A lezione si è visto che se $I = \int_a^b f(x) dx$, $I_h = h \left[\frac{f(a)}{2} + \sum_{k=1}^{n-1} f(a+kh) + \frac{f(b)}{2} \right]$, $h = \frac{b-a}{n}$, e f è sufficientemente regolare in [a,b], allora esistono $c_j \in \mathbb{R}$ tali che

$$I = I_h + c_1 h^2 + c_2 h^4 + c_3 h^6 + \dots$$

(per ottenere tale risultato si è utilizzata la formula di Eulero-Mclaurin). Da questo sviluppo di I segue che

$$I = I_{3h} + c_1 3^2 h^2 + c_2 3^4 h^4 + c_3 3^6 h^6 + \dots ,$$

$$3^2 I = 3^2 I_h + 3^2 c_1 h^2 + 3^2 c_2 h^4 + 3^2 c_3 h^6 + \dots ,$$

$$(3^2 - 1)I = 3^2 I_h - I_{3h} + (3^2 - 3^4) c_2 h^4 + (3^2 - 3^6) c_3 h^6 + \dots ,$$

$$I = \frac{3^2 I_h - I_{3h}}{3^2 - 1} + \tilde{c}_2 h^4 + \tilde{c}_3 h^6 + \dots .$$

Ovvero, il numero $\tilde{I}_h = \frac{3^2 I_h - I_{3h}}{3^2 - 1}$, definito in termini di due approssimazioni di I di ordine $O(h^2),$ è una approssimazione di I di ordine $O(h^4).$ Ad esempio, se $f(x)=\frac{1}{x},\,a=1,\,b=2,$ si ha

$$I = \int_{1}^{2} \frac{1}{x} dx = \log_{e} 2, \ I_{\frac{1}{n}} = \frac{1}{n} \left[\frac{1}{2} + \sum_{k=1}^{n-1} \frac{1}{1 + k \frac{1}{n}} + \frac{1}{4} \right], \ h = \frac{1}{n}.$$

In particolare $I_1 = 1 \cdot \left[\frac{1}{2} + \frac{1}{4}\right] = \left(\frac{3}{4}\right), I_{\frac{1}{3}} = \frac{1}{3}\left[\frac{1}{2} + \sum_{k=1}^{2} \frac{1}{1+k\frac{1}{4}} + \frac{1}{4}\right] = \frac{1}{3}\left[\left(\frac{3}{4}\right) + \frac{3}{4} + \frac{3}{5}\right] = \frac{1}{3}\left[\left(\frac{3}{4}\right) + \frac{3}{4}\right] = \frac{1}{3$

Usando I_1 e $I_{\frac{1}{3}}$, approssimazioni di I di ordine $O(h^2)$, si può definire $\tilde{I}_{\frac{1}{3}}$, approssimazione di I di ordine $O(h^4)$:

$$\tilde{I}_{\frac{1}{3}} = \frac{3^2 I_{\frac{1}{3}} - I_1}{3^2 - 1} = \frac{111}{160}.$$

Si nota che $\frac{111}{160}=0.69375$ approssima $\log_e 2=0.69314718..$ molto meglio di $I_{\frac{1}{2}} = 0.7.$

(9)

A lezione si è visto che, data una funzione f sufficientemente regolare in $[n, M], m, n \in \mathbb{N}, m < n$, vale la seguente formula di Eulero-Mclaurin:

$$\sum_{k=m}^{n} f(k) = \frac{1}{2} (f(m) + f(n)) + \int_{m}^{n} f(x) dx + \sum_{j=1}^{k} \frac{B_{2j}(0)}{(2j)!} [f^{(2j-1)}(n) - f^{(2j-1)}(m)] + u_{k+1},$$

dove $u_{k+1} = \frac{1}{(2k+1)!} \int_m^n f^{(2k+1)}(x) \overline{B}_{2k+1}(x) dx$ e $B_n(x)$ =polinomio di Bernoulli di grado n. Inoltre, si è visto che se $f^{(2k+2)}$ non cambia segno in [m,n], allora $|u_{k+1}| \le 2 \frac{|B_{2k+2}(0)|}{(2k+2)!} |f^{(2k+1)}(n) - f^{(2k+1)}(m)|.$

