Università di Roma "Tor Vergata" – Corso di Laurea in Ingegneria Analisi Matematica I – Prova scritta del 30/01/2019

Cognome:
(in STAMPATELLO)
Nome:
(in STAMPATELLO)
Matricola:
Titolare del corso:
Esame orale:

Esercizio	Punteggio
1	
2	
3	
4	
5	
Totale	

Α

Esercizio 1. [5 punti] Calcolare lo sviluppo di Taylor dell'ordine n=5 nel punto $x_0=0$ per la seguente funzione:

 $f(x) = \log(x^3 + \cos x) - \frac{x^2}{2}.$

Svolgimento:

Cognome (in STAMPATELLO):	. Nome (in STAMPATELLO):
---------------------------	--------------------------

Esercizio 2. [6 punti] Calcolare il seguente limite:

$$\lim_{n \to +\infty} \frac{n(1 + e^{-n})^{\frac{1}{n}} - \log(1 + e^{n})}{\sin^2(\frac{e^{-n}}{\sqrt{n}} + \frac{1}{n!})}.$$

Svolgimento:

Esercizio 3. [8 punti] Tracciare il grafico della funzione

$$f(x) = \arcsin(|x^2 + 3x + 2| - 1)$$

specificando: dominio, eventuali asintoti, intervalli di monotonia, eventuali punti di massimo/minimo relativo, eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda.

Svolgimento:

Cognome (in STAMPATELLO)	: No	Nome (in STAMPATELLO):
0 ((,

Esercizio 4. [7 punti] Discutere la convergenza del seguente integrale improprio al variare del parametro $\alpha \in \mathbb{R}$:

$$\int_0^{+\infty} \frac{e^{-\alpha x}}{\sqrt{1 - e^{-2x}}} dx.$$

Calcolarlo per $\alpha = 3$.

Svolgimento:

Company (in CTAMDATELLO)	: No	ama (in CTAMDATEI	το).
Cognome (in Stanfatello)	INO	une (in prantarei)

Esercizio 5. [5 punti] Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{1}{y(16 - x^2)} \\ y(0) = -4 \end{cases}.$$

Svolgimento: