Università di Roma "Tor Vergata" – Corso di Laurea in Ingegneria Analisi Matematica I – Prova scritta del 21/02/2023 – I turno

Cognome:
(in STAMPATELLO)
Nome:
(in STAMPATELLO)
Matricola:
Titolare del corso:

Esercizio	Punteggio
1	
2	
3	
4	
5	
Totale	

A/B/C/D

Esercizio 1. [6 punti] Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{\sqrt{\log(1 + ax^2)} - \arctan\left(\sqrt{ax} + cx^3\right)}{1 - \left(\frac{\sin x}{x}\right)^x}.$$

$$[(a,c) = (2,1), (4,-1), (3,1), (9,-1)]$$

Svolgimento: Utilizziamo gli sviluppi di Taylor per $y \to 0^+$:

$$\sqrt{1+y} = 1 + \frac{y}{2} - \frac{y^2}{8} + o(y^2), \quad \log(1+y) = y + o(y), \quad e^y = 1 + y + o(y),$$
$$\arctan y = y - \frac{y^3}{3} + o(y^4), \quad \sin y = y - \frac{y^3}{6} + o(y^3).$$

Pertanto

$$\sqrt{\log(1+ax^2)} = \sqrt{ax^2 - \frac{a^2x^4}{2} + o(x^5)} = \sqrt{ax}\sqrt{1 - \frac{ax^2}{2} + o(x^3)} = \sqrt{ax}\left(1 - \frac{ax^2}{4} + o(x^3)\right)$$
$$= \sqrt{ax} - \frac{a\sqrt{ax^3}}{4} + o(x^4),$$

$$\arctan(\sqrt{a}x + cx^3) = \sqrt{a}x + cx^3 - a\sqrt{a}\frac{x^3}{3} + o(x^4) = \sqrt{a}x + \left(c - \frac{a\sqrt{a}}{3}\right)x^3 + o(x^4),$$

da cui segue

$$\sqrt{\log(1+ax^2)} - \arctan(\sqrt{ax} + cx^3) = \left(-c + \frac{a\sqrt{a}}{12}\right)x^3 + o(x^4).$$

D'altra parte

$$\left(\frac{\sin x}{x}\right)^x = \left(1 - \frac{x^2}{6} + o(x^3)\right)^x = \exp\left(x\log\left(1 - \frac{x^2}{6} + o(x^3)\right)\right)$$
$$= \exp\left(-\frac{x^3}{6} + o(x^4)\right) = 1 - \frac{x^3}{6} + o(x^4)$$

da cui segue

$$1 - \left(\frac{\sin x}{x}\right)^x = \frac{x^3}{6} + o(x^4).$$

Si conclude che il limite richiesto vale

$$\bigg(-6c+\frac{a\sqrt{a}}{2}\bigg).$$

Esercizio 2. [8 punti] Tracciare il grafico della funzione

$$f(x) = \cos^2 x \, e^{\frac{a}{\cos x}}$$

specificando: dominio, eventuali asintoti, intervalli di monotonia, eventuali punti di massimo/minimo relativo, eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda.

$$[a = (\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3})]$$

Svolgimento: Consideriamo la funziona per $a = \sqrt{2}$:

$$f(x) = \cos^2 x \, e^{\frac{\sqrt{2}}{\cos x}}.$$

Dom $f = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$. la funzione è periodica (periodo 2π) e pari, basta studiarla per esempio in $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$, dove f è di classe C^1 . f > 0 in $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$ e

$$f(x) \to \begin{cases} 0 & \text{per } x \to \frac{\pi}{2}^+ \\ +\infty & \text{per } x \to \frac{\pi}{2}^- \end{cases}$$

 $x = \frac{\pi}{2}$ è asintoto verticale.

Per ogni $x \in [0, \frac{\pi}{2})$ si ha che

$$f'(x) = \sin x(\sqrt{2} - 2\cos x)e^{\frac{\sqrt{2}}{\cos x}}$$
, quindi $f'(x) = 0 \iff x = 0, \ x = \frac{\pi}{4}, \ x = \pi.$

Più precisamente, f è decrescente nell' intervallo $[0, \frac{\pi}{4}]$, e f è crescente negli intervalli $[\frac{\pi}{4}, \frac{\pi}{2})$ e $(\frac{\pi}{2}, \pi]$. Perciò f ha un massimo locale in x = 0 e un minimo locale in $x = \frac{\pi}{4}$. Inoltre

$$\lim_{x \to \frac{\pi}{2}^-} f'(x) = 0.$$

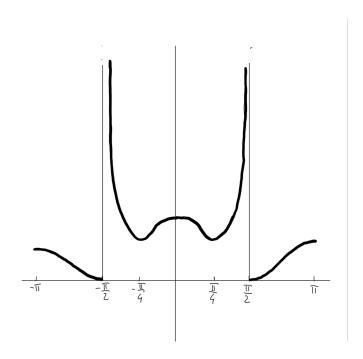


FIGURA 1. Grafico per $a = \sqrt{2}$

Esercizio 3. [7 punti] Discutere la convergenza del seguente integrale improprio al variare del parametro $\alpha \in \mathbb{R}$:

$$\int_0^{a/2} \sin^\alpha \left(\frac{2\pi x}{a}\right) \arcsin\left(\frac{x}{a-x}\right) dx.$$

Calcolarlo per $\alpha = 0$.

$$[a = 5, 4, 3, 2]$$

Svolgimento: Risulta

$$f(x) \sim \left(\frac{2\pi x}{a}\right)^{\alpha} \frac{x}{a-x} \sim \frac{2^{\alpha+1}\pi^{\alpha}}{a^{\alpha+1}} x^{\alpha+1} \text{ per } x \to 0^+.$$

