer such that the first 2 entries of & can be computed with zero arithmetic operations:

a
a2
L(a)a= | as
ay
as

ay
a2
asz
Gy

ai
a2
as

ay
az

61+Z

ay

)'aieit1 —el—i—Z(SZ omoda( 2al+z

—a;
ag

a4
—as

i=1

17

—ag =
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— PROBLEM

Answer to the quotation marks in the following equality:

1 -1 _
- - - - 0 0
1 1 0 0
al 1 7 ? 1
a2 al 1 ? O
Laa=| as a2 a1 1 71l =]10]|= Eam, FE = 8
a4 as az al 1 ? ? 1
as a4 az a2 a1 1 ? 0 0
i I 0 0

- There is not a unique answer to the ?.

- There exists an answer that allows to obtain the Ramanujan system solved by Bernoulli numbers as a
consequence of the odd (even) system. Find it ...

- If there exists an answer such that the first 37 entries of & can be computed in at most O(375) arithmetic
operations, for all j < k, then we have an algorithm of complexity O(3%k) for solving generic 3¥ x 3% lower
triangular Toeplitz systems.

Here below is an answer:

- _
ay 1
a2 al 1

as az ay 1

aq as az ai 1

as ag a3 as ai 1

L(a)a= ag as as a3 a2 ai 1

a7 ag as a4 a3z a2 ai 1

asg ay ag a5 a4 a3 as ay 1

ag ag a7y ag as a4 a3z a2 ai 1

ailg a9 ag ay ag as a4 a3 a2 a 1
a1 aip a9 asg ay ag as a4 az az ap 1

- 1 - 1
—a1 0
—az + a? ?1)
2a3 — ajasz ay
—as — araz + a3 0
—as + 2a1a4 — aza3 0
2a¢ — a1as — asaq + a% = a;D = Ea®),
—a7 — aiag + 2a2a5 — azaq 0
—ag + 2a1a7 — asas — azas + a3 0
2a9 — ajag — aga7 + 2a3a — a4as5 aél)
—a10 — a1a9 + 2az2as — azay — asae + a§ 0
—a11 + 2a1a10 — azag — azag + 2a4a7 — asae 0
1 1
ag ) = 3as — 3aias + a3, a(2 ) = 3as — 3aras — 3azas + 3a3 — 3a1azas + 3aias + a3?,
1
aé ) — 3ag — 3ai1as — 3aza7 + 6asas — 3a1a20a6 — 3a1asas — 3aza3a4 + 3afa7 + 3a1ai — 3agqas + 3a5a§ + ag, ..
145 30 .
3—i Ai—3 ai+3 7 odd
N 2 s>3—t Biz3 13,0143 _ 3, .
a; = — E ar@i—r +6,_gmod @i +3 oo & 2 . , 1=0,1,2,3,4,5,....
=~ 3 Zsz% Aiz6 g, Qite_g, 1 even
Can such a;, 1 =0,1,...,3? — 1, be computed in at most O(3’j) arithmetic operations ? —
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M1
0
al 0
3
a2 0
3a1| O
as 3
3as 0
aq 3ai1| O
3as 3
as 3as 0
3ay 3a1 0
ag 3as 3
3as 3ag 0
( ay 3aq 3a1 0
3ag 3as 3
asg 3as 3as 0
3ar 3aq 3a1 0
ag 3ag 3as
3ag 3as 3az 0
aio 3ar 3aq 3ai| O
3ag 3ag 3as 3
ail 3asg 3as 3as 0
3a1g 3ar 3ay 3ar1| O
a12 3ag 3ae 3as
3a11 3asg 3as 3az2 0
a3 3a1o 3ar 3ay 3a1
r T 1
1 al
1 as
al 1 as
al 1 a4
a2 | ay 1 as
as | a1 1 ag
a3z | a2 | a1 1 a7
a3z | a2 | a1 1 as
aqg | a3 | az | a1 1 ag
aq4 | az | a2 | a1 1 alo
as | a4 | a3 | a2 | a1 1 al
as | aq | a3z | a2 | a1 1 a2
ag | as | aqa | a3 | a2 ay 1 a3
as | as | aq | a3 a2 a1 1 aiq
a7 | ag | a5 | aq as as ai 1 ais
a7 | ag | as a4 as az ay 1 ale
ag | a7 | ag as a4 as a2 ay 1 a7
ag | ar ag as a4 as a2 | ai 1 als
ag | asg ay ag as aq az | a2 | a1 1 aig
ag asg ar ag as aq | a3 | a2 | a1 1 a20
aio | a9 ag a7 | ag as |aq | a3z |a2 | a1 | 1 a21
aip | ag asg ar | ag | a5 |aq | a3 | a2 |a1 | 1 a2
a1 | aijo | ag as ar |as | a5 | as | a3 | az | a1 | 1 a3
ail | aio | ag ag | a7 | ag | a5 | as | a3 | a2 | a1 | 1 az4
ai2 | a1l | aio | a9 |ag | ar |as | as | a4 | a3 | a2 | a1 1 azs
ai2 | a1l | aip | ag | ag | ar | ag | as | a4 | a3z | az | ai a6

— Can the above 37 x 39 (27 x 27) matrix by vector product be computed in at most O(375) arithmetic

operations 7

If yes, then we would have a method which solves 3% x 3 lower triangular Toeplitz linear systems in at most
O(3%k) arithmetic operations.

