THE R-MATRIX FOR (TWISTED) AFFINE QUANTUM ALGEBRAS

Ilaria Damiani

To the victims of the NATO aggression against Yugoslavia.

March 24*" 1999: NATO starts bombing the Federal Republic of Yugoslavia,
aiming at its civil and productive structures and killing thousands of people.

May 8", 1999: NATO missiles hit the Chinese Embassy in Belgrade, destroying
it and killing 3 people.

I want to dedicate this paper to the Yugoslav students, whose right to life and
culture is threatened, and to the Chinese students, who raised their voice against
this criminal war.
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0. INTRODUCTION.

The aim of this paper is to give an exponential multiplicative formula for the
R-matrix of the general affine quantum algebra U/,. The problem of describing R
has been attacked from different viewpoints, and different kinds of formulas for R
have already been given explicitly in many (general) cases.

For the finite type algebras, Rosso gave in [30] the first exponential multiplicative
formula (for sl,,): this result was generalized in [22], where the strategy of partial
R-matrices (that is the study of the connections between the coproduct and the
braid group action) was introduced and developed, and the general (finite) case
solved.

This exponential approach, mainly based on the description of R via the Killing
form (see [31]), has been extended to Agl) in [24], and to the general non twisted
affine case in [6].

Other descriptions of R in the affine case (both non twisted and twisted) are also
known, by means of different techniques. Of particular relevance is the application
of the theory of vertex algebras, which turns out to be a powerful instrument
for studying the representations of the affine quantum algebras; in particular it is
important to mention the works of Khoroshkin-Tolstoy (see [20] and [19]) which
(together with [24]) are the first to face the study of R for the affine algebras, and
those of Delius-Gould-Zhang ([8]) and Gandenberger-MacKay-Watts ([12]), where
the R-matrix was constructed in the twisted case.

The purpose of the present paper is to complete the “exponential picture” by
including the twisted affine case in this description.

To this aim a quite precise analysis of the twisted affine quantum algebras is
needed: since the PBW-bases (bases of type Poincaré-Birkhoff-Witt), and the pos-
sibility to make computations on them, are a fundamental tool for working in U,
(and in particular for the construction of R), the most important step in this di-
rection is producing a PBW-basis and stating its main properties by generalizing
the well-known results in the finite and non twisted affine case.

While approaching this question, one easily finds out that in many key points the
structure of the behaviour of the twisted affine quantum algebras is not so different
(up to some minor adjustments involving no conceptual difficulty and requiring
just some care in the notations; notations which are fixed in section 1) from what
is already known in the non twisted case: the definition of the root vectors does
not present any difference from the non twisted case (it only happens that the root
system with multiplicities is slightly more complicated to describe), and the proof
of most of the commutation formulas lies on a property of the root system (x: if «
and J + ra are roots, then r = £+1) which is almost always true; when this is the
case the contribution of this paper is just that of remarking the analogies and giving



3

references for the proofs. Thus, section 2, where copies of U, (Agl)) are embedded
in the affine quantum algebra, has been written following [1] (to which it refers
heavily). The same can be said about paragraphs §5.1 and §5.3 (which are mainly
based on [1]) and about section 6 (where the results previously found are gathered
together to exhibit a PBW-basis). Similarly, the first two paragraphs of section
7 (§7.1 and §7.2, with the exception of lemma 7.2.3), show and use the validity
for the twisted case of the results of [6] (hence those of [22] for what concerns the
real root vectors) where the coproduct and the Killing form on the root vectors are
computed.

But there is a case (A;i)) when d — 24 is a root, so that the property above
denoted by * is no more true. This situation must be dealt with more carefully,

what is done in section 3 (where the case of AgQ) is discussed in details) and in

section 4, where U, (Agm) is embedded in Uq(Aéi)): AéQ) plays here the same role
that A; plays in the general frame (to each vertex there is attached a copy of
Uy (A1) = U,(slz)) and Agl) in the generic affine picture (to “almost each” vertex of
the associated finite diagram there is attached a copy of U, (Agl))). The existence of
a copy of Z/lq(AgQ)) in L{q(Agi)) was already proved in [4] by means of the language
of vertex operators and through the Drinfeld realization of U, (see [17] and [16]);
here we give a different, direct proof, which has the advantage to provide a precise
description of the commutation relations that we need.

Finally, paragraphs §5.2 (this in particular requires a deeper understanding of
the twisted root systems and Weyl groups), §7.4 and §7.5 are devoted to the com-
putations which, after establishing the general frame, are needed in order to make
explicit the description of R, whose final formula is given in paragraphs §7.3 and
§7.6.

I would like to thank Professors Chen Yu, Hu Naihong, Lin Zongzhu, Wang
Jianpan and the other organizers of the International Conference on Representation
Theory, held in Shanghai (China) in June/July 1998, for giving me the opportunity
to participate in this meeting which has been for me of big interest, and for offering
the possibility to publish a contribution on the Conference Proceedings.

Unfortunately last spring, during the work of drawing up of the paper, the
country where I live (Italy) participated in the war against the Federal Republic of
Yugoslavia, which has brutally involved also the People’s Republic of China: the
decision of the NATO countries to isolate the scientific community of Yugosalvia is
just one - yet hateful - of the “collateral effects” of this aggression. Being deeply
concerned by the evident and arrogant injustice of this politics, I want to express,
as a mathematician, my opposition to this choice, together with my solidariety to
all those who are fighting every day to make the science survive, even in these hard
times, for the present and future generations.

1. GENERAL SETTING: DEFINITIONS AND PRELIMINARIES.
§1.1. Affine Kac-Moody algebras.

In this paragraph we recall some basic generalities; for the proofs and for a
deeper and more detailed investigation we refer to [18], where these notions have
been introduced and studied.

Let g be a Kac-Moody algebra of finite type. Then an automorphism of the
Dynkin diagram of g of order k induces an automorphism of g of the same order (it
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is well known and immediate to see that k =1, 2 or 3). This automorphism, whose
eigenvalues are of course of the form e 7 with 0 < r < k, is diagonalizable, that is
g= @TGZ/kZ g, g being the eigenspace relative to e F. It is straightforward
to prove that this decomposition of g as a direct sum is a Z/kZ-grading, that is
(g7, g()] C g"+9) Vr, s € Z/kZ; in particular g(® is a Lie subalgebra of g (indeed
a Kac-Moody algebra of finite type) and g(") is a g(®)-module.

This remark allows to give a natural structure of Lie algebra to

Pl @ cr;

reZ

it is easy to construct a non trivial central extension

(EB g g (CtT> ® Cc

reZ

of this algebra via the (non degenerate) Killing form on g and a natural structure
of Lie algebra on

g = (@ g e Ct”) ® Cca Co),

reZ
where add = t%.
It was proved by Kac (see [18]) that g(¥) is a Kac-Moody algebra of affine type
depending just on g and k£ and not on the chosen Dynkin diagram automorphism
(remark that g™ is the non twisted affine Kac-Moody algebra associated to g; in
case that k& > 1 the algebra g% is said to be twisted, that is relative to a non trivial
automorphism of the Dynkin diagram); moreover all the affine Kac-Moody algebras
are isomorphic to §*) for some finite Kac-Moody algebra g and some k € {1,2,3}.
We also have that the Dynkin diagram I' of §(®) is an extension of the Dynkin
diagram Ty of g(®) (which is called the finite diagram - or algebra - associated to
the affine one) by adding an extra vertex, which will be denoted by 0; remark that
if £ =1 then g(® =g.

61.2. Some notations, structures and general properties.

Let us fix an affine Kac-Moody algebra §(¥). We shall now introduce some
notations.

First of all let us denote by n the number of vertices of the Dynkin diagram of
g; this means that g is of type X for some X € {A, B,C, D, E, F,G}, and in this
case we say that §(®) is of type Xék). We denote by n the cardinality of Iy, where
Iy is the set of vertices of I'y (it means that the cardinality of I, the set of vertices
of T', is n + 1) and note that n = n < k = 1. In particular it is possible to identify
I with the set {0,1,...,n} and Iy with {1,...,n} (so that I = Iy U {0}). One such
identification will be fixed in the next paragraph.

Furthermore, A = (a;;)ijer will denote the Cartan matrix of g and Ay will
be (aij)ijer, (the Cartan matrix of g(*)). Remember that (I, A4) determines g(*)
completely; remark also that (I, A) can be extended to (I, Axo) Where Ioo =1 U
{OO} and A = (aij)ije[oo With @00 = Gooi = dio Vi € I.

We have the following structures associated to (I, A):



1.2.A Root lattice.
The root lattice Q and the extended root lattice Qo of §*), and the finite root
lattice Qo of g(© are defined respectively by:

Q= Picr Loy, Qoo = Dicr, Loy, Qo= DPicr, La,.

Of course Qp C Q = Qo ® Zay C Qoo = Q @ Zavs,. We also define QT and Q(J{ as
follows:

Q=) Naj= {Znai €Qlri >0Vie 1}, QF =QNQ".
iel icl

It can be useful to see @, @ and @y as lattices in a vector space over R naturally

defined as Qoo r = R ®7 Q. Set also Qr and Qo r to be the R-subspaces of Qoo r

generated respectively by @) and Q.

1.2.B Cartan matrix and symmetric bilinear form.

The Cartan matrix A is symmetrizable, that is there exists a diagonal matrix
D = diag(d;|i € I) such that DA is symmetric; the diagonal entries d;’s can
be chosen to be coprime positive integers, and this condition determines them
uniquely. Remark that if we put Do, = diag(d;|i € I) with ds = dp then Do, A
is symmetric.

Hence Do Ao induces a symmetric bilinear form (-]-) on Qoo r (Z-valued on
Qo) defined by (a;|ej) = dja;;. We have that (:|-) is non degenerate but it is not
positive definite, while (-|~)|QOXQ0 is positive definite (that is (+|-) induces a structure

of Euclidean space on Qo r) and (|)‘Q o is degenerate positive semidefinite: there
X

exists a (unique) non zero element § € Q% such that § — ap € QF and (6|6) = 0;
more precisely (0la) = 0 Va € Q. Remark that @ can be decomposed as a direct
sum also as Q = Qo ® Z4, and that of course (a + 7|8 + sd) = (a|B) Vo, € Q
and Vr,s € Z.

1.2.C Weight lattices.

(+]-) induces an identification of Hom(Qo,Z) with a subgroup P of Qo r. P is,
by the very definition, the lattice P'= ®;c1,Zw; where the w;’s, called fundamental
weights, are defined as the elements of (Qor characterized by the property that
(wWilaj) = 8i; Vj € Iy. Qo is obviously a sublattice of P, and it is worth introducing
another important sublattice P of P as P = ®;¢j, Zw;, where Vi € Iy w; = d;wj; it
is to be noticed that Q9 C P C P. The elements of P are called weights and the

elements of
P, = {Zriw} € Plr; >0 Vi€ ]0}
icly
are called dominant weights; we also denote by P, the set Py = P} N P. Remark
that [P P] = [[;c;, di and [P : Qo] = det(Ap), what can be easily seen noticing
that Vi € Iy we have a; = Zjelo QjiWs.