Poiché $\frac{d}{dx}(x^{-1}) = -x^{-2}$, $\frac{d^2}{dx^2}(x^{-1}) = 2x^{-3}$, $\frac{d^3}{dx^3}(x^{-1}) = -6x^{-4}$, ..., $\frac{d^s}{dx^s}(x^{-1}) = (-1)^s(s!)x^{-(s+1)}$, dati $m, n \in \mathbb{N}$, m < n, per la formula di Eulero-Mclaurin applicata per f(x) = 1/x, si ha

$$\sum_{k=m}^{n} \frac{1}{k} = \frac{1}{2} \left(\frac{1}{m} + \frac{1}{n} \right) + \int_{m}^{n} \frac{1}{x} dx + \sum_{j=1}^{k} \frac{B_{2j}(0)}{(2j)!} \left[-(2j-1)!n^{-2j} + (2j-1)!m^{-2j} \right] + u_{k+1}$$
$$= \frac{1}{2m} + \frac{1}{2n} + \log_{e} n - \log_{e} m + \sum_{j=1}^{k} \frac{B_{2j}(0)}{2j} \left[-n^{-2j} + m^{-2j} \right] + u_{k+1},$$

dove

$$|u_{k+1}| \le 2\frac{|B_{2k+2}(0)|}{2k+2}|-n^{-2k-2}+m^{-2k-2}| = \frac{|B_{2k+2}(0)|}{k+1}|-\frac{1}{n^{2k+2}}+\frac{1}{m^{2k+2}}|.$$

Quest'ultima limitazione superiore per $|u_{k+1}|$ è valida perché $\frac{d^s}{dx^s}(x^{-1})$ non cambia segno nell'intervallo [m,n], per ogni s e, in particolare, per s=2k+2.

Nell'uguaglianza di cui sopra, portando il termine $\log_e n$ a primo membro e sommando a entrambi i membri $\sum_{k=1}^{m-1} \frac{1}{k}$, si ottiene l'identità:

$$\sum_{k=1}^{n} \frac{1}{k} - \log_e n = \sum_{k=1}^{m-1} \frac{1}{k} + \frac{1}{2m} + \frac{1}{2n} - \log_e m + \sum_{j=1}^{k} \frac{B_{2j}(0)}{2j} [-n^{-2j} + m^{-2j}] + u_{k+1},$$

che per $n \to +\infty$ diventa

$$\gamma := \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log_e n \right) = \sum_{k=1}^{m-1} \frac{1}{k} + \frac{1}{2m} - \log_e m + \sum_{j=1}^{k} \frac{B_{2j}(0)}{2jm^{2j}} + u_{k+1}(\infty),$$

$$|u_{k+1}(\infty)| \le \frac{|B_{2k+2}(0)|}{k+1} \frac{1}{m^{2k+2}}$$

Per trovare una approssimazione $\hat{\gamma}$ razionale (in \mathbb{Q}) di γ siamo costretti, per la presenza del termine $\log_e m$, a scegliere m=1:

$$\gamma := \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log_e n \right) = \frac{1}{2} + \sum_{j=1}^{k} \frac{B_{2j}(0)}{2j} + u_{k+1}(\infty),$$

$$|u_{k+1}(\infty)| \le \frac{|B_{2k+2}(0)|}{k+1}.$$

Poiché

$$|u_1(\infty)| \le \frac{|B_2(0)|}{1} = \frac{1}{6}, \ |u_2(\infty)| \le \frac{|B_4(0)|}{2} = \frac{1}{60}, \ |u_3(\infty)| \le \frac{|B_6(0)|}{3} = \frac{1}{126}, \ |u_4(\infty)| \le \frac{|B_8(0)|}{4} = \frac{1}{120}$$

l'approssimazione migliore di γ ottenibile scegliendo m=1 è

$$\hat{\gamma} = \frac{1}{2} + \sum_{j=1}^{2} \frac{B_{2j}(0)}{2j} = \frac{1}{2} + \frac{1}{12} - \frac{1}{120} = \frac{23}{40} = 0.575, \ |\hat{\gamma} - \gamma| \le \frac{1}{126}.$$

