Università di Roma "Tor Vergata" – Corso di Laurea in Ingegneria Analisi Matematica I – Prova scritta del 10/07/2019

Cognome:	
(in STAMPATELLO)	
Nome:	
(in STAMPATELLO)	
Matricola:	
Titolare del corso:	

Esercizio	Punteggio
1	
2	
3	
4	
5	
Totale	

Α

Esercizio 1. [5 punti] Calcolare lo sviluppo di Taylor dell'ordine n=5 con centro $x_0=0$ per la seguente funzione:

$$f(x) = \frac{1}{x + x^2 + e^{-x}}.$$

Esercizio 2. [6 punti] Data la funzione:

$$f(x) = \frac{\left(\sqrt{2} - \sqrt{x}\right)\log\left(\left|\sin\frac{\pi x}{2}\right|\right)}{\left((x-2)^2 + \log\left(\frac{x}{2}\right)\right)\log(|x-2|)},$$

calcolare $\lim_{x\to 0^+} f(x)$ e $\lim_{x\to 2} f(x)$.

Esercizio 3. [8 punti] Tracciare il grafico della funzione

$$f(x) = 5\arctan\left(\frac{1}{x^2}\right) - 2\log|x^2 - 1|$$

specificando: dominio, eventuali asintoti, intervalli di monotonia, eventuali punti di massimo/minimo relativo, eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda.

			,	
Cognome (in STAMPATELL	0):	Nome	(in ςταμρατειιη)·
Cognomic (in Diam alped	Ο <i>)</i>	TVOIIIC	(III DIMIII MILLLO	J · · · · · · · · · · · · · · · · · · ·

Esercizio 4. [7 punti] Discutere la convergenza del seguente integrale improprio al variare del parametro $\alpha \in \mathbb{R}$:

$$\int_{1}^{+\infty} \frac{\log(1 - e^{-\sqrt{x-1}})}{e^{\alpha\sqrt{x-1}}(x-1)^{\alpha}} dx.$$

Calcolarlo per $\alpha = \frac{1}{2}$.

Esercizio 5. [5 punti] Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' + 4y' + 8y = 5\cos(2x) \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$