It is also important to mention the realization of P as a group of transformations
of @ as follows: define t : P — Hom(Q, Q) by setting t,(a) = a — (z|a)d. Remark
that ¢ is an injective homomorphism of groups and that Vx € P t, preserves
and fixes 0; equivalently we can say that ¢t maps P into Aut(Q(.|.s),

d

('|')|Q><Q
where Aut(Q(.|.),s) is the group of automorphisms of @ preserving (-
fixing 9.

")‘QXQ an



By abuse of notation we shall usually denote by x also its image t,..

1.2.D Weyl and braid group.

The Weyl group W' is the subgroup of Aut(Q(.|.),s) generated by {s;|i € I'} where
si(aj) = a5 — a;j04. Wy, the Weyl group of g9 is the subgroup of W generated
by {SZ|Z S Io}

Aut(T) is the group of automorphisms of the Dynkin diagram of g(*) (which can
be naturally identified to a subgroup of Aut(Q.|.)s): T() = ar@)).

The subgroups of Aut(Q(.|.),s) introduced above (P, W, Wy, Aut(I')) have the
following properties:

i) W Aut(T) = {id}, and 75,771 = s,(;) Vi € I V7 € Aut(T); hence

W (W, Aut(T')) and (W, Aut(I")) = W x Aut(T);

of course (W,G) =W x G VG < Aut().
ii) Wo N P = {id} and wrw™! = w(x) Vo € P VYw € W; hence P < (W, P), so
that (Wy, P) = P x Wy; as above (Wy, L) = L x Wy VL < P~ Wy-stable.
iii) W < P x Wy; more precisely
Qo x Wy in the non twisted case
W =4 PxW, in case Agi)
Qo x Wy  otherwise.

(Qo € Qo= Dic1,Za;C P where o= §*).

iv) Let 7 = Aut(T) N (P x Wp); then

. : : : (2)
WeW T = P x Wy in the non twisted case and in case A,/
P x W, otherwise.

For a precise description of 7 see [14].
The length function [ : W — N is defined by

[(w) = min{r € N|Jiy,...,i, € [, T €T st. W =58, ... S, T}

Also, the braid group B is the group generated by {Tglw € W} with relations
TwTw = Tye whenever [(ww') = (W) + (@) (see [29]). Set T; = Ts,.

1.2.E Root system.

The root system ® C @ divides in two components: ® = ®* U &™ where

' = Wasi € I} = W A{wayli € I} = {a € ®|(a]a) > 0} = {real roots}
and
O™ = {mdlm € Z\ {0}} = {a € ®|(a|a) = 0} = {imaginary roots}.
@™ can be described in terms of ®¢ = Wy.{a;|i € Io} (the root system of g(©))

as follows:
{mé + a|a € &g, m € Z} in the non twisted case
{md + a|a € ®g,m € Z}U
U{(2m+1)0 4+ 2ala € @y, (o|a) = 2,m € Z} in case Aéi)
{md,d + ala € ®g,m € Z} otherwise,

re __



or equivalently dg,) =d; Vi € I, w € W), it is worth remark-

where d,, =

(@ja)
ing that all the subgroups of Aut(Q(.|.),s) considered in 1.2.C and 1.2.D leave ®
The multiplicity of each real root is 1; on the other hand let us define, Vi € I,

stable.
in the non twisted case or in case A(Q) ~ . = .
v nand k= max{d;|i € Iy},

di = !
d; otherwise

and set I'™ = {i € Io|d;|m}; then the multiplicity of md is
if k|m

m=1"
# {@ if & fm,

which can be expressed also by saying that the root system with multiplicities is

O = UM where O™ = {(md,i)|m € Z\ {0}, ds|m}

(Denote by p : & — ® the natural map).

Remark that for m # 0 we have
(md,i) € D™ < di|m < mé+ a; € < mw; € W.

There is also another decomposition of ®: ® = &, UP_, where ;. =dNQT =
= — &, = {negative roots}. It induces an analogous
decomposition of ® and of its real and imaginary parts, with obvious notations.

= {positive roots} and ®_
Recall also the relation between the length function and the root system: [(w)

= #®, (w) where
O ()= {a @ |u () <0}:
recall that if s;, - s;. is a reduced expression then
ot Sik_l(aik)‘l S k S 7“}.

(I)+<Si1 C et SZ'T) = {Sil .
) = 1(@) + (@) & By (D) C Py (W),

Finally, [(ww’

§1.3. Dynkin diagrams and classification.

In the following we list the affine Dynkin diagrams. The labels under the vertices
fix an identification between I and {0, 1, ...,n} such that Iy corresponds to {1, ...,n}.
For each type we also recall the coefficients r; (for i € Ij: recall that r( is always

1) in the expression § = >
Xilaw ™ (T, 1) (re,.eymn)
AT =3 1)

VRN
IR (1,...,1)

AD s



BSY

o

DY

> 2

>1

>3

>1

> 2

>1

1 2 3’ n—1 n
o1 00
0—0—0...0—0—0
2 3 4 n—2 n—1 n
o0
o1
o—o—o—o—o0
2 3 4 5 6
o1
0o—o—o0—o0—o0—o0—o0
0 2 3 4 5 6
o1
0—o0—0—0—0——0——0—0
3 4 5 6 7
o—o<——o0o—o0—o0
1 2 3 4 0
ol o—o
1 2 0
o< =o
1 0

(1,1,2,...,2,1)

(2,1,2,3,2,1)

(2,2,3,4,3,2,1)

(3,2,4,6,5,4,3,2)

(2,4,3,2)

(2,3,2,1)

(2,1)



§1.4. The quantum algebra.

In this paragraph we recall the definition of the quantum group U, associated to

the affine Kac-Moody algebra §(®) of type X,%k), and the main structures that U,
can be endowed with.

Definition 1.4.1.
Let 3% be the affine Kac-Moody algebra of type X,,gk).

We denote by U, = U, (%)) = Z/lq(XT%k)) the quantum algebra of §(¥), that is the
associative C(q)-algebra generated by

(B, Fi, K DY = KElie 1}

with relations:
KKy = Kyxip VA€ Qoo
K\E; = ¢ E K\ VYA€ Qu, Vi€ I,
K\F; = ¢ AR K, YA€ Qu, Vi€,

K,—K '
[EZ,FJ] :dm—jl \V/Z,j EI
a; — 4g;
1—a;; 1 1—ai 1
> [ %] E[E;E; " =0=)" { %} FIEF, "7 Vit jel,
r=0 " a4 r=0 " @

where we set:

1) K, = Hiefoo Klml if}‘:Zielwmiaiero; .
ii) go = g% Yo € ™, ¢; = qa, Vi € I, qms,i) = ¢; V(m,i) € P
iit) [m]yr = % and [m] ! = [, [s]gr Vm,r € Z;

moreover [T] = % Vm € Z,Vs <r e€N;
slq [s]gm ![r—s]gm!

iv) for further use let us also define Va € &, Yz € U,

. ™
exp, ()= ) (m)a!’
m>0 o
where Va € <i>+, Vm € N we have put
2m
q -1 : r m
2 if a € oT°
(M)a={ ¢ —1 T oand  (m)a!= [[(5)a
m if a € @‘}r“ s=1

Remark 1.4.2.

Recall that on U, we have the following structures:

1) the Q-gradation U, = ®,cly,, determined by the conditions that E; € U, q,
and Fy € Uy o, Vi€ I, K € Uy Vi € Lo and Uy oUy 3 C Uy asp Ya, B € Q;

2) the triangular decomposition: U, = U, ® US ® Z/{; = L{; ® US ® U, , where
Uy, U) and U] are the subalgebras of U, generated respectively by {E;|i € I},
{K;" i € Io} and {Fj|i € I}; define also UZ° = (U, U2), U0 = (U, UD);
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3) the C-anti-linear anti-involution € : U, — U, defined by
QE)=F;, QE)=EVicl, QK)=K;'Vicly; Q¢ =q Y
4) the C(g)-linear anti-involution = : U, — U, defined by
E(E)=E;, E(F)=FVYicl, (K=K, Vi€ Iy;

5) a braid group action commuting with €2, verifying E7; = Ti_lE Vi € I, and
preserving the gradation (that is 1o, (Uy,,;) = Uy w(n)); more precisely

Tw(E;) eUT if w € W andi € I are such that w(a;) € Q% (ie. l(ws;) > I(w)),

q,w(az)
and
o
Ti(E;) = -FK; Yiel, Ti(E)=Y (-1 %g B “EE" Vitjel
r=0

where Vm € N E(m) = BT

i Im]g D

6) a Hopf-structure (A, €, S), whose coproduct A : U, — U, @ U, is given by

A(E;) =E; 1+ K, ® E;,

AF) =10 F+F e K; ",
A(K;) = K; ® Ky

Let us remark that Ao Q =00 (Q® Q) o A where o : Uy ® U; — Uy @ Uy is defined
by o(z ®@y) =y @ x;

7) the Killing form, that is the unique bilinear form (-,-) : UZ° @ U — C(q)
such that

i) (2,3192) = (A(2),y1 @ y2) Yo € UT", Vi1, y2 € U

i) (z122,y) = (22 @ 21, A(y)) V1,22 € UT%, Yy € UTY;

111) ('7 ')‘uigxuigﬁ =0if n 7é 7;

iV) (K)UK,LL) = q_o\#) V)\»H € QOO7

v) (E;, F,) = q_+ Vi eI

(+,-) has the foilowing important properties:

(
)

) (-, .)|uJr <y~ s non degenerate Vn € Q;
(

qa,—n

a
b) (@K y) = (2,y) = (2,yKx) Yo € U, Yy € Uy, YA € Q.

2. COPIES OF A" IN x!",

62.1. Definition of the root vectors.

In this section we shall shortly recall Beck’s results for non-twisted affine quan-
tum algebras (see [1] and [2]) and prove that his method applies word by word
to the twisted case, that is we can find a copy of Z/lq(Agl)) in Z/{q(Xék)) Vi € Io,
provided that (Xrgk), i) # (A(z) 1).

2n
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To this aim let us first define, Vi € I, an element \; € P as follows:
A = di;

where we recall that d; = min{m > 0|mw; € W} (see 1.2.E).
The next proposition and remark is what one needs in order to define the positive
root vectors.

Proposition 2.1.1
Vm € N we have [((A1 - ... - Ap)™) =m D 1)

Proof: See [3]. i

Remark 2.1.2.

Y ={mé—aePiaceQi,m>0tU{mé+ac P |acQf,meN}.