If no, then look for another solution & of the system L(a)a = [100 e 00-]7 such that {é}:y is computable
from {a}Sj in at most O(374) arithmetic operations ...

THE END
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APPENDIX Introduce low complexity 1.t.T. linear system solvers:

1
L(a) = a1 1 , a®:=a

Find 4, a® such that

L(@®)a® =ga® = | 0 |, 0=0,_;, so that

L@ L(a®) = L(EaM).
Find 4V, a® such that

1

L@aY)a® =Fa® =] 0 |, 0=0,_;, so that

1
L(EaW)Fa®M) = E2a® = | 0

; 0=0p2_1,
L(EaW)L(FaM) = L(E?a®).

(use Lemma). Find 4®), a® such that

1

L@a®)a® =Fa® = | 0 |, 0=0,_;, so that

1

L(E?a®)E?a® = E3a®) = | 0 |, 0=04_1,

L(E?a®)L(E?a®) = L(E%a®).
... Find a*=2 a(*=1) guch that

1
L(a(k_Q))é(k_Q) — Ea(k_l) = 0 R 0= Ob*la so that

1

L(Ek—?a(k—2)>Ek—Qé(k—2) — Ek—la(k—l) — 0 , 0= Obkflfl,

L(Ek72a(l€72))L(Ek72é(k72)) _ L(Ekfla(kfl)).
Find a*=Y a®) such that
1

L@®Dat-b = ga® = | 0 |, 0=0,_1, so that

1
0|, 0=04_,

L(Ek—la(k—l))Ek—lé(k—l) _ Eka(k) —

L(EFtat-D)[(EF-1alk=D) = [(E¥a™).
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Then

* = L(E*Fa®)) = L(EFtak-D)L(E*2at-2) ... L(FaM)L(aO)L(a®).
]

This implies that
L@z =c iff L(E*a®)z =L@")L(EaW) ... L(E*2ak=2)L(EF1ak—D)c,

Moreover, if
Vo

U1
c=FEFlv= 0 , 0=0pr-1_1,
V2

where v = (v;)/.5 is any vector (for example v = e;), then by using the Lemma, we obtain the following

result:
L(a®)z = c iff
Ibk O .
(k) z = L(E*a®)z =
aq ] ..
LEAOYEL(@W)E .- EL(a®*~2)EL(a*V)v.

In other words, the vector {z}n, n = bF, such that

Vo
1 0
a 1 U1
{L(a)} {z} - @ {z} = o |,0=0 1,
. 1 ’
QApk _q ai Vb1
L 0 -

(for example {L(a)};l{el}n, vg =1, v; =014 > 1), can be represented as follows

(o, = e} (5} fma) () o) (2] 2] o
RIS C AN I R

% by I =) TRz phoT
FIRST: Compute the first n entries of 4”) and the first 2 entries of al") (cost ¢y ); compute the first 2

{L(é(k—l))} ﬁ{v}b

entries of (V) and the first 7z entries of a® (cost @pr-1); ... compute the first 725 entries of a(*=2) and the

first 7 entries of a*~1) (cost ¢y2); compute the first ;2 entries of &F~1) (cost ;). Total cost of this
. k—1

FIRST operation: 3, E

SECOND: To such cost add Z?Zl cost ((b7 x b1 1.t.T) - (b’ vector)) (the vector is sparse if j = 2,...,k; the
cost for j =1 is zero if v = e1). See also the next page.
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Amount of operations.

In the following n = b* and 0 = 0;_:

FIRST: For j = 0,...,k — 1 compute, by performing 30% arithmetic operations, the vectors Ik a(¥) and
bJ

1Y, al+) e, scalars 6! and agﬁl) such that

%

pit+1
_ 1 -
1 1 0
a(lj_) 1' dgj_) agjﬂ)
I af) | = 0 , j=0,...,k—1
a(i)_l a(]) a(]) 1 &(i)_l a(j_j:l),l
bJ bJ bit1
- 0 -
n n
W W

Z(»k) to be computed).
(@)

)

(note that there is no a
Case b = 2. In this case, since a,”’ = (—1)"0%(-])7 only 7= x = Lt.T. by vector products, j = 0,...,k—2, need

to be computed (the agj 1 are the e nonzero entries of the resulting vectors).

Vo
SECOND: Compute the b x b 1.t.T. by vector product {L(a*=V)} : ,and 77 x £ Lt.T. by
pk—1
Ub—1
vector products of type
1
. 0
(L@}, | o |, j=k—2,...,1,0.
NI 1
n_ n
]
COMMENTS
So, in case b = 2, we have to perform 27 x 27 1.t.T. by vector products, for j = 1,...,k, twice. If we assume

the cost of a 29 x 27 L.t.T. by vector product bounded by ¢2’j (c constant), then the total cost of the above
operations is smaller than O(2%k) = O(nlog,n). As a consequence we have obtained, in particular, a 1.t.T.
linear system solver of complexity O(nlog,n)

Analogously, for b = 3, if we assume both ¢3; and the cost of a 37 x 37 1.t.T. by vector product bounded by
374, then the total cost of the above operations is smaller than O(3%k) = O(nlogsn). ...

But is ¢4 bounded by ¢375 7 ...

For me:

http://www.imsc.res.in/~rao/ramanujan/collectedindex.html
http://mathworld.wolfram.com/BernoulliNumber.html
http://numbers.computation.free.fr/Constants/Miscellaneous/bernoulli.html
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