Se invece la nostra approssimazione di γ può coinvolgere il termine $\log_e 2$, allora possiamo scegliere m=2 ed ottenere approssimazioni molto migliori di γ :

$$\gamma := \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log_e n \right) = 1 + \frac{1}{4} - \log_e 2 + \sum_{j=1}^{k} \frac{B_{2j}(0)}{2j2^{2j}} + u_{k+1}(\infty),$$

$$|u_{k+1}(\infty)| \le \frac{|B_{2k+2}(0)|}{k+1} \frac{1}{2^{2k+2}}.$$

Poiché

$$|u_1(\infty)| \leq \frac{|B_2(0)|}{4} = \frac{1}{24}, \ |u_2(\infty)| \leq \frac{|B_4(0)|}{32} = \frac{1}{960}, \ |u_3(\infty)| \leq \frac{|B_6(0)|}{192} = \frac{1}{8064}, \ |u_4(\infty)| \leq \frac{|B_8(0)|}{1024} = \frac{1}{30720}, \ |u_4(\infty)| \leq \frac{|B_8(0)|}{1024} = \frac$$

una approssimazione $\tilde{\gamma}$ di γ tale che $|\tilde{\gamma} - \gamma| \leq \frac{1}{8064}$ è

$$\tilde{\gamma} = 1 + \frac{1}{4} - \log_e 2 + \sum_{j=1}^2 \frac{B_{2j}(0)}{2j2^{2j}} = 1 + \frac{1}{4} - \log_e 2 + \frac{1}{48} - \frac{1}{1920}.$$

Si nota che $\tilde{\gamma} = 0.5771653...$

(8)

Poiché $\overline{B}_3(x) = B_3(x-k), x \in [k, k+1), k \in \mathbb{Z}$, si ha subito che $\overline{B}_3 \in \mathcal{C}^{\infty}((k, k+1)), \forall k \in \mathbb{Z}$.

Quindi, per dimostrare che \overline{B}_3 è in $C^1(\mathbb{R})$ ma non in $C^2(\mathbb{R})$, basta far vedere che \overline{B}_3 è continua e derivabile, ma non derivabile due volte in 0. Ciò è provato dalle seguenti identità:

$$\overline{B}_3(0^+) = B_3(0^+) = B_3(0) = 0, \ \overline{B}_3(0^-) = B_3(1^-) = B_3(1) = 0,$$

$$\overline{B}_3'(0^+) = B_3'(0^+) = B_3'(0) = 3B_2(0) = \frac{1}{2}, \ \overline{B}_3'(0^-) = B_3'(1^-) = B_3'(1) = 3B_2(1) = \frac{1}{2},$$

$$\overline{B}_3''(0^+) = B_3''(0^+) = B_3''(0) = 3B_2'(0) = 3 \cdot 2B_1(0) = -3,$$

$$\overline{B}_3''(0^-) = B_3''(1^-) = B_3''(1) = 3B_2'(1) = 3 \cdot 2B_1(1) = 3.$$

Notare che si è sfruttata più volte l'uguaglianza $B'_n(x) = nB_{n-1}(x)$.