Moreover
{mé—aedfacQi,m>0t= ]S (.- An)™),
m>0
{mé+ac®ilacQf,meNt= ] o (A Xn)™™).
m>0
Proof: See [2]. O

The preceding results suggest to define the following sequence, by means of which
it will be easy to give a suitable definition of the positive real root vectors.

Definition 2.1.3.
Let N=1(A1-...-\,) and define ¢ : Z — I to be such that

{ Al et Ay =8y, * e SUn T
tran =T(tp) Vr ez,
where 7 is a suitable element of 7 (uniquely determined by the above condition);

for further determinations of ¢ see remark 2.1.5 and notation 4.2.5.
Notice that ¢ induces functions

Z3>r—w. €W and Z3>rw 3. € P

by

Syt et 8 ifr>1
Wy = { . e and 3, =wr(a,,).
St e Supnif 7 <0,
It is well known (see [2]) that [ is a bijection.
Then we arrive at the definition of the root vectors:

Definition 2.1.4.
The positive real root vectors E, (with a € ®%°) are defined by

I T, (EL,) if r>1
T\ T(E,) =ET,,(B,) ifr<o0

r
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Also, positive imaginary root vectors E(m di6,0) (with m > 0, i € 1) are defined by

- . o
E(mdNié,i) - = Emczié—ai EZ + 4q; ElE

m(Lé—al :
Similarly, the negative root vectors are defined by

Fo=Q(E,) ifacd®?, F,=QE,) ifacd™

Remark 2.1.5.

It is worth remarking, for later use, that ¢ can be chosen (and it will be chosen!)
so that ANg =0 < N; < ... < N, = N and 3my,...,7, € 7 such that Vi =1,....n
Ai =Sy 1 S, Ti (notice that 71 - ... - 7, = 7).

If this is the case then

Emdié—l—ai :T)\_im(Ei) VmGN,

Emdpii5*ai
which depends on the fact that
1) T)\jTAi = T)\iT)\j Vi, 7 € Iy;
2) Ty, (E;) = E; and Ty, T; = T;T\, Vi, j € Iy such that j # .
Proof: See [25] and [6]. a

=TVT; Y (E;) Ym >0,

Definition 2.1.6.
If i € Iy we define L{él) to be the C(q%)-subalgebra of U, = Z/Iq(Xi(ik)) generated
by {Ei, By s_o.. Fi, Fy KL KL

Obviously Z/léi) is Q-stable and pointwise fixed by T, for j € Iy \ {i}. Moreover

i0—a?

it will become clear that L[éi) is the smallest C(g%)-subalgebra of U, containing
FE; and K; and stable under Tiil,T/\iil; in particular we shall see that it contains

m
§2.2. The homomorphisms ;.

We are now ready to state the announced properties of the root vectors just

defined and of the braid group action, which will allow us to construct homomor-
phisms ¢; : Z/{q(Agl)) — Z/{éi) c U, (Xék)) for each i € Iy, under the only condition
that ¢ # 1 if X;Lk) = Agi), condition that we shall assume in the remaining part
of section 2. These homomorphisms ¢; behave “well” on the root vectors (that
is, they transform root vectors in root vectors, see corollary 2.2.3), and this fact

immediately implies some important consequences: in particular we shall translate
the commutation relations from Z/{q(Agl)) to Uy (X T%k)) We shall also underline the

obstruction that we meet if we try to apply the same argument when Xék) = A;i)
and ¢ = 1: this last situation will be studied in sections 3 and 4.

Lemma 2.2.1
Assume, as required, that X,%k) #* Agi) or i # 1; then we have:
2) (TnT71)% € (Tn, 15 # 0);

did+a; i§+aiEi'

d—a?
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diaij
4) Vj € Iy \ {i} we have (TMTfl)QTAJ_dj € (I |r € Ip\ {i,7}); in particular
diai;
DTN E) =Ty, 7 Ti(E)).

Proof: For the proof see [25] and [1]. Here we want just to point out that all the
statements are based on the fact that there is no root « of the form o = md + eq;
such that d;0 + a; < o < a;.

Remark that this is no longer true in case ASB for + = 1: indeed in this case we
have § + «; < d + 2¢; < ;. Hence the existence of roots of the form md + 2a with
a € &1 N Qo (which never happens if we are not in case Aéﬁf) is what makes the
difference between this case and the others. O

Since Beck’s construction of the homomorphisms ¢; : L{q(Agl)) — qui) - L{q(XﬁLl))l
(and their properties) is based on the statements of lemma 2.2.1 the argument used
in [1] applies exactly to the present situation, so that we have:

Proposition 2.2.2
IfX ék) # Ag,i) or ¢ # 1, then there exists a C-algebra homomorphism

i Ug(AT) = UD Cuy(x (M)

verifying the following properties:

1) pi(K1) = Ky, pi(K1Ko) = Kj 5 and ¢;(q) = ¢i = ¢%;

2) gﬁz(El) == Ez and @z(EO) = EJ¢5—ai;

3) 0ifd = Qi

4) p; Ty = Typ; and ;T = TAiTi_lgoi, where 7 is the non trivial Dynkin diagram
automorphism of Agl). O

Corollary 2.2.3

Suppose again that X ,,%k) #* Aéi) or i # 1 and let v; be the group homomorphism
v Q(Agl)) — Q(Xék)) defined in the obvious way by v;(aq) = v, vi(6) = d;d;
furthermore let the injection 7; : <I>_|_(A§1)) — §>+(Xék)) be given by:

() = { vi(@) if « is real
V/L ; . . . .
“ (vi(a),i) if « is imaginarys;

Then ¢; has the property that
@i(Ka) = Kui(a) Va € Q(Agl)%

9i(Ba) = Ep,(a) Ya € <I>+(A§1))

and 3 3 _
0i(Eo) = Ep (o) Vaeo™AM),

where the vectors E(m d;s,i) are defined by the relation

L= (gi—q ")) E(pnd.st™ = exp ((qi —q )Y E(mdia,i)“m) :

m>0 m>0
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O

As an immediate consequence of corollary 2.2.3, we have the following proposi-
tion.

Proposition 2.2.4

Suppose as before that (X ék), i) # (Agn), 1); then we have the following relations
in Uy (XF):

1) [E(rdié,i)’E(sJié,i)J =0= [E(rczi(s,i)’E(sciié,i)] vr,s > 0;

2) Tn;(E(vdisiy) = Eraisiy and Tn, (Eg,5.) = Edgs V7> 0,7 € lo;
~1

2], Krds — K5

3) [Erdsiy Flsaisn) = 57"8[ 7“]% - q'—ldlg vr,s > 0;
2r],, ’

4) [E(rczi(;,i)’EsJiﬁ-l-ai] = Tq E(r—l—s)dié—i—ai and

[2r]q,
[E(Wii‘s’i)’ E(S—H)Uiits—ai] - Tq E(T’+S+1)Cii(5—0&i Vr>0,s > 0.
Proof: The claim follows applying ¢; to the analogous relations holding in

L{q(Agl)) (see [5] and [1]). a

3. THE CASE OF AY.

In this section we study the case of 5[:(32) = AéQ) (and U, will indicate U, (5[%2))).
In particular we want to understand some important properties of the imaginary
root vectors, their commutation rules, and their behaviour under the action of the
braid group.

§3.1. Real root vectors.

Recall that the Dynkin diagram of Agg) is

AP o

o
1 0

Il

and that we can describe its roots as follows: § = ag + 2a and
O = {md+ ay,(m+1)6 — ag, (2m + 1)0 £ 201|m € N},
'™ = {(m +1)8|m € N};
moreover wy; = Wi = SpS1: indeed d; = 1 and
sosi(a1) = —sp(an) = —(o1 +ap) = =0 + a1 = wi(ay).
It follows that the real root vectors are given by:
Ermsta, = (ToT1) ™ (E1),
Etni1)s—a, = (ToT1)™To(EL),

Eominyst20, = (ToT1) "7 (Ep),
Eom+1)5—20, = (ToT1)™(Ep).
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We shall now give the following proposition which will semplify many calcula-
tions.

Proposition 3.1.1
Vo€ @5\ {ao} ToE(Ea) = Esy(a)-
Va € @¢\{on} ET(E,) =FE

Proof: Z(E,) € U}, hence T)E(Eq) € Uy sy(a); it is then enough to prove that
ToE(E,) is a root vector, which is easily seen: ToZ(ToTh) ™™ (E1) = (ToT1)™To(En)
and similarly for the other root vectors, so that the first assertion is proved. From
this result and from the fact that (TH=)(ETy) = ToT1 the second assertion of the

proposition follows immediately. O

s1(a)-

We shall now give some simple commutation relations between the real root
vectors.

Lemma 3.1.2
[Es—ay, F1] = —[4]¢K1Eo and E1Es i, — q_2E5+061E1 = q_2[4]qE5+2oc1-
Proof: The first identity is a straightforward computation, using that

Es_ o, = To(Ey) = —EoFy + ¢ *E, Ey;

the second relation is =7} applied to the first one. O
As a first application of lemma 3.1.2 we state the following proposition:
Proposition 3.1.3

{E1\,Es_o,, F1, Fs_o,, Ki*, KF'} is a system of generators of U, as a C(q)-
algebra.

Proof: Let A be the C(g)-subalgebra of U, generated by
{Eb E§—a17 F17 F5—C¥17 Kit17 K(:)l:l}

It is then enough to prove that Fy, Fy € A. Since A is (-stable it is enough to

prove that Ey € A. But Ey = —ﬁKfl[Eg,al,Fl] e A O
q

Corollary 3.1.4
The least subalgebra of U, containing Z/{g and E; and stable under the action of
TOT1 and T()E is Z/{q. O

§3.2. The imaginary root vector Ej.

Here we want to study some properties of Es, where we recall that

Es = —Es_o,B1+q *E1Es_q,.

Proposition 3.2.1
To=E(Es) = Es.

Proof: The claim follows immediately from the definitions and thanks to propo-
sition 3.1.1. O

Proposition 3.2.2
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The following commutation rules hold:
[EéaEl] = _[3]q!E5+a17 [EévFl] = _[3]q!K1E6—oc1-

Proof: The proof consists in simple computations using the following ingredi-
ents: Es = EgE? — q3[2],E1EoE1 + ¢ ®E?Ey (by the definition and the fact that
Es o, = —EoE1 + ¢ *E1Ey),

Esia, =T Ty N (EY) = T (=EB1Eo + ¢ *EoBy) = —K; Iy Y (Eo), Fi] =

4 3
=K' |3 () B BB R ==Y (-1 ¢ T B BB
r=0 r=0
and 1 1 1
g "Ky—q" K|

B, R = [m, -
q—4q

m—1
El .

Proposition 3.2.3 B .
ET1(Es) = Es (hence TyTy (Es) = Es, thanks to proposition 3.2.1).

