
Insights on some theoretical results related to the convergence
of power and Gauss-Seidel iterations

While studying the rate of convergence of power method applied to A−1, where A is a n × n
not diagonalizable invertible matrix, one needs to consider the matrix Y which transforms A−1 into
Jordan canonical form, and to express such Y in terms of the matrix X which transforms A into
Jordan canonical form. The matrix Y turns out to be equal to XM with M block diagonal where
the diagonal blocks have an interesting upper triangular Tartaglia-Toeplitz structure.

While searching for linear systems Ax = b which are solvable via the Gauss-Seidel (G.-S.)
method even if the standard sufficient conditions on A for G.-S. convergence are not satisfied, one
meets an interesting class of 2 × 2-block matrices A, for which G.-S. converges for A every time it
converges for its two diagonal blocks, of order r and n− r, and |ar+1,1a1,r+1/a1,1ar+1,r+1| < 1.

The above are two examples of how in-depth studies of classical subjects of numerical mathe-

matics can lead to new interesting remarks.
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I am Carmine Di Fiore, associate professor of Numerical Analysis in Rome “Tor Vergata” University.

I am happy to be here, in Shenzhen, China, at the CMC Faculty of the University MSU-BIT
(Moscow State University - Beijing Institute of Technology), together with you, participants of the
Scuola-Convegno “Tensor Methods in Mathematics and Data Science”, November 11-20, 2024.
I feel with us also my sister Maria Rita, Professor of Mathematics in school, thanks to whom I
became professor in university.

I thank very much Professor Eugene Tyrtyshnikov, who invited me to this event.
I can say that I am not an expert in the field “Tensor Methods in Mathematics and Data

Science”, in fact I should have attended the School, the first part of the event, as a student (when
we will be back in Rome, I’ll ask to Damiano to tell me some of the subjects he has learnt). However,
I was happy to accept the invitation in order to meet again my two friends out of Italy, Eugene
here in Shenzhen, and Professor Raymond Chan here and in Hong Kong (thank you Raymond for
inviting me to visit you in Lingnan University). The subjects of my communications, in Shenzhen
and in Hong Kong, were not so important, as Eugene and Raymond wrote to me.

I guess that Gauss-Seidel and power iterative methods are utilized in solving Data Science

problems. In this talk I’ll share with you two simple remarks, related to such methods.



First remark: I had to show to my students a system Ax = f solvable by Gauss-Seidel (G.S.)
method even if A does not satisfy the standard sufficient conditions for G.S. convergence . . .

Definition of Gauss-Seidel iteration matrix:

A ∈ Cn×n

ai,i ̸= 0 ∀i → AGS = −

 a1,1 0 · 0
· · · ·
· · 0

an,1 · · an,n


−1  0 a1,2 · a1,n

· · · ·
· · an−1,n

0 · · 0


[

Recall: Given any f ∈ Cn, and set vf =

 a1,1 0 · 0
· · · ·
· · 0

an,1 · · an,n


−1

f , we have that

A−1f solves the equation x = AGSx+ vf

and the sequence xk+1 = AGSxk + vf , k = 0, 1, . . ., converges to A−1f , ∀x0 ∈ Cn, if and only

if ρ(AGS) < 1
]



We know that:


y 0T

w Z


−1

=


1/y 0T

− 1
y
Z−1w Z−1

 , y ̸= 0, det Z ̸= 0 .

⇒ AGS = −


1/a11 0T

− 1
a11

 a22 0 · 0
· · 0

an2 · an,n

−1 a21
·

an1

  a22 0 · 0
· · 0

an2 · an,n

−1




0 a12 · · · · · · · a1n

0

 0 a23 · a2n
· · · ·
0 · 0 an−1,n

0 · 0 0




= −


0 a12/a11 · · · · · · · · · · · · · · · · · · · · · a1n/a11

0 − 1
a11

 a22 0 · 0
· · 0

an2 · ann

−1 a21
·

an1

 (a12 · · · a1n) +BGS





Let B be the lower right (n− 1)× (n− 1) submatrix of A:

A =


a1,1 a1,2 · a1,n
a2,1
· B

an,1

 and consider BGS = −


a2,2 0 · 0
· · · ·
· · 0

an,2 · · an,n


−1 

0 a2,3 · a2,n
· · · ·
· · an−1,n

0 · · 0



THEOREM:


a21
a31
·

an1

 = α


a22
a32
·

an2

 , α =
a21
a22

⇒ ρ(AGS) = max{
∣∣∣∣a12a21a11a22

∣∣∣∣ , ρ(BGS)} ,

i.e. ρ(AGS) can be written in terms of ρ(BGS).