(7)

Abbiamo dimostrato a lezione che $B_{2k+1}(0)=B_{2k+1}(1)=B_{2k+1}(\frac{1}{2})=0,\ \forall\,k\in\mathbb{N}.$ Supponiamo che $B_{2k+1}(\xi)=0,\ \xi\in(0,\frac{1}{2}).$ Allora $B'_{2k+1}(\eta)=B'_{2k+1}(\mu)=0,\ \eta\in(0,\xi),\ \mu\in(\xi,\frac{1}{2}).$ Per la proprietà $B'_{2k+1}(x)=(2k+1)B_{2k}(x),$ ciò implica $B_{2k}(\eta)=B_{2k}(\mu)=0.$ Allora $B'_{2k}(\sigma)=0,\ \sigma\in(\eta,\mu)\subset(0,\frac{1}{2}),$ e, di nuovo, questo implica $B_{2k-1}(\sigma)=0.$ Si è dimostrato che se B_{2k+1} si annulla in $(0,\frac{1}{2})$ allora anche B_{2k-1} si deve annullare in $(0,\frac{1}{2}).$ In particolare B_3 si dovrebbe annullare in $(0,\frac{1}{2})$ e questo sappiamo che non può essere vero essendo $B_3(x)=x(x-1)(x-\frac{1}{2}).$

(6)

Sia $A \in \mathbb{C}^{n \times n}$ tale che $\mu_2(A) = 1$, ovvero, essendo $\mu_2(A^H A) = \mu_2(A)^2$, tale che $\sqrt{\mu_2(A^H A)} = 1$. Poiché $A^H A$ è una matrice definita positiva (cioè hermitiana e tale che $\mathbf{z}^H A^H A \mathbf{z} > 0$, $\forall \mathbf{z} \in \mathbb{C}^n$, $\mathbf{z} \neq \mathbf{0}$), gli autovalori di $A^H A$, $\lambda_j(A^H A)$, sono positivi e $\mu_2(A^H A) = \max_j \lambda_j(A^H A)/\min_j \lambda_j(A^H A)$. Quindi, dall'identità $\sqrt{\mu_2(A^H A)} = 1$ segue che esiste $c \in \mathbb{R}$ positivo tale che $\lambda_i(A^H A) = c$, $\forall i$. Ma $A^H A$ è anche una matrice normale o, equivalentemente, esiste Q unitaria $Q^H = Q^{-1}$) tale che $Q^{-1}A^H AQ$ è diagonale. Ne segue che deve valere l'identità $Q^{-1}A^H AQ = cI$, ovvero $A^H A = cI$, ovvero

$$(\pm \frac{1}{\sqrt{c}}A)^H (\pm \frac{1}{\sqrt{c}}A) = I.$$

Riassumendo abbiamo dimostrato che se una matrice A ha numero di condizionamento in norma spettrale uguale a 1, allora esiste $\alpha \in \mathbb{R}$, $\alpha \neq 0$, tale che αA è unitaria.

Una conseguenza di questo risultato e del seguente

Teorema (Bauer-Fike). Sia $A \in \mathbb{C}^{n \times n}$, con autovalori λ_j , $j = 1, \dots, n$. Supponiamo A diagonalizzabile da T ($T^{-1}AT$ =diagonale). Sia $A + \delta A \in \mathbb{C}^{n \times n}$

una perturbazione di A,e $\mu\in\mathbb{C}$ un autovalore di $A+\delta A$ che non è autovalore di A. Allora

$$\min_{j} |\lambda_j - \mu| \le \mu_2(T) ||\delta A||_2.$$

Il problema degli autovalori di A è quindi ottimamente condizionato se e solo se tra le matrici T che diagonalizzano A ce n'è una tale che $\mu_2(T) = 1$.

(dimostrato a lezione) è che il problema degli autovalori di una matrice A è ottimamente condizionato se e solo se A è diagonalizzabile da una matrice unitaria, ovvero (vedi le Lezioni) se e solo se A è normale ($A^HA = AA^H$).