Proof: Since =T} (E;) = —K; ' F; we have that

ETi(Es) = K{ 'FiEBsya, — ¢ 2Espa, K7 'Fi = —K{ [Bsya,, Fi] =

1
= — K '[[Es, B\, i) = —

1 - n — ~
314! 15 HEy [[Es, Fill = K '[By, K1 Es_,] = Es.
q !

[3l!
O

Corollary 3.2.4
Applying a power of TyT; to proposition 3.2.2 we get that Vm € N the following
commutation relations hold:

[Es, Emstar] = —[Bla!Emitysrars  [Es Eanins—an] = Bl Bimt2)5—an-

O

We conclude this paragraph with the commutation rules between Ejs and the
simple root vectors Ey and Fj.

Lemma 3.2.5

(Es, Fo] = —(¢* = 1)[3]4BY Ko and [Ej, Bo] = —(¢* — 1)[3]¢E3_,

Proof: The first relation is found by straightforward calculations; the second
relation is found by applying Tp= to the first one. O

§3.3. The imaginary root vectors E,,;.

Here we generalize to the vectors Em5 = —FEns—a, E1 + q_QElEm(;_al what we
know for Ej.

We start by proving the equivalence between some commutation rules among
the imaginary root vectors and their behaviour under the action of TyT7.

This is completely similar to what happens in the case of Agl).
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Lemma 3.3.1
Vm > 0 the following implications hold:

[Es, Erms] = 0 ToT1 (Eny1ys) = Emt1)s

and
ToT1(Emi1)s) = Etmi1)s © ToE(Eiminys) = Eanins = ET1(Emi1)s)-

Proof: See [5]. O

The following proposition is a fundamental tool in the study of the imaginary
root vectors.

Proposition 3.3.2
Let Py, be the following statement: .

Z)m TOTl (Emé) = Em6 == TOE(Em(S) = E1—11 (Emé);
ZZ)m EOE(m—l)(H—al - q_4E(m—1)5+a1E0 =

1 . i o
B @W —@" =0 ) Bs—as BEn—1ys + (@ + 0 = a7 En1)sBs—as +

+q2E25—a1E(m—2)6 - q_ZE(m—Z)dEQ(S—al);

”Z)m [Em57 El] = (q4 - q72>E~(m—1)6E6+a1 + (q2 - q74)E6+a1E~|(m—1)5+

+q2E(m—2)6E26+a1 - q_2E26+a1E(m—2)53

) [Emss Bs—ar] = —(¢* — 72 Bos—ar BEgm—1)s — (> = ) En_1)sE26—a, +

—¢*F35—0, Em—2s + ¢ >E(m—2)E35—as;

V)m [Ers, Ess) =0 ¥r,s < m.

Then, if we set E_s = 0 and Fos = _q 1q1’ P, is true for every m > 0.

Proof: The proof is an induction on m.

If m = 1 remark that: i); is proposition 3.2.1 and proposition 3.2.3; ii); is the
expression of Fs_,, in terms of Ey and Ej; ¢ii); is proposition 3.2.2; iv); is Tp=
applied to #ii)1; v); is obvious.

Let m be bigger than 1. Then:

1) follows immediately from v),,_1 (which in particular implies [E5, E(m—1)5] =
0) and from lemma 3.3.1.

i1)m is obtained by the following steps, where we shall indicate among the lines
the results that we need to pass from one side to the other of the identities:

EOE(m—1)6+a1 - q_4E(m—1)6+a1E0 =
{corollary 3.2.4}

1

N _W‘I!(EOEEE(m72)5+a1 - EO‘E(WJ)HME‘ﬁL
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~q *E5E(m—2)5100 Bo + @ * E(m—2)5 100 Es Eo) =
{lemma 3.2.5}

1 - _
B _Wq!([E57EOE(m—2)5+a1 = 0 " Em-2)5+a, Bl +

+(¢” = DBy (B0, Een-25ter — 4 "Em-2sto Fi-a,)) =
{1)m—1, 14)m—1 and definition of E~’(m_1)5}

1 /1 B N o 4
:_W(@[Ea,(f—cf—q NEs—aEm—2ys + (@*+ 0> = ) Egn_2)sFs—a, +

+Q2E25—a1 E(m—3)5 - q_QE(m—3)6E2§—a1]+
—(¢* - 1)[3]qE5—a1E(m—1)6 -(1- q_2)[3]qE(m—1)5E5—a1> =
{corollary 3.2.4 and v),,—1}

1 _ ~ p—
N _W((q4 - q2 -4 2)E25—041E(m—2)5 + (q2 T4
q

2 - q_4)E(m—2)6E25—a1+
+q2E35_a1 E(m—3)5 - q_2E(m—3)5E35—a1+
—(@® =)@+ 4 ) Es-a, Ean-1)s — (1 = ¢ )@ + ¢ ) Em-1)sEs-a) =
{reordering the summands}

1 B - .
- W((q4 -¢ —q 2)E5—Q1E(m71)5 + (q2 +q2—q 4)E(m,1)5E5_a1+
q

+@*E2s—a1 Eim-25 — ¢ 2 En—2)sE26—ay )+

1 - ) _ o
_W([E(m_l)é, Es—o)] + (¢* = ¢ ) E2s-a1 Eon—2s + (© — ¢ ") E(m-2sF26—a, +
q

+q2E35—a1E~1(m73)5 - q_ZE(mfi%)éE?)é—al) =
{iv)m-1}

1 . i o
- W«Cfl ~ ¢~ 0 ) Es—a, Egn-1)s + (@® + 47 = ¢ ) E(n-1)sEs—a, +
q

+q2E26—a1E(m—2)5 - q_zE(m—2)5E26—oz1)a
which is the claim.
ii1)y, is the result of the following computations, where the first identity is true
thanks to 4),:
[Em5a El] = [_E(m—l)é—a1E6+a1 + q72E(5+a1E(m—1)5—alaE1] =

= _E(m—l)é—a1E5+a1E1 + q_2E5+a1E(m—1)6—a1E1+
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+E1E(m—1)5—a1E5+0¢1 - q_2E1E5+a1E(m—1)6—a1 =

{lemma 3.1.2 and definition of E(m_l)g}
= _q2E(m—1)6—a1E1E5+a1 + [4]qE(m—1)6—a1E5+2a1 + q_4E5+a1E1E(m—1)6—oz1+

4 ?Estar En—1)s + By E(m—1)5—a1 Bstar — @ *E1Bsyay Egn-1)5—a; =

{definition of E(m_1)5 and lemma 3.1.2}
= qu(m—1)5E5+a1 - q_2E6+a1E(m—1)5+

+[4]‘I(E(m*1)5*0¢1E5+2061 - q_4E5+2a1E(m71)57a1) =

{ETl (H)m) and i)m_Lm_Q}
= @En-1)6Estar — @ *Estar Emn—1ys + (¢* — @ — ¢ ) Em—1)sEs oy +

+(*+q% - q_4)E5+a1E(m—1)6 + QQE(m—z)aEzsz - q_2E26+o¢1E(m—2)5 =
= (q4 - q_Q)E(m—1)6E5+O<1 + (q2 - q_4>E5+o<1E(m—1)6+

+q2E(m—2)6E25+a1 - q_2E25+a1E(m—2)57
which 18 94%) .

V), is found by applying ToZ= to ii) .

v)m: we have to prove that [Emg, EM] =0 Vr < m. Since [Em(;, ET(;] € L{;(me
it is enough to prove that it commutes with Fjy and F; (see [27]): in particular,
proving that it belongs to the center of U/, will solve the problem; but the set
of the elements of U, commuting with [Em(;,Er(;] is a subalgebra of U, obviously
containing L{g and stable by the action of TyT} and TH= (because [Emg, ET(;] is fixed
by ToTy and Tp=). Hence the problem reduces (see corollary 3.1.4) to show that
([Enms, Eyvs], B1] = 0, that is [Eps, [Evs, B1]] = [Ers, [Ems, E1]]: this will be done by
induction on r:

r = 1: proposition 3.2.2, i),,, (ToT1)*(iii),,) and v),,—1 imply that
[Em67 [EéaEl]] = _[3]q![Em57E6+a1] =

= —[814!((¢* = VBl¢Em-1)6F25+a; + (1 = 47 ?)[3]gFasay Em-1)5+
+0°E(m—2)5F36+0, — 0 *Ess1a, Egn_2)5) =
= [Es, (¢* — D[BlE(m—1)6Estar + (1 — ¢ ) [3l¢Es4ay Egm—1)5+
+q2E(m_2)5E25+a1 - q_2E25+a1E(m—2)5] =
= [Es5, [Ems, Er]),
so that [Em(;, E5] = 0.
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r > 1: notice that if we put z; = ¢* — ¢~2, Y1 = @ —q 7t v =q?, Y2 = — q 2,
we have that Vu < m, Vv € N (applying (To11)~" to @ii),)
~ 2 ~ ~
[Eu67 EU(H—al] - Z(wsE(ufs)éE(ers)&Jral + ysE(v+s)5+a1E(ufs)5);
s=1
hence, using the inductive hypothesis and v),,_1, we get that
~ ~ ~ 2 ~ ~
[Em5; [ET‘57 El“ = | Ems, Z(ISE(T‘—S)(SES(S+041 + ysE56+a1E(r—s)6)] =
s=1
2 ~ ~ ~ ~
= (-735xtE(r—s)(SE(m—t)5E(s+t)5+oz1 + xsytE(r—s)SE(s—l-t)é—i—ozlE(m—t)6+
s,t=1
FYs Tt Em—1)6 B(s+6)5+00 E(r—s)5 T YsYtB(s11)5+01 Eim—1)5 E(r—s)5) =
~ 2 ~ ~ ~ ~
= |Ers, Y 2:E(m-0)sEtstar + V1Bt 1oy Em-u)s | = [Evs, [Ems, Br]],
t=1
which is the claim. O

§3.4. Commutation between positive and negative real root vectors.
The preceding proposition is first of all useful in proving other commutation
relations, now involving the real root vectors.

Lemma 3.4.1
Vr,s € N we have that:

Kr [e7 _K_l
S+au _1r6+a1 ifr=s
5 . _ q9—q
a)r,s [ rotans s§+a1] N _Ks5+a1E(r—s)6 ifr>s
_F(S*T)5K7:55ra1 if r <s;
-1
K(r+1)5—a1 - [i(r—l—l)é—oq ifr=s
D [ Flasnia] = e
rs [L(r+1)6—ars F'(s+1)6—on] = K(_s1+1)570¢1E(r75)5 if r>s
F(S—T)(SK(T-f‘l)(;_Oél it r <s.
. . - denti KiK.
Proof: a),, is proved by applying (7p77) " to the identity [E1, Fi] = =
q9—9q

if r > s a),, s follows from the identity —E(,_g)5—a, E1 +¢ *E1E(r_g)5—a, = Er_s)s
again applying to it (Tp71)~"; if » > s a), s is nothing but Q applied to a)s ;.
As for assertion b), we have that b), s = ET1(a)r41,5+1)- O

§3.5. The imaginary root vectors FE,,s.