→ Examples of linear systems Ax = f solvable by Gauss-Seidel method, where A does not
satisfy the standard sufficient conditions for its convergence (A is not positive definite, not
with strictly dominant diagonal, not irreducible with weakly dominant diagonal):

A =


a1,1 a12 · a1,n
αa22
· B

αan2

 , α =
a21
a22

, ρ(BGS) < 1,

∣∣∣∣a12a21a11a22

∣∣∣∣ < 1⇒ ρ(AGS) < 1

(independently from the values of a1,i, i = 3, . . . , n). For instance,

A =


−1 3.8 1

2
−7

1
2

−1
4

B
0

 , B =

 2 −1 0
−1 ±2 −1
0 −1 2

 ⇒ α =
1

4
, ρ(BGS) < 1,

∣∣∣∣3.8 ∗ 1
2

−1 ∗ 2

∣∣∣∣ < 1

⇒ ρ(AGS) < 1



→ Assume, moreover, that

B =


a2,2 a2,3 · a2,n
a3,2
· C

an,2

 satisfies


a32
a42
·

an2

 = β


a33
a43
·

an3

 , β =
a32
a33

,

then, by the THEOREM,

ρ(AGS) = max{
∣∣∣∣a12a21a11a22

∣∣∣∣ , ρ(BGS)} = max

{∣∣∣∣a12a21a11a22

∣∣∣∣ , max{
∣∣∣∣a23a32a22a33

∣∣∣∣ , ρ(CGS)}
}

= max{
∣∣∣∣a12a21a11a22

∣∣∣∣ , ∣∣∣∣a23a32a22a33

∣∣∣∣ , ρ(CGS)}

→ · · ·



→

A =


a11 a12 a13 a14
αa22 a22 a23 a24
αβa33 βa33 a33 a34
αβγa44 βγa44 γa44 a44

 , α =
a21
a22

, β =
a32
a33

, γ =
a43
a44

⇒ ρ(AGS) = max{
∣∣∣∣a12a21a11a22

∣∣∣∣ , ∣∣∣∣a23a32a22a33

∣∣∣∣ , ∣∣∣∣a34a43a33a44

∣∣∣∣}
(in fact, CGS =

[
0 −a34/a33
0 a34a43/a33a44

]
),

AGS is upper triangular with [AGS]ii =
ai−1,iai,i−1

ai−1,i−1ai,i
, i = 2, 3, 4.

The case n generic is analogous.



→

A =


a0 a−1 a−2 a−3

αa0 a0 a−1 a−2

α2a0 αa0 a0 a−1

α3a0 α2a0 αa0 a0

 , α =
a1
a0

⇒ ρ(AGS) =

∣∣∣∣a1a−1

(a0)2

∣∣∣∣
AGS is upper triangular Toeplitz with [AGS]ii =

a1a−1

(a0)2
, i = 2, 3, 4.

For example, if a−1 = 0 then Gauss-Seidel converges in 4 steps

The case n generic is analogous.



The THEOREM is a corollary of the following more general result:

Let B and C be respectively the lower right (n − r) × (n − r) and the upper left r × r
submatrices of A,

A =

 C R

S B

 ∈ Cn×n, C ∈ Cr×r, and consider BGS and CGS. :

Sei = αiBe1, αi =
ar+1,i

ar+1,r+1

, i = 1, . . . , r,

Re1 = γCe1, γ =
a1,r+1

a11

⇒ ρ(AGS) = max{ρ(CGS) ,

∣∣∣∣a1,r+1ar+1,1

a11ar+1,r+1

∣∣∣∣ , ρ(BGS)}

In other words, if the columns of S are all proportional to the first column of B and the first
column of R is proportional to the first column of C, then ρ(AGS) can be written in terms
of ρ(BGS) and ρ(CGS).