(5)

Sia $A \in \mathbb{C}^n$ con autovalori $\lambda_1, \lambda_2, \dots, \lambda_n$. Supponiamo che siano noti λ_1 e $\mathbf{x}_1 \neq \mathbf{0}$ tali che $A\mathbf{x}_1 = \lambda_1\mathbf{x}_1$. Si vuole introdurre una matrice W i cui autovalori siano $\mu, \lambda_2, \dots, \lambda_n$ dove μ è un qualsiasi numero complesso.

siano $\mu, \lambda_2, \ldots, \lambda_n$ dove μ è un qualsiasi numero complesso. Sapendo che la matrice $W = A - \frac{\lambda_1}{\mathbf{w}^H \mathbf{x}_1} \mathbf{x}_1 \mathbf{w}^H$ ha, per ogni $\mathbf{w}, \mathbf{w}^H \mathbf{x}_1 \neq 0$, autovalori $0, \lambda_2, \ldots, \lambda_n$ (vedi le Lezioni), la matrice richiesta si dovrebbe ottenere ponendo

$$W = A - \frac{t}{\mathbf{w}^H \mathbf{x}_1} \mathbf{x}_1 \mathbf{w}^H, \text{ con } t \text{ opportuno.}$$

Infatti, sia $X = [\mathbf{x}_1 \ \mathbf{y}_2 \ \cdots \ \mathbf{y}_n]$ con \mathbf{y}_j scelti in modo che X sia non singolare. Allora

$$X^{-1}AX = X^{-1}[A\mathbf{x}_1 \ A\mathbf{y}_2 \cdots A\mathbf{y}_n]$$

$$= X^{-1}[\lambda_1\mathbf{x}_1 \ A\mathbf{y}_2 \cdots A\mathbf{y}_n]$$

$$= [\lambda_1X^{-1}\mathbf{x}_1 \ X^{-1}A\mathbf{y}_2 \cdots X^{-1}A\mathbf{y}_n]$$

$$= [\lambda_1\mathbf{e}_1 \ X^{-1}A\mathbf{y}_2 \cdots X^{-1}A\mathbf{y}_n],$$

cioè

$$X^{-1}AX = \begin{bmatrix} \lambda_1 & \mathbf{c}^T \\ \mathbf{0} & B \end{bmatrix}, \ p_A(\lambda) = p_{X^{-1}AX}(\lambda) = (\lambda - \lambda_1)p_B(\lambda).$$

Si noti, in particolare, che $\lambda_2, \ldots, \lambda_n$, i rimanenti autovalori di A, sono gli autovalori di B, ovvero le radici del polinomio p_B . Inoltre

$$\begin{array}{lll} X^{-1}WX & = & X^{-1}AX - X^{-1}\frac{t}{\mathbf{w}^H\mathbf{x}_1}\mathbf{x}_1\mathbf{w}^HX \\ & = & X^{-1}AX - \frac{t}{\mathbf{w}^H\mathbf{x}_1}X^{-1}\mathbf{x}_1\mathbf{w}^HX \\ & = & X^{-1}AX - \frac{t}{\mathbf{w}^H\mathbf{x}_1}\mathbf{e}_1[\mathbf{w}^H\mathbf{x}_1\ \mathbf{w}^H\mathbf{y}_2\ \cdots\ \mathbf{w}^H\mathbf{y}_n], \end{array}$$

quindi

$$X^{-1}WX = \begin{bmatrix} \lambda_1 & \mathbf{c}^T \\ \mathbf{0} & B \end{bmatrix} - \begin{bmatrix} t & \cdots \\ \mathbf{0} & O \end{bmatrix} = \begin{bmatrix} \lambda_1 - t & \cdots \\ \mathbf{0} & B \end{bmatrix}, \ p_W(\lambda) = p_{X^{-1}WX}(\lambda) = (\lambda - (\lambda_1 - t))P_B(\lambda).$$

Ne segue che W ha autovalori $\mu, \lambda_2, \dots, \lambda_n$ se $\lambda_1 - t = \mu$, ovvero se $t = \lambda_1 - \mu$.

(4)

Occorre dimostrare che le seguenti matrici

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & y & 0 \end{array} \right], \ B = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right],$$

sono simili (cioè esiste S non singolare tale che $S^{-1}AS = B$) se e solo se $xy \neq 0$.