Recall that the subalgebra of U, generated by the Eoms’s is a commutative sub-
algebra pointwise fixed by TpT; and TpE (see proposition 3.3.2). Hence it makes
sense to introduce new imaginary root vectors by the following equation:

Definition 3.5.1.
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Let us define some new elements in the subalgebra of U, generated by the Epms’s
by the following identity:

1—=(g—q ")) Emsu™ =exp ((q —¢ > Eméum> :

m>0 m>0

Remark that of course Vm > 0 E,,s € U(I me and Eps + E,.s belongs to the
subalgebra of U, generated by {ET5|7“ < m}.

Proposition 3.5.2
Vm > 0 we have the following commutation relations:

[2mlq

[Em57 El] = (qu + (_1)m—1 + q_2m)Em5+a1-

Proof: The idea of this proof is completely similar to the proof of the analogous
result for Agl) (see [1]).

Let SE, S* : U, — U, be the operators of left (*) and right (~) multiplica-
tion respectively by Eoms and Es (where we keep on indicating by Fos and E_s

respectively 4 —1q_1 and 0) and let us set
S*(u) = Z Stum, St (u)= Z SEum;
m>0 m>0
moreover let us indicate by T the automorphism (TpT;)~!: remark that Vm
SET =TS8% and SET = TSE.
Now observe that point #ii) of proposition 3.3.2 can be written by saying that Vm
(S5 = S (B) =
= ((¢" = aSE T+ (@ —a NS, T+ ¢S}, ;1% —q25, ,T%)(E1)
or, also, (multiplying by «™ and summing over m)
SHw)(1+ ¢ 2Tu)(1 — ¢*Tu)(E,) =
=5~ (w)(1+¢*Tu)(1 — ¢~ Tu)(Ev);

multiplying both sides of this identity by —(¢ — ¢~!) and considering that

log(—(¢— ¢ ")SF(u) = (¢ — ¢ ")S*(u)

we get that
(a—q )8 (u) = S~ (u)(Er) =

= (log(1 + ¢*Tw) +log(1 — ¢~ *Tu) — log(1 + ¢~ *Tu) — log(1 — ¢*Tu))(Ey),
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that is

[Em57 El] -

The last proposition generalizes immediately to the following more general rela-
tions:

Corollary 3.5.3
Let m be bigger than 0; then Vr € N we have:

2m m m— —zMm
a)r [EmévErtHoq] = %(qz + (_1) 1+ q 2 )E(m+r)6+a13

2m m _ Com
b)r [Em57 E(’I’+1)570¢1] = _%(QQ + (—1) 1 + q 2 )E(errJrl)(;ial;
C)'I“ [Eméa Fr6+a1] —
2m _ —om )
o [ m]q (q2m + (_1)m 14+ q 2 )Kr5+a1E(m_r)5_al ifr<m
= 5 |
_[ %]q (q2m + (_1)m—1 + q_Qm)KméF(r_m)§+a1 if r > m;

d)r [Em67 F(r+1)6—o¢1] =

2m m m— —2m on ;
B ——[ m]q (q2 + (—1) 1 +q 2 )E(m—r—1)5+a1 (7’}&-1)5—041 if r<m
B 2m _ —om L — .
[ m]q (@™ + (1)t +q7? )Km}SF(T—erl)fS—Oél it 7z m.

Proof: a), is (TyT1) ™" applied to proposition 3.5.2; b),. is ZT} applied to a),41;
¢)r is (ToTh) "ET; applied to a)o; finally d), is ZT3 applied to ¢)p41. a

Corollary 3.5.4
The imaginary root vectors form a “Heisenberg” algebra, with commutation
relations given by:

K5 — K
)—_1'
q—q

Proof: The claim is a straightforward consequence of proposition 3.3.2 and
corollary 3.5.3; see also [4]. a

4. A%Y) AND A COPY OF 4%,
64.1. Definition of ;.

The aim of this section is to prove that the particular situation of 5[&2) = A;Q)

studied in the preceding section plays, in some cases, the same role as 5[51) does in
general. More precisely we know that if ¢ is a vertex of the finite Dynkin diagram
(2)
2n

associated to an affine algebra g(*), then, provided that §(¥) is not of type A% or

that ¢ is not 1, there exists a homomorphism of C-algebras ¢; : U, (5[&1)) — U, (§*))
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such that ¢;(E1) = Ei, vi(Eo) = Ejs_,. , vi(q) = ¢ and Qp; = ¢;; moreover ¢;
is such that T;p; = ¢; 11 and Ty, p; = p; T, (= @iToT;) (that is 17 corresponds to
T;, Tr = ToT- Ty to Th, T, and Ty = ToT? to TE,T; ) (see proposition 2.2.2).

Here we want to study the remaining cases, namely the situation where g% is
of type Agn) and 7 = 1: in this case we construct a homomorphism of C-algebras
Y1 ¢ L{q(5[§2)) — U(gl) C U, (™) such that ¢1(q) = q1(= q) (1 is indeed a ho-
momorphism of C(q)-algebras), ¢1(F1) = E; and Qp; = ¢1); moreover ¢ is
such that Typ1 = 171 and T, 01 = 1T, (= ¢1ToT1) (that is 77 corresponds
to Ty and Tp to T, Ty ). Of course now the image of Ey can’t be Fj5_,, (since
d — aq has the same length as «; while «y is longer): in this case we will have that
¢1(Eo) = Es—24, -

Definition 4.1.1.
Let ¢y : qu(Aég)) — Llél) - Z/Iq(Agi)) be the homomorphism of C(g)-algebras
defined on the generators as follows:

o1(E)=Ey, o(F)=F, ¢ (K)=K{,

©01(Eo) = Es_20,, ¢1(Fo)= Fs5_20,, @1(KF')= th_lgal-

Our program is to prove first of all that ¢, is well defined (of course if this is the
case then it commutes with €2), point to which we devote paragraph 4.3, after §4.2,
whose aim is recalling and describing some (mainly combinatorial) properties of the
root system and Weyl group of type Agi); then, in §4.4, we shall study the relations
between the braid group action and ¢;. These are the main tools which will allow

us to construct a PBW-basis.

84.2. Root system and Weyl group: some properties.

In this paragraph we shall study the properties of the root system and the Weyl
group of Aéi) which will enable us to attack the central problem of this section, that

is the research of a copy of L{q(A(QQ)) in Z/lq(Aéi)). What we need in particular is a
more explicit description of the root vectors (in particular of some root vectors) and
their behaviour under the action of the braid group, goal which can be achieved via
a closer analysis of the Weyl group. More precisely our attention will concentrate
on the study of a reduced expression of w; (remark that w; = w7, since d; = 1) and
of some of its properties, what will help us in manipulating the root vectors.

Remark 4.2.1.
l(w1) =n(n+1).
Proof: It is enough to compute the cardinality of & (w;):

k
Py (wy) ={a€d |wil(a) <0} = {5—6Zar‘1 <k<m,e= I,Q}U

r=1

k l
U{£5—2Zar— > ar}1§k<l§n,s:1,2},
r=1

r=k+1
so that

Fouon =2 (ns 2=0) Ly
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which is the claim. O

The element of the Weyl group which we are now going to introduce will play
an important role in what follows.

Definition 4.2.2.
In the following w will denote the element of W given by:

W= S0SnSn—1 " --- * S1-

Lemma 4.2.3
The action of w on ) can be described as follows:

§—23""la, if i =0
—d+oa1+..+ta, fi=1
§— (a4 .. +ay) ifi=2
;i if 3<i<n.

w(a;) =

Furthermore Vk € Z

( n—k o
(1+2|5])o-25Far ifi=0
]{j n+l—k e .
o) = [r]ieZ e itis
o if2<i<nandi—k#1
L0 — (2 + ... + ) if2<i<nandi—k=1,

where :7Z — {1,...,n} is the application such that k = k (mod n) Vk € Z.
Proof: It is clear that if 3 <7 < n then

w(ay) = $0Sn ...+ $S1() = S0Sn + ..+ Si—1(@;) = S0Sp * v - Sig1 (1) = Qi—1;

also, it is straightforward to see that w(ai) = —0 + (a1 + ... + ap), w(az) =
=0—(ag+...+ay) and w(ag) = ag+2a, =5 —2 Z:,:ll ., which proves the first
assertion.

Remark that w?(asy) = ay,, so that the second assertion immediately follows for
2<1<n.

The fact that w(a; + a3) = a7 implies that w(a; + ... + @) = a1 + ... + a1
Vr > 1, which easily leads to the remaining assertions for ¢ = 0, 1. O

Corollary 4.2.4

w1 = w" and (SpSy, -+ ... - $1)™ is a reduced expression of wy; in particular we have
that T, = T = (TyTy - ... - )™

Proof: That w; = w"™ follows from the fact that w™(«;) = «; when ¢ € Iy \ {1}
and w"(a1) = =0+ oy (see lemma 4.2.3). The remaining assertion is an immediate

consequence of lemma 4.2.1. O

Notation 4.2.5.
We fix ¢ so that ¢, + 7 =1 (mod n + 1) whenever 1 < r < n(n+ 1) (this can be
done thanks to corollary 4.2.4; see also remark 2.1.5).
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Corollary 4.2.6

w™ Hag) = § — 2ay; in particular Es_ o4, = Tyyn-1(Ep).

Proof: That w" !(ag) = § — 2a; is a direct consequence of lemma 4.2.3. Since
Tyn-1(Ep) is a root vector, it must then be E5_o,, . O

The lemma that we are now going to propose is devoted to the study of the
reduced expressions of some suitable elements of the Weyl group. Here lies perhaps
the main difference between this case and the general case that has been recalled
in section 2: indeed in that case [(w;s;w;) = 2l(w;) — 1, and this implied that
(T.,,T; ')? acted as the identity on the subalgebra of U, generated by {E;, Es_q,}
(see lemma 2.2.1 and remark 2.1.5); this is no more true here. However we can still
say something.

Lemma 4.2.7
l(sowsiwr) = I(
l(sowsiwy) = I(
moreover Sowsw

sows1) + L(w1), so that Ty s, wr = Tsows: v Vk € {0, ...,n};
ws1) + (syw™ tspwsiwy ), that is Tsywsiw, = Tws, T

s1w—lsqwsiw
"Hag) = ap and sywtsgwsiwisi(ar) = ;.

Proof: The first statement means that @, (sqpws;) C @ (sowsiws).
Now (sows1) ™ (@4 (sows1)) C >, Za,; which is pointwise fixed by wy, so that

a € ®, (sowsy) = (sowsiwi) H(a) = (sows1) Ha) < 0= ac Dy (sowsiwy).