Proof: use the equality
Y O

W Z



−1

=


Y −1 O

−Z−1WY −1 Z−1

 , det Y ̸= 0, det Z ̸= 0



Example:

A =



1/4 # # #
C 1/8 # # #

1/12 # # #
−4 1 6
2 −1

2
−3 B

0 0 0
0 0 0


,

B =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 ,

α1 = −2, α2 =
1
2
, α3 = 3,

C =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 ,

γ = 1
4

ρ(BGS) < 1, ρ(CGS) < 1,

∣∣∣∣−4 ∗ 1/41 ∗ 2

∣∣∣∣ < 1 ⇒ ρ(AGS) < 1

(independently from the values of the entries #)



Second remark:

Problem: Given X ∈ Cn×n invertible which transforms A ∈ Cn×n into its Jordan canonical
form JA (X−1AX = JA), find Y ∈ Cn×n invertible which transforms A−1 into its Jordan
canonical form JA−1 (Y−1A−1Y = JA−1).

[ Motivation: Let A ∈ Cn×n with spectrum σ(A) = {µ1, . . . , µn} : 0 < |µn| < |µj|,
∀µj ̸= µn, ma(µn) = mg(µn). The study of the convergence of the vectors µk

nA
−kv generated

by the power method applied to A−1 is simplified, in the case A not diagonalizable, if the
initial vector v is represented as a linear combination of the columns of Y , rather than of the
columns of X .

Moreover, the study of the relation between Y and X makes more possible a comparison
between the rate of convergence of the sequence µk

nA
−kv and the rate of convergence of the

sequence (1/µ1)
kAkv, in case the further conditions 0 < |µn| < |µj| < |µ1|, ∀µj ̸= µn, µ1,

ma(µ1) = mg(µ1) are satisfied. ]

Solution of the Problem: Y = XM where M is a block diagonal matrix (with the same
pattern of JA and JA−1) whose diagonal blocks M are upper triangular Tartaglia-Toeplitz
matrices (see the following slides)



Assume that for A ∈ Cn×n invertible, there exist X ∈ Cn×s (s ≤ n), with columns linearly
independent, and µ ∈ C, µ ̸= 0, such that

AX = X(µIs + ZT
s ) = X


µ 1 0 .
0 µ . 0
. . . 1
0 . 0 µ


 s ← definition of ZT

s

(such assumption is verified by any Jordan block of A). Then A−1X = X(µIs +ZT
s )

−1, and
therefore the following result holds:

M ∈ Cs×s : (µIs + ZT
s )

−1M = M(
1

µ
Is + ZT

s ) (#)

⇒ A−1Y = Y (
1

µ
Is + ZT

s ) = Y


1
µ 1 0 .

0 1
µ . 0

. . . 1
0 . 0 1

µ

 , with Y = XM.

So, the Problem is solved if we find a matrix M satisfying (#) and invertible.



Conditions equivalent to condition (#):

M ∈ Cs×s : (µIs + ZT
s )

−1M = M(
1

µ
Is + ZT

s ) (#)

if and only if

M = (µIs + ZT
s )M(

1

µ
Is + ZT

s )

if and only if

M = (Is +
1

µ
ZT

s )M(Is + µZT
s )

if and only if

O = µMZT
s +

1

µ
ZT

s M + ZT
s MZT

s



One invertible matrix satisfying (#):

The upper triangular Tartaglia matrix P and the lower shift matrix Z satisfy the identity

(I + ZT )P (I − ZT ) = P, P =


1 1 1 1 ·
0 1 2 3 ·
0 0 1 3 ·
0 0 0 1 ·
· · · · ·

 , Z =


0 0 0 0 ·
1 0 0 0 ·
0 1 0 0 ·
0 0 1 0 ·
· · · · ·


Moreover, for µ ∈ C, µ ̸= 0, and d((±µ)j) = diag ((±µ)j, j = 0, 1, . . .), we have

d(µj)(I + ZT ) = (I + 1
µ
ZT )d(µj),

(I − ZT )d((−µ)j) = d((−µ)j)(I + µZT ),

⇒ d(µj)Pd((−µ)j) = d(µj)(I+ZT )P (I−ZT )d((−µ)j) = (I+
1

µ
ZT )d(µj)Pd((−µ)j)(I+µZT ),

i.e. (1) Γ = Γs := ds(µ
j)Psds((−µ)j) is an invertible matrix that satisfies (#)

Note: Γ is an upper triangular matrix with first row [1 | − µ |µ2 | − µ3 | · · · | (−µ)s−1].



Look for other matrices satisfying (#):

There could be invertible matrices M satisfying (#) better than Γ, for example such that
the computation of the matrix-vector product XM requires less arithmetic operations than
the computation of XΓ. This question leads to the study of the space

L = Ls = {M ∈ Cs×s : (#) holds}

Remark: IfM ∈ Ls−1 and eT1M = [1 | −µ |µ2 | −µ3 | · · · | (−µ)s−2], then

[
1 0T

0 −µ2M

]
∈ Ls.