Dimostriamo che $xy \neq 0$ è condizione necessaria affinché A e B siano simili. Se fosse xy = 0 la matrice A avrebbe rango minore o uguale a 1, mentre la matrice B ha rango 2 e, poiché due matrici simili devono avere lo stesso rango, A e B non potrebbero essere simili. (Altra dim: $AS = SB \Rightarrow S$ ha almeno una riga o una colonna nulla, se x oppure y sono zero).

Ora mostriamo che se $xy \neq 0$ allora esiste S non singolare tale che $S^{-1}AS = B$. Provando con un S diagonale, abbiamo

$$\left[\begin{array}{ccc} d_1^{-1} & & \\ & d_2^{-1} & \\ & & d_3^{-1} \end{array} \right] \left[\begin{array}{cccc} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & y & 0 \end{array} \right] \left[\begin{array}{cccc} d_1 & & \\ & d_2 & \\ & & d_3 \end{array} \right] = \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ d_1 d_2^{-1} x & 0 & 0 \\ 0 & d_2 d_3^{-1} y & 0 \end{array} \right] = \left[\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right],$$

dove l'ultima uguaglianza vale se $d_2 = d_3/y$ e $d_1 = d_2/x = d_3/(xy)$ ($\forall d_3 \neq 0$). Quindi una S che realizza la similitudine richiesta è la seguente:

$$S = \begin{bmatrix} \frac{d_3}{xy} & & \\ & \frac{d_3}{y} & \\ & & d_3 \end{bmatrix}, \ d_3 \in \mathbb{C}, \ d_3 \neq 0.$$

Si noti che essa è ben definita quando x e y non sono nulli.

(3) Sia $F = \frac{1}{\sqrt{n}} (\omega_n^{(i-1)(j-1)})_{i,j=1}^n$, con $\omega_n \in \mathbb{C}$ tale che $\omega_n^n = 1$ e $\omega_n^k \neq 1$, 0 < k < n. Abbiamo visto a lezione che F è una matrice unitaria ($F^H F = F F^H = I$). Dimostriamo che F^2 è una matrice di permutazione simmetrica e che, quindi, $F^4 = F^2 F^2 = I$.

$$[F^2]_{ij} = \frac{1}{n} \sum_{k=1}^n \omega_n^{(i-1)(k-1)} \omega_n^{(k-1)(j-1)} = \frac{1}{n} \sum_{k=1}^n \omega_n^{(i+j-2)(k-1)} = \frac{1}{n} \sum_{k=1}^n (\omega_n^{i+j-2})^{k-1}$$

Si noti che quando $1 \leq i,j \leq n$, come nel nostro caso, si ha che $0 \leq i+j-2 \leq 2n-2$. Quindi ω_n^{i+j-2} assume il valore 1 se e solo se i,j sono tali che i+j-2=0,n. Per questi indici i,j si ha dunque $[F^2]_{ij}=1$. Invece, per i,j tali che $i+j-2 \neq 0,n$, si ha $[F^2]_{ij}=\frac{1}{n}\frac{1-(\omega_n^{i+j-2})^n}{1-\omega_n^{i+j-2}}$ dove $\omega_n^{i+j-2}=\omega_n^k$ con 0 < k < n. Ne segue che, per tali i,j, si ha $[F^2]_{ij}=0/(\neq 0)=0$.

In altre termini, per la matrice F^2 si hanno le identità

$$F^2 = \begin{bmatrix} 1 & & & & 1 \\ & & & & 1 \\ & & & 1 \end{bmatrix}, \ (F^2)(F^2) = I = F^4.$$

(Si ricorda che se $P \in \mathbb{C}^{n \times n}$ è di permutazione allora $P^TP = PP^T = I$, come visto a Lezione).

(2)

Sia $A \in \mathbb{C}^{n \times n}$ e λ_j , $j = 1, \ldots, n$, i suoi autovalori. Siano K_j i sottoinsiemi di \mathbb{C} , $K_i = \{z \in \mathbb{C} : |z - a_{ii}| \leq \sum_{k \neq i} |a_{ik}|\}$, $i = 1, \ldots, n$. Utilizzando gli insiemi (chiusi) K_i si possono avere informazioni utili per la localizzazione degli autovalori λ_j di A. Infatti valgono i seguenti tre Teoremi di Gershgorin:

I Teorema di G.: $\lambda_j \in \cup_i K_i$.