The second part of the lemma is equivalent to saying that ® (ws1) C @4 (sowsiwi).
Of course

O, (ws1) ={sosn - Srq1(a)2<r<n+1} ={ag+an+..+a]2<r<n+1}
so that, if 2 <7 <n+1, (sowsiwi) Hag + ap + ... + @) =

_ { Wfl(@0+2an+...+2ar+1—|—ar+...—|—a2) if r<n
= w;1<040+204n—|—...+2042) ifr=n+1

—0—(ap+ ... +as+207) <0 ifr<n
—0—201 <0 if r=n+1.

Now we have that
sows1w™ 1 (ap) = sows1 (5 — 201) = sow(d + 201) = 50(26 — (w(d — 201))) =

= 50(20 — w1 (ap)) = sow1 (0 +2(a1 + ... + ) = so(—) = ap.
Finally we get that

s1w tsowsiwi sy (o) = s1w tsow (8 + 1) =

which concludes the proof. O

Corollary 4.2.8
E5—2a1 = T_l (EO) and Eé—al = T_l TUJS1 (El)

SowSs1 SQWs1

Proof: Straightforward consequence of lemma 4.2.7. O
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§4.3. 1 is well defined.

Here we want to prove that ¢, is well defined, which means that the relations
between the “canonical” generators of Z/{q(A§2)) (that is E;, F;, K; * for i = 0,1)
are preserved by @1 (so that ¢ : qu(Aég)) — qu(Agi)) is well defined), and that
Es_240, € Mél) (so that ¢y effectively maps Mq(A§2)) in Z/{él)).

For some of these relations this result is immediate as indicated in proposition

4.3.2. The others will require some more work.
Let us recall which are the relations that we are speaking about:

Definition 4.3.1.
Z/lq(A§2)) is the C(q)-algebra generated by {E;, Fi, K'|i = 0,1} with the follow-
ing relations:

[l(l(] }(LKb 22}(0I(ﬁ

[KE] K\E, = ¢*F1K,, K\Ey = ¢ *EoK1, KoE, = ¢ *E1 Ko, KoEy = ¢®*FEyKo;

[KF] K\Fy =q R K, K\Fy=q"FyK,, KoF\ = ¢*F1 Ky, KoFy = ¢ ®FyKy;

K - K1 [
[EF] (B, Fi|=———, [Eo,F))=—3—%, [E1,F)=0=][Ey,F];
—q q9 —4q
2 5
EE] S )EN BB =0=3 (-1 BV E BT,
=0 r=0
= 5
F S RIREE =0=Y (-1 F RECT.
=0 r=0

Proposition 4.3.2
The relations [KK], [KE], [KF] and [EF] are obviously preserved by ;.

Proof: The subalgebra of Z/lq(Aéi)) generated by {E;|i # 1} (to which Es_o4,
belongs) commutes with Fy, so that [E5_2q,, F1] = 0 (and of course [E1, F5_24,] =
= Q([Es—2a,, F1]) = 0). The other relations are trivial. a

The point is now to prove the remaining relations.
Remark 4.3.3.

Once we have proved the compatibility of relations [EE] with the definition of
1, it is enough to apply €2 in order to find the same result for [FF]: indeed both the
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left and the right hand sides of [FF] are found by applying € to the corresponding
expressions of [EE].
Lemma 4.3.4

In Uq(Agi)) we have that Es o, Es 20, = ¢ *Es_ 20, Es_a, -

Proof: Since Ej5 o4, = Tyn-1(Eo) and E5_o, = T, T '(E1) = Tun Ty H(EY)
we can apply Levendorskii-Soibelman formula (see [23]): the claim follows from the
fact that (0 — 21|60 — 1) = 4, and that the only possibility for a sum of positive
roots of the form mé — a (with « a positive multiple of a root of the finite system

associated to Aéi)) to be equal to 20 — 3ay is that these positive roots are d — 2aq

and § — ag. O
Lemma 4.3.5
CBoTuThot - oo Ty(En) 4+ q YT Tyt - .. - Ty(Eo)Eo = ToTuTh—1 - ... - Ty(Es).
Proof: Since T,,Ty,—1 - ... - T3(E2) € U, 4o, We can write it as Y zEpy

where x,y € (Es,..., E,—1); in particular  and y commute with Ey and are fixed
points for 7. Then we have

~ETn T+ Ts(Ea) +q T Ty - T3(E2)Eo = Y x(—EoEn+q *EnEo)y =
= oTy(En)y = To (Z xEny) — TyT T - .. - Ty(E).

Corollary 4.3.6

In U, (ASY)) we have that —Es_sa, By + ¢ *E1Es_20, = Es—a, -

Proof: The proof consists of a computation in which lemma 4.3.5 and corollary
4.2.8 play a fundamental role: if n > 2

—Es 90, By + ¢ *E\Es_20, = —T5 L (Eo)E1 +q *E\ T, L, (Eo) =

Sows1 Sows1

= Til (_EOTsowsl (El) + q74Tsowsl (El)EO) -

SowsS1

=T,. (_EoTSOwslsz (_EZEI —I—q_2E1E2) +q_4T80w8182 (_E2E1 +q_2E1E2)EO) =

Sows1

= T, ) ((=EoTy - ... - T3(E2) + ¢ Ty - ... - T3(E3) Ey) Ey+

SowSs1
—q 2 E\(—EoTy, - ... - T3(Fs) +q T, - ... - T3(Ey) Ep)) =
=T ) (ToT Ty ... - T3(E2)Ey — q 2E\ToT, Ty - ... - Ta(Es)) =

Sows1

=T L ToT T 1 ... - T3(—ExEy + q 2B Eo) =T, L Ty, (E1) = Es_q,,

Sows1 Sows1

where we have used that [F1, Ey] = 0. a

Proposition 4.3.7
The following relation holds in Uq(Agi)):

2 9
Z(—l)r{ ] Ej_g BAEZ, =0,
— q*
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Proof: The proof is a simple application of lemma 4.3.4 and corollary 4.3.6. O

So we are now left to prove just the last relation [EE]. To this aim we start by
recalling a very simple and basic combinatorial lemma.

Lemma 4.3.8
Let a, b be elements of a C(q)-algebra satisfying the relation

: k

E (—1)’“qp"°[ } a"ba" " =0
r

— q

for some natural number k and some integer p. Then a, b also satisfy the relation

k+1
k+1
Z(—l)’"q“’“)’"{ N ] a"baF " = 0.
r
r=0 q

Proof: The proof is a straightforward computation based on the identity

k+1 k _ k
gPthr [ } = ¢"" [T} 4 ghtptigr(r=1) { } _
q q q

r r—1

Before going to the point, we study some other simple relations.

Lemma 4.3.9
The following is true in L{q(Aéi)):

[Es—2a,, Fi] =0 Vie{3,4,...,n};

TO_l(EtS—?Oél) S Z/{;_,
Tye2(Eo), Er] = 0 = [Tn—2(Eo), Ful.

Proof: The proof consists in some easy remarks:
1) if 1 € {3,4,7’L} then Tsowsl(Fi) =T, Th_1-...- Tz—l(Fz) = F;_1, which
commutes with Ej, so that

2) Ty N(Es—2a,) = Ty " Tyyn-1(E) = Tsgun-1(Eo) which is obviously in ¢}';

3) Tyn—2(Ey) € (Ey, Es, Ey, ..., Ey,), so that it commutes with F; and Fs. O

The following proposition is what we still need for our goal; it concerns the last
relation [EE], and the proof is adapted from the analogous situation in case Aél)
(see [1]).

Proposition 4.3.10

In U, (Agi)) the following relation is verified:

5
S By a0 B =0
r=0
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Proof: Let &= Zizo(—l)TEY)E(;_galE§5_T); we want to prove that & = 0.
The strategy to achieve this goal is to prove that T, (&) € Uf Vi =0,..n (see
[27]). Recall that [€, F;] = 0 implies T; *(€) € U,

Lemma 4.3.9 evidently implies that [£, F;] = 0 when ¢ = 3, ..., n and To_l(é’) € Z/{qJr
(since Ty '(E1) € U).

Moreover, thanks to proposition 4.3.2, [£, F1] =

5 1—r r—1g-—1

K, — K — —r

:§ (_l)rq : q_1 : E£ 1)E572a1E§5 )+
r=1 79—4

q’r’74K1 o q477“K1—1

4—r
1 Ei ) =

4
+Z(_1)TE£T)E5—20¢1 -
r=0 -4

4 —_r r—1 —r rr—1
K+ KT K — K L,
= Z(_l) q 1+ q 1y fll 1—q 1y Ef )E5_2Q1E£4 ) _ 0.
r=0 9—49
So now we have just to show that [£, F»] = 0. To this aim we rewrite £ (when

n > 1, which is the case we are interested in) noticing that
Es_2a, = Tyn-1(Eo) = Tyyn—2ToT,(Eo) = Tyn—2T,, ' (Ep) =

= Tyu-2(BoEY) — ¢ E EoEy + ¢ *EP Ey) =
= Tyn2(Eg)ESY — ¢ 2EoTyn—2(Eo)Es + ¢ *EP T2 (Ey),
so that £ is given by the expression
5
r T 2 — — 2 —7r
ST () B (T2 (Bo) BY) — 2By Tyn—2 (o) By + ¢ ES) Ty (Eo ) EY .

r=0

Then we are ready to conclude thanks to the last part of lemma 4.3.9:

[57F2] -

5 -2 27-—1 —1
—c qg "Ke—q K _o Ko — K.
- E (1) E£ )<Tw"*2 (Eo) 2 2 2—Ey—q 2T,22Twn*2(Eo)E2+
—0 a —4q a —4q

Ky — K;' ¢ Ky — ¢*K5
7 —3 T4 2 -2
q q q q

—q 2EyTyn—2(Ep)

1
EQTwn_Z(EO)>E§5—T> _

5 5
= Tyn-2(E0) Y (1) XE BB = N (1) By B By Y T2 (Eo)
r=0 r=0

where

q27‘—2K2 o q2—27’K2—1 o q2r—6K2 + q2—2rK2—1
q2 _ q—2

X — — q2T74K2
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and
q2r78K2 _ q472rK2—1 _ q2'r712K2 4 q4727’K2—1

Y =
P —q 2

2r—10
=4q K27

so that

5
[E’FQ] - q74Tw"—2(EO)K2 (Z(_l)TQQTEY)EQEf)_T)) +
r=0

5
—q 10 (Z(—1)’"q2”E§’")EgE§5‘”> KoTyn-2(Ep)
r=0

which is zero thanks to lemma 4.3.8 and to the relation, valid in Z/lq(Aéi)) (ifn > 1),

3
S ) EVBETT <o,
r=0

This completely proves the claim, that is £ = 0. O

The paragraph can now be closed with the next proposition, which states the
achievement of our goal:

Proposition 4.3.11
1 is well defined.