Pertanto f è integrabile in $(0, \frac{a}{4}]$ se e solo se $\alpha > -2$. D'altra parte, posto $y = \frac{a}{2} - x$,

$$f(x) = \sin^{\alpha}\left(\pi - \frac{2\pi}{ay}\right) \arcsin\left(\frac{\frac{a}{2} - y}{\frac{a}{2} + y}\right) \sim \frac{\pi^{\alpha + 1} 2^{\alpha - 1}}{a^{\alpha}} y^{\alpha} \text{ per } y \to 0^+,$$

da cui

$$f(x) \sim \frac{\pi^{\alpha+1}2^{\alpha-1}}{a^{\alpha}} \left(\frac{a}{2} - x\right)^{\alpha} \text{ per } x \to \frac{a}{2}^+.$$

Pertanto f è integrabile in $\left[\frac{a}{4}, \frac{a}{2}\right]$ se e solo se $\alpha > -1$.

Segue che f è integrabile in $(0, \frac{a}{2})$ se e solo se $\alpha > -1$.

Calcoliamo l'integrale per $\alpha = 0$:

$$\int_0^{a/2} \arcsin\left(\frac{x}{a-x}\right) dx.$$

Integrando per parti si ha:

$$\int \arcsin\left(\frac{x}{a-x}\right) dx = x \arcsin\left(\frac{x}{a-x}\right) - \frac{a}{\sqrt{a}} \int \frac{x}{(a-x)\sqrt{a-2x}} dx.$$

Con la sostituzione $\sqrt{a-2x}=y$ nell'ultimo integrale si ottiene

$$\int \frac{x}{(a-x)\sqrt{a-2x}} dx = -\int \frac{a-y^2}{a+y^2} dy = -\int \left(\frac{2a}{a+y^2} - 1\right) dy = -2\sqrt{a} \arctan \frac{y}{\sqrt{a}} + y$$
$$= -2\sqrt{a} \arctan \frac{\sqrt{a-2x}}{\sqrt{a}} + \sqrt{a-2x}.$$

Si deduce

$$\int \arcsin\left(\frac{x}{a-x}\right) dx = x \arcsin\left(\frac{x}{a-x}\right) + 2a \arctan\frac{\sqrt{a-2x}}{\sqrt{a}} - \frac{a}{\sqrt{a}}\sqrt{a-2x}.$$

Pertanto si conclude

$$\int_0^{a/2} \arcsin\left(\frac{x}{a-x}\right) dx = a\left(1 - \frac{\pi}{4}\right).$$

Esercizio 4. [5 punti] Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{2x}{x^2 - 1}y + ax^2 \\ y(0) = a \end{cases},$$

specificando l'intervallo di definizione della soluzione.

$$[a = 5, 4, 3, 2]$$

Svolgimento: Si tratta di un'equazione lineare del I ordine, il cui secondo membro è definito per $x \neq \pm 1$. Poiché alora la condizione iniziale è imposta in $x_0 = 0 \in (-1, 1)$, il dominio della soluzione sarà (-1, 1). In tale intervallo si ha pertanto

$$\int \frac{2x}{x^2 - 1} dx = \log|x^2 - 1| = \log(1 - x^2),$$

e l'integrale generale è allora

$$y(x) = e^{\log(1-x^2)} \left(c + a \int e^{-\log(1-x^2)} x^2 dx \right)$$

$$= (1 - x^2) \left(c + a \int \left(-1 + \frac{1}{1 - x^2} \right) dx \right)$$

$$= (1 - x^2) \left(c - ax + \frac{a}{2} \int \left(\frac{1}{1 - x} + \frac{1}{1 + x} \right) dx \right)$$

$$= (1 - x^2) \left(c - ax + \frac{a}{2} \log \left| \frac{1 + x}{1 - x} \right| \right)$$

$$= (1 - x^2) \left(c - ax + a \log \sqrt{\frac{1 + x}{1 - x}} \right),$$

dove nell'ultimo passaggio si è tenuto conto del fatto che $\frac{1+x}{1-x} > 0$ per ogni $x \in (-1,1)$. Imponendo poi la condizione iniziale si trova c = a. La soluzione è pertanto

$$y(x) = a(1 - x^2) \left(1 - x + \log \sqrt{\frac{1+x}{1-x}} \right),$$

con intervallo di definizione (-1, 1).

Esercizio 5. [5 punti] Calcolare lo sviluppo di Taylor dell'ordine n=5 con centro $x_0=0$ per la seguente funzione:

$$f(x) = \sin\left(\frac{x}{1\pm x}\right)$$
 $\left[f(x) = \cos\left(\frac{x}{1\pm x}\right)\right]$

Svolgimento: Per $x \to 0$

$$\frac{1}{1 \pm x} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + o(x^5), \quad \frac{x}{1 \pm x} = x \mp x^2 + x^3 \mp x^4 + x^5 + o(x^5),$$

perciò

$$\sin\left(\frac{x}{1+x}\right) = \sin(x \mp x^2 + x^3 \mp x^4 + x^5 + o(x^5))$$

$$= x \mp x^2 + x^3 \mp x^4 + x^5 - \frac{1}{6}(x \mp x^2 + x^3 \mp x^4 + x^5)^3 + \frac{1}{120}(x \mp x^2 + x^3 \mp x^4 + x^5)^5 + o(x^5)$$

$$= x \mp x^2 + x^3 \mp x^4 + x^5 - \frac{1}{6}(x^3 \mp 3x^4 + 6x^5) + \frac{1}{120}x^5 + o(x^5)$$

$$= x \mp x^2 + \frac{5}{6}x^3 \mp \frac{1}{2}x^4 + \frac{1}{120}x^5 + o(x^5) \quad \text{per } x \to 0.$$