II Teorema di G.: Se m cerchi K_i sono disgiunti dai rimanenti, allora l'unione di tali m cerchi contiene esattamente m autovalori di A.

III Teorema di G.: Se A è irriducibile, allora $\lambda_j \in (\cup_i \hat{K}_i) \cup (\cap_i \tilde{K}_i)$ dove \hat{K}_i è la parte interna di K_i e \tilde{K}_i è la frontiera di K_i .

Risolviamo ora l'esercizio. Una matrice A 2 × 2 con cerchi di Gershgorin tali che uno di essi non contiene autovalori di A deve avere necessariamente i due cerchi di Gershgorin non disgiunti (per il secondo Teorema di Gershgorin). Quindi, per definire tale A potremmo ad esempio porre $a_{11} = a_{22} = 0$ e scegliere a_{12} e a_{21} molto diversi tra loro. Per la matrice

$$A = \left[\begin{array}{cc} 0 & 1 \\ 9 & 0 \end{array} \right]$$

si ha $K_1 = \{z : |z| \le 1\}$, $K_2 = \{z : |z| \le 9\}$, e $p_A(\lambda) = \lambda^2 - 9$. È evidente che K_1 non contiene nessuno degli autovalori di A (che sono ± 3).

Vedremo che per le matrici normali ciò non è vero, cioè ogni cerchio di Gershgorin di una matrice A normale deve contenere almeno un autovalore di A.

(1) Calcolo di δA :

$$A = \begin{bmatrix} 2 & -1 & -1 & -\frac{1}{2^{n}-1} \\ 1 & 2 & -1 & -1 \\ \frac{1}{2^{n}-1} & 1 & 1 & 2 & -1 \\ \frac{1}{2^{n}-1} & 1 & 1 & 2 \end{bmatrix}, A + \delta A = \begin{bmatrix} 2 & -1 & -1 & -\frac{1}{2^{n}} \\ 1 & 2 & -1 & -1 \\ 1 & 1 & 2 & -1 \\ \frac{1}{2^{n}} & 1 & 1 & 2 \end{bmatrix},$$
$$\delta A = (A + \delta A) - A = \begin{bmatrix} \beta \\ -\beta \end{bmatrix}, \beta = \frac{1}{2^{n}(2^{n}-1)}.$$

Calcolo di $\|\delta A\|_2$: $\|\delta A\|_2 = \sqrt{\rho((\delta A)^H(\delta A))} = \sqrt{\rho(M)} = \beta$, infatti

Si osserva che A = M + 2I con M anti-hermitiana ovvero tale che $M^H = -M$ $(\overline{m}_{ij} = -m_{ji})$. Poiché le matrici anti-hermitiane hanno autovalori puramente immaginari, si ha $\Re(\lambda_i(A)) = \Re(\lambda_i(M) + 2) = 2$. Idem per $A + \delta A$.

Infine si può dire che A è una matrice normale, perché lo è M (le matrici antihermitiane, come le hermitiane e le unitarie, sono normali!) e perché valgono le uguaglianze

$$(M+2I)^H(M+2I) = M^HM + 2M^H + 2M + 4I, (M+2I)(M+2I)^H = MM^H + 2M + 2M^H + 4I.$$

(Altra dim.: A=M+2I è un polinomio in M, e polinomi in matrici normali sono matrici normali). Essendo A normale, possiamo dire che A è diagonalizzata da una matrice T unitaria e quindi tale che $\mu_2(T)=1$. Ne segue che, per il Teorema di Bauer-Fike, comunque preso μ autovalore di $A+\delta A$ (che non sia autovalore di A) esiste un autovalore λ di A tale che $|\lambda-\mu| \leq \mu_2(T) \|\delta A\|_2 = \|\delta A\|_2 = \frac{1}{2^n(2^n-1)}$.