Proof: The only thing to prove is that E5_s,, € L{(gl). This follows immediately
from proposition 4.3.2 and corollary 4.3.6: indeed by straightforward computations

[E6—a17F1] = _[4]qK1E6—2041-

64.4. Relations between ¢; and the braid group action.
The results of paragraph 4.3 are the first step in our attempt to prove that the
relations between the root vectors in U, (Agz)) found in section 3 are still valid in

Z/{q(Agi)). To conclude this piece of program we need to analyze how the braid
group acts with respect to ¢;. As we already announced, we want to prove that
Tip1 = 1T and TwlTl_lcpl = ¢p171p. We start from this second statement.

Proposition 4.4.1

The action of Ty on Z/lq(Ag)) corresponds, under 1, to the action of TwlTl_l,
that is TwlTl_lg01 = ngTo.

Proof: Of course it is enough to prove that TwlTl_lgpl = ¢11j on the generators

of L{q(Ag)), that is on E, Ey, Fy, Fy, K1, K. For the elements of L{;’(Ag)) the
claim is trivial.

Remark that T, T, L 1 and T} all commute with €2, so that we are reduced to
prove that T,,, T, ‘o1 (E1) = o1 To(E1) and T, Ty * 01 (Eo) = 01T (Eyp); this means
that we want to prove on one hand that

01(—FEoFy + ¢ *E1Ey) = Es_q,
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(which is nothing but corollary 4.3.6), and on the other hand that
—Fy—20y Ks-20, = To, TT ' (Es—20,)

or equivalently (see corollaries 4.2.4, 4.2.6 and 4.2.8) that —Fy Ko = Tys, Tk . (Ep);

WS1 -+ sgws1

but of course Ty, Ts L. (Eg) = To(Ep), which proves the claim. a

ws1 -+ spwsy

Remark 4.4.2.

We concentrate now on the question of proving that 771 = 177, or equivalently
that T 1o = golTl_l. The same considerations as before tell us that this prob-
lem reduces to the question whether T, *p1(E1) = o177 1 (Fy) and T; Loy (Ey) =
01T (Ep): notice that the first relation is obviously true while the second one can
be translated into

4

T (Es—nay) = (1) ¢ "B Bs g0, E{ 7.
r=0

To face this problem let us set the following definition:

Definition 4.4.3.
We introduce the elements Xj,...,X,, of Uq(Agi)) as follows:

Xn=Ey, Xe1=T;%X,) Vs=1,..,n.

S

Remark that X; = E5_o4, (corollary 4.2.8) and Xo = T, *(Es_2a, ).

Our strategy will divide in two steps:

1) proving that X1 = Zizo(—1)Tq_2TE§T)XsE§27T) Vs =2,...,n;

2) computing X, thanks to the description of X; given in 1): this will be the
claim.

Lemma 4.4.4
Let s be in {2,...,n — 1} and let X € U, be an element of Z/{q(A;i)) commuting
with E; and fixed by Ts. Then

2
Z(—1)7’(1727’E§T)Es+1XEs+1E§27T) =T (Bsr1 X Egp1).

s
r=0

Proof: Using the Serre relation between Fs and E¢;; we have that

2
Y (-1)'¢*EV B XEy EPT =
r=0

1
= Es+1EsXE5+1ES - mEs—l—lEsXEsEs—l—l - q_2E5E5+1XEs+1Es+
q q

q
mEs—FlEsXEsES—Fl =

= (_Es+1E8 + q_QEsESJrl)X(_EerlEs + q_gEsEerl) =
=T, (Bsy1))XT, N (Esy1) = Ty (Bop1 X Esy1).

S

—4
+q *EEs 1 XEEopy — —
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O

Corollary 4.4.5
Let s and X be as in lemma 4.4.4, and let Y = >72_ (—1)7¢ > E), X EC 7,

then
2

Y (=1)¢ T EODYESTD = T7H(Y).
r=0

Proof: The claim is an immediate application of lemma 4.4.4. O

Corollary 4.4.6

Let s be in {2,...,n}; then X, 1 = 272:0(—l)rq_erér)XsEs(er).

In particular Es_o,, = ZEZO(—l)rq_QrEér)XgEf_r).

Proof: The statement is proved by induction on s: if s = n the claim is obvious
(it is the definition of T}, 1(Ejp)).

If 2 < s < n define X by X = X,.q; then X € (Ey, E,,..., Fsi2), hence it
commutes with Fg and is fixed by Ts. Moreover, by the inductive hypothesis, the
element Y defined in corollary 4.4.5 is nothing but Xs. Hence we have that

2
Xs—]. — T_l(Xs) — T_l(Y) _ Z(_l)rq—2TE§T)YE§2—T) —

2
— Z(_l)rq—ZrEgr)XsE£2—r)‘
r=0

O

We have thus solved the first step. For the second one let us develop some
computations.

Lemma 4.4.7
Let X be an element of U, commuting with ;. Then we have the following
identities:

EyXE,EWY =
2 1
— BEPxEEY - g EOxE B ————EEYXEY Ey;
3lq ¢ +gq
E\EyXE,EW® =
_ 2 _ 1 1 (2) o .
= BBEXEE - o BB E\X BB By + o BBy BV X B By
q q
EYE,XE,Ey =
— BBy Xy By By — —— BBy Ey X EyEsFy + — By B X By Ey By
_12121_W121 121+E21 182007
q
EYE,XE, =

2 1
= EPE,XEYE, - %ElEzElXEF)EQ + mEzEf)XEPEz.
q
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Proof: It is a matter of manipulation of the left hand sides using the relation

3
S0 B BEET <0,
r=0

Corollary 4.4.8
Let X be an element of U, commuting with E; and fixed by 7. Then

4
S q B B X B BT = T (Ba X By).
r=0

Proof: The claim is a consequence of lemma 4.4.7 once that one remarks that
T Y (Ey) = ByE® — ¢ 'E\ By By + ¢ 2B By,

indeed
4

ST B By X By BT =
r=0

2 1
= B,EYXE,E® — HqE EPXE BBy + ?EQEPXE{Q)EQJF
¢°+4q

- -1
—q B\ By By X By By + %ElEbElX E\Ey By — %ElEgEl)(Ef)Eﬁ
4 q
+q 2B B, X B, B 4
-3

73
¢ 3EP B, X B\ BBy + ‘[12] E\EsE1 X B\ EsEy — [3] L EEPXE BB+
q
@) @5 4[] @) ¢ @) y (2
+q BB, XEPE, - g 1 g pp XEl Bot = BB X s =
q

= BEVXEEY — ¢ BB XE By By + 2B BV X B By +
—q ' BB B\X BB + 2B By EA X BV B> By — q BBy Ey X B B+
+q 2B B X BB — ¢ B By X B\ BBy + ¢ B B X B By =
= (BB — g E\ BBy + B Bp) X (B2 By — 7 ErEs By + q B By) =
=T Y(E X Es).

We can now conclude:
Proposition 4.4.9
(1 commutes with 77.

Proof: As already remarked, we want to prove that

4

T7 (Es-20y) = 3 (—1)' ¢ "B{" Es_s0, B\
r=0
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following the notations of definition 4.4.3 and the result of corollary 4.4.6

2
Bs-ga, = Y (-1)"q ¥ EY Xo BT with [Xo, By] =0 and T1(X2) = Xa;
r=0

then corollary 4.4.8 implies the claim. O

To sum up, we can state the following proposition, which makes the importance
of the present section explicit: indeed proposition 4.4.10 allows us to read in A;i)
all the relations found in section 3 for AéQ); at the same time it allows to define
E(m571) VYm > 1.

Proposition 4.4.10

Let v be the group homomorphism v : Q(AéQ)) — Q(Agl)) defined in the obvious

way by v(aq) = aq, v(6) =6 and let the injection v : <I>+(A52)) — &)JF(AESZL)) be
given by:

. . { v(a) if « is real

(o) = e

(v(a),1) if « is imaginary;
Then ¢ has the property that
01(Ea) = Eya) Ya € &, (AD).

Moreover ¢1(FEqy) = E,;(a) Va € CIDif‘(Ag)). a

Proof: The claim for E, when o € Q)T(Aég)) follows from the assertion on the

real roots. Then F(,s1) € Uq(Aéi)) can be defined Vm > 0 (see the analogous
definition, corollary 2.2.3) and the claim for E,,s is also abvious.
For the (real) roots of the form méd — a; the claim follows from propositions

4.4.1 and 4.4.9, and from remark 2.1.5; on the other hand, since Es_o4, € Z/lél),
T, (Es—2a,) = Es—2a, Vi € Iy \ {1}; thus

E(2m—|—1)5—2a1 - (Twﬁ Teee van)mTS_l(EO) =

=T, - oo T, )" (Es—2a,) = T} (Es—20,) = p1(ToT1)™ (Eo)

and analogously

Eomityitea, = (T - o T, )" T Mo (Ey) =

n

=T (= Fs_20, Ks-24,) = o1 (ToT1) "™ Ty (Eq),

which concludes the proof. O

5. RELATIONS BETWEEN /" AND 1" (i # j).

In this section we shall complete the description of the commutation relations
among the root vectors. The basis for this section is, as for section 2, an application
of Beck’s work (with something more to check in the twisted case: see §5.2); the

argument works also in the case Agi)
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In particular the aim of this part of the work is to understand the commutation
O

rules between the vectors from ué“ and L[éj ) when i # 7.

Vi, j € Iy such that a;; = 0 we have [ué“,ué”] = 0.
)| = Ty, ([B:;, T} (E)]) = 0.

Remark 5.1.

ECZj(S—OCj

Hence we are reduced to the case when a;; < 0; recall also that, if this is the
—loraj =—1.

Proof: [E;, Q" (

T‘d~7; O+a;”

case, then either a;;
§5.1. First level of commutation.
In this paragraph we sketch Beck’s recursive approach to the problem.

Lemma 5.1.1
Let i # j € Iy. Then Vr,s € N the following relations hold:
[Erczié—i—ai’ Fsdjé—f—aj] = O and ET(ZZi(S-FOLiE(S-‘rl)CZj(S—Ozj = q’LaZJ E(s—l—l)cij(S—aj
Proof: It is enough to apply T/\_irT/\_jS and T/\_irTf;Ll to the relation [E;, F}] = 0.
if r=1

O

Lemma 5.1.2 .
Let i,j € Iy be such that a;; = —1 (then % € N). If r > 1, we have:
J

if r=1

d;

_EJ-E—i—a‘
a; = —1f :
TAj ’ (QiEjE((r—l)Ji(s,i) —4; E((T—I)Jié,i)Ej) if r>1

[E(T&m,i)a Ej| =

and
_ _K]EJZ5*QJ
Erd.s. Fil = N
KciiaTAjj (4; FjE((T—l)Jis,i) — 4
similarly, if r > %, we get:
. d,
(95i)a; Eds 1o if r=7
—1/ —aj; r- aji 17 JZ
T (45 " BB gy —dns gy — 95 Ea,—dospPi) i r>F
: _d
if r= o
di
d;’

Erd; 5,5 Eil

i B rdy-dnsp i) i >

5

Ej) =

ajilg; KiEg 5_q,

and
Kd'i(;T)\i (Q;jiFiE((ri*ji)5aj) N
ds € Nis

[E(Téij&j)’ Fi] =
Proof: The result on which this lemma is based on is that TAiTi_l(
i d

(2) 4 ,

= T\ T,(F}) (see [1] and point 4) of lemma 2.2.1)
on» 1) The fact that 4

di
Ty T;(E;) and T, 17 (F))
indeed notice that if a;; = —1 then (X,,%k),i) # (A
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a consequence of the following simple remark: we have either di =1Vielor

d; =d; Vi e Iy, so that % is either 1 or % = dii
3 J

ai; = —aji. O

65.2. Some particular computations: low twisted cases.

- - i, .
What happens of [E(de&j), E;] and [E(deé’j), F;] when 1 <r < o (and 4,7 € I

are such that a;; = —1) is the matter of the present paragraph; of course this

situation occurs neither for the non twisted algebras, nor for AéQn), since in these

cases we have £ = 1. Hence we have now to figure out what happens in cases
(2) (2) (2) (3) d;

The aim of this paragraph is to prove that the brackets above are zero.