Γs−1 satisfies the hypotheses in the Remark, thus we have the following other example of
invertible matrix in L:

(2) G = Gs :=

[
1 0T

0 −µ2Γs−1

]
=


1 0 0 0 0 . 0
0 −µ2 µ3 −µ4 µ5 . (−1)s−1µs

0 0 µ4 −2µ5 3µ6 . (−1)s−1(s− 2)µs+1

0 . 0 −µ6 3µ7 . .
0 . . 0 µ8 . .
. . . . . . (−1)s−1(s− 2)µ2s−3

0 0 0 0 0 . (−1)s−1µ2s−2

 ∈ L



Upper triangular Toeplitz matrices allow to describe L:
Condition (#) holds if and only if M = (µI + ZT )M( 1

µ
I + ZT ) iff

µMZT +
1

µ
ZTM + ZTMZT = O . (#′)

Observe that if M satisfies (#′) and T is any upper triangular Toeplitz matrix, then also the
matrix MT satisfies (#′) (upper triangular Toeplitz matrices commute with ZT !). Thus

(3) {GT : T = upper triangular Toeplitz} ⊂ L .

Viceversa, if M = (I + 1
µ
ZT )M(I + µZT ), then, for any invertible L ∈ L, we have

L−1M = L−1(I +
1

µ
ZT )M(I + µZT ) = (I + µZT )−1L−1M(I + µZT )

i.e. (I+µZT )L−1M = L−1M(I+µZT ). But the latter identity implies that L−1M must be up-
per triangular Toeplitz, that is,M must be in the space {LT : T = upper triangular Toeplitz}.



→ Characterization of L = {M ∈ Cs×s : (#) holds} :

(4) L is a space of upper triangular Tartaglia-Toeplitz matrices, precisely

L = Ls = {GT : T = upper triangular Toeplitz}

= Span {G, GZT , G(ZT )2, . . . , G(ZT )s−1}.

Note that eT1G(ZT )k−1 = eTk , k = 1, . . . , s, and therefore the generic matrix of L is determined
by its first row.

As a consequence of (4), the matrix Γ itself must be of type GT , for some upper triangular
Toeplitz T . By imposing [1 | − µ |µ2 | − µ3 | · · · | (−µ)s−1] = eT1 Γ = eT1GT = eT1 T , we guess
that T = (I + µZT )−1:

(5) Γ = G(I + µZT )−1

Recall that Γ is defined in terms of Ps, the upper triangular Tartaglia matrix of order s,
whereas G is defined in terms of Ps−1, the upper triangular Tartaglia matrix of order s− 1.
Thus, (5) yields an equality involving such matrices, as well as an equality involving their
inverses:



(6) Pk =



1 1 1 1 · · · · · · · · · 1 1

0 Pk−1


1 1 1 . 1
0 1 1 . 1
. . 1 . .
0 . . . 1
0 . . 0 1




⇒ P−1

k =



1 −[1 0 0 · · · · · · · · · 0 0]P−1
k−1

0


1 −1 0 . 0
0 1 −1 . .
. . . . 0
. . . . −1
0 . . 0 1

P−1
k−1


where Pk and P−1

k are the upper-left k × k submatrices of P and P−1, with

Pij =
(j − 1
i− 1

)
, [P−1]ij = (−1)j−i(j − 1

i− 1

)
if i ≤ j .

Observe that the equalities in (6) can be used to compute matrix-vector products where
the matrix is Ps, or to solve linear systems with Ps as coefficient matrix.

For example, the repeated application of the representation of P−1
k , for k = s, s − 1, . . . , 2,

yields a procedure for computing P−1
s f , f ∈ Cs, which avoids the computation of the entries

of P−1
s and requires only s(s− 1)/2 additive operations.



Here below is the detailed procedure:

input: f1, f2, . . . , fs
i = 1
•1 = fs
for i = 1, . . . , s− 1 do {

z = •1 ;
app(1) = •1 ;
•1 = fs−i − z ; •i+1 = 0 ;
for j = 2, . . . , i+ 1 do {

app(j) = •j ;
•j = app(j − 1)− app(j);

}
}

Open problem: what is the matrix M in Ls = {GT : T = upper triangular Toeplitz} for
which the computation of Y = XM , X ∈ Cn×s, requires the minimum number of arithmetic
operations ?