1) Siano

$$M(\alpha) = \begin{bmatrix} 2 & -1 & -1 & -\alpha \\ 1 & 2 & -1 & -1 \\ 1 & 1 & 2 & -1 \\ \alpha & 1 & 1 & 2 \end{bmatrix}, \ A = M(\frac{1}{2^n - 1}), \ A + \delta A = M(\frac{1}{2^n}).$$

- i) Calcolare δA e $\|\delta A\|_2$.
- ii) Dimostrare che $\Re(\lambda(A)) = \Re(\lambda(A+\delta A)) = 2$.
- iii) Mostrare che per ogni μ autovalore di $A+\delta A$ esiste λ autovalore di A tale che $|\mu-\lambda|\leq \|\delta A\|_2$.
- 2) Scrivere una matrice A 2 × 2 reale tale che uno dei cerchi di Gershgorin di A non contiene autovalori di A.
- 3) Posto $F = \frac{1}{\sqrt{n}} (\omega_n^{(i-1)(j-1)})_{i,j=1}^n$, con ω_n tale che $(\omega_n)^n = 1$ e $(\omega_n)^k \neq 1$, 0 < k < n, mostrare che $F^4 = I$.
 - 4) Mostrare che le matrici

$$B = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], \ A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & y & 0 \end{array} \right], \ x, \ y \in \mathbb{C},$$

sono simili se e solo se $xy \neq 0$.

- 5) Sia $A \in \mathbb{C}^{n \times n}$ e $\lambda_1, \lambda_2, \dots, \lambda_n$ i suoi autovalori. Supponiamo che $\lambda_1 \in \mathbb{C}$, $\mathbf{x}_1 \in \mathbb{C}^n$ tali che $A\mathbf{x}_1 = \lambda_1\mathbf{x}_1$ siano noti. Dato $\mu \in \mathbb{C}$ arbitrario, scrivere una matrice W i cui autovalori sono $\mu, \lambda_2, \dots, \lambda_n$.
- 6) Sia $A \in \mathbb{C}^{n \times n}$ tale che $\mu_2(A) = 1$. Mostrare che allora esiste $\alpha \in \mathbb{R}$, $\alpha \neq 0$, tale che αA è unitaria.
- 7) Dimostrare che 0, $\frac{1}{2}$, 1 sono i soli punti dell'intervallo [0,1] estremali dei polinomi di Bernoulli $B_n(x)$ di grado n pari con $n \neq 2$.
 - 8) Dimostrare che $\overline{B}_3(x) \in C^1(\mathbb{R})$.
 - 9) Sia

$$\gamma = \lim_{n \to +\infty} (\sum_{k=1}^{n} \frac{1}{k} - \log_e n).$$

Scrivere $\hat{\gamma} \in \mathbb{Q}$ approssimazione di γ tale che $|\hat{\gamma} - \gamma| \leq \frac{1}{125}$ e $\tilde{\gamma} \in \mathbb{Q}[\log_e 2]$ approssimazione di γ tale che $|\tilde{\gamma} - \gamma| \leq \frac{1}{8063}$.

10) Posto

$$I = \int_{a}^{b} f(x) dx, \quad I_{h} = h \left[\frac{f(a)}{2} + \sum_{k=1}^{n-1} f(a+kh) + \frac{f(b)}{2} \right], \quad h = \frac{b-a}{n},$$

i) mostrare che

$$I = \tilde{I}_h + \tilde{c}_2 h^4 + \tilde{c}_3 h^6 + \dots, \ \tilde{I}_h = \frac{3^2 I_h - I_{3h}}{3^2 - 1},$$

ii) calcolare I_1 , $I_{\frac{1}{3}}$ e $\tilde{I}_{\frac{1}{3}}$ nel caso $f(x) = \frac{1}{x}$, a = 1, b = 2 $(I = \log_e 2)$.