The problem will be first reduced to compute the commutation of F; with a
suitable element lying in L{;’ ; this simple remark will immediately solve the case
D7(12JZ1 (see proposition 5.2.2).

In the other cases the question will be further modified in looking for an element
of the Weyl group with “good” properties (see remark 5.2.3 and lemma 5.2.4); the
last part of the paragraph will be devoted to a closer and more detailed investigation

of A2 D and B2,

Remark 5.2.1. )
Let 4,5 € Iy be such that a;; = —1 # a;; and let r be such that 1 < r < %

(notice that d; = d; = 1, d; = d; = k > 1 and \; = w; = W;); we want to prove
that [EN'(T(S,j)) El] =0 and [E(“;’j), FZ] =0.

Since, by a simple manipulation depending on a;; = —1 (which implies that
—EE; + q;lEiEj = T[l(Ej)), and on the definition of E(r57i), we see that

[Eeg) Bi] = =T, T ([T, T, (Ey), FK;)

and
[Ers gy, Fi] = =Ko, —o, T; (TS Ty (Ej), Fy)),

the problem reduces to prove that [T;T;T ijl(Ej), F;] =0.

Remark that from I(s;s,w}) = l(w])+2 we get T;T;Ty, Tj_l(Ej) € U;T(;_Sj(ai+aj).

Proposition 5.2.2

Let Xék) = Dg)_l and let 4, j € Iy be such that a;; = —1 # aj; (this means that
i=2j=1). ) )

Then we have that [Es ;), Es] = 0 and [Es 5), F;] = 0.

Proof: Thanks to remark 5.2.1 we need to show that [TlTQTwlTl_l(E]_), Fi| =0,

where T\ T T, T; *(E,) € M;5_81(a1+a2). But, since § = Y__, o, and a2 = —2,

§—s1(a1 +az) =08 — (1 + a9) :ozo—i—Za,,,
r=3

so that T, T, T, Ty ' (F1) belongs to the subalgebra of U, generated by {E,|r # 1},
which immediately implies that it commutes with F} (since E,. does for r # 1). O

Remark 5.2.3.
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Remark that for an element z € Z/{(f the property [z, F;] = 0 is equivalent to the
condition Tjﬂ(x) € U (see [27]); since for any i,j € I and r > 0 we obviously
have that T, 'T;T,T5 T; ' (E;) = LT T, H(E;) € U, remark 5.2.1 allows us to
translate the problem of understanding the behaviour of [E,5 jy, E;] and [E(,5 ;), Fi]
(when 1 < r < d; and i,j € Iy are such that a;; = —1 # a;;) into the following
question: is T?T; T, T; ' (E;) an element of Uyt ?

The strategy that we shall use to prove that the answer is “yes” is to find an
element w of the Weyl group W and an element ¢ € I with the property that
I(sjwsy) = l(w) + 2 and that TAT,T5 T, H(Ej) = Ty, (Ey).

The next lemma illustrates more precisely what we are looking for.

Lemma 5.2.4

Fix i # j € Iy and r > 0, and let w € W satisfy the following conditions:

1) Hw™tsjsiwfs;) = I(sjsiwfs;) — l(w);

2) w™ts 8w s;(a ) is a simple root;

3) w(ay) > 0.

Then TPT, T T, (Ey) € Uy

Proof: The first hypothesis means that 77T} Tj_1 = TwTy-1s, siw?s; and the
third means that T;Ty, = T, -

Then we have: TJZTiTLCjT;l(Ej) = TwTw-155,07s; (Ej) = Ts,;w(E}), where t is
such that w™'s;s;wfs;(;) = a; hence the only thing to prove is that s;w(a;) > 0,
which is obvious since s;jw(a;) = sjwfis;j(a;) =10 — (a; + o). |

The aim of the next lemmas is now to find an element w with the properties
stated in lemma 5.2.4: in order to exhibit such an element we need to understand
something about w;.

Definition 5.2.5.
Consider the case of Aéi)_l. Let 7 be the Dynkin diagram automorphism defined
by
t f1<t<n—-1

T(t)=<¢ 0 ift=n
n ift=0

and define elements y, € W (for r =1,...,n) as follows: y, = TS, Sp—1 " ... * Sp.
Lemma 5.2.6
In Aéi)q the following assertions hold:
a)if l<s<r<n-—1landr<i<nori=_0,then

Qs if 1 #0

a0+ (¢ +an_gy1) if i =0;

b)Vr=2,..,n & (y,) ={1(a; + ... + an)|r <i<n};
c)if 1 <r < i <n we have

Yst1 - Yr(i) :{

Yo o yr(T(ai 4o+ an)) =0 — (a1 +2(a2 + ..+ i) + Xipp1 + oo Qnergr);

d) if 1 <r <i<n we have

Snglslsgyg...yr(T(ai +...ta,)) =



38

a fi—r=l=n—r
) = (aat .+ ap—ri1) ifi—r=1l<n-r
N —(az+ ...+ an_ry1) ifi—r=2

-0 — (al + 2(&2 + ...+ ai—r) + (6 7N | + ...+ Oén_r+1) ifi1—7r>2.

Proof: Statement a) is easily proved by induction on r — s.

For b) one immediately shows that i (7(c;+...+ ) = Sp-ooo-Sp(Qi+...4ay) <
0 if » < ¢ < n, which means that {r(o; + ... + a)|r < i < n} C &, (y,); but
#P, (y,) = l(yr) <n—r+1, which proves the claim.

Assertion c) follows from a) remarking that 7(a; +...+ ) = @ +... +an—1+ap
and Yo - ... - yp(ap) =0 — (1 + 2(1 + .. + Q) + Qp—rg1)-

d) is just szwg_lslsg applied to c). O

Proposition 5.2.7
Let Xék) = AéQ)_l and let 4, j € Iy be such that a;; = —1 # a;; (this means that
i=17=2).

Then we have:

D I((y2 - yn—l)_15231w232) = l(s251W282) = (Y2 * -+ " Yn—1);

2) (y2 - " Yn—1) Fs2810282(2) = ;

3) (Y2 Yn—1)""(a2) > 0.

In particular 73T T, Ty ' (E2) € Z/{;', so that [E((;,Q), FE1] =0and [E(572), Fi]=0.

n

Proof: To prove 1) it is enough to show that @ (1) C @4 ((y2-....yr—1) 52510252
Vr = 2,...,n — 1, and this is a straightforward consequence of points b) and d) of
lemma 5.2.6.

From point a) of lemma 5.2.6 we see also that ys-...-yp—1(ap) = — (1 +a2) =
= S981waS2 (), which is 2), and ys - ... - yp—_1(,) = e, which implies 3). O

Proposition 5.2.8

Consider the case Df’) and let ¢, j € Iy be such that a;; = —1 # aj;: this means
that ¢ = 2 and j = 1. Then [E(m;’l),Eg] =0 and [E(m;,l),Fg] =0forr=1,2.

Proof: First of all remark that 6 = ag + 2a3 + a9, hence s1s0w151(1) = ayp, SO
that lemma 5.2.4 applies with w =id; it follows from remark 5.2.3 that [E(M), Es) =
0 and [E(&U,FQ] = 0.

Consider now the element sgsiso; then

1) 1((s0s182) ts1saw?sy) = l(s180wis1) — 3: indeed

slwl_Qszsl(ao), 81w1_28281(050 + 1) and 51w1_28281(3060 + 31 + aw)

are negative roots (they are respectively —6 + a1, —36 — (a1 + a2) and —39 — az);
2) (sos182) tsysowdsi(a1) = ap which is a simple root;
3) (808182)_1(041) = qaqg > 0.
As above, remark 5.2.3 and lemma 5.2.4 apply to the present situation and imply

that [E(25,1)7E2] =0 and [E(26,1)7F2] =0. H

Proposition 5.2.9
Consider the case Eé2) and let 7,5 € Iy be such that a;; = —1 # a;;: this means
that ¢ = 3, j = 2. Then [E(572), Eg] =0 and [E((;’g), Fg] = 0.
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Proof: Consider the element w = s¢S1525354525352515052535251S253; then, throughlj
direct computations very similar (even though longer!) to those used for Df’) (see
the proof of proposition 5.2.8, 1), 2), 3)), one sees that:

1) (w™tsgs3wass) = I(s283was2) — l(w);

2) SQSgWQSQ(OéQ) = w(ag);

3) w(ag)(= ag) > 0.

The claim follows. O

65.3. General commutation formulas.

We are now ready to discuss the commutation relations, as announced at the
beginning of this section. Before giving them explicitely, let us introduce some
definitions and notations.

Definition 5.3.1.
In the twisted case different from Aéi) let us define a matrix A° = (aj;)ijer,
(called the simply laced matrix associated to (I, A)) as follows:

a;; = max{a;j, —1};

this can be said equivalently by:

a;; =2
afj =0 if Qi = 0
afj =—1 if a5 < 0.

Remark that (I, A®) is a Kac-Moody datum of type A,.

. 1 if Q45 > -1
Define also b;; = d. otherwise
’ .

Theorem 5.3.2 ~ B
Let i,j € Iy and r,s > 0 be such that d;|r and d;|s; then we have:

1 Eqsi By g = T s—ditr)dtay ’

(1) Brs.)2 Ea—dy)o+a,] { 0 otherwise;
2 Er 7 7Es -] — Y (8+r) Y ’

(2) [Brs,is Bss—a,] { 0 otherwise;

Tijr K (s_q )6 o, Eir—std)o—a; i djlr and r > s
(3) [E(T(S,i); F(sfcij)éqtaj] = _xijTKTéF(s—r—czj)é—i—aj lf dJ’T' and r<s

0 otherwise;

_l'ijTE(Tfs)tSJrajKaj—sé if dj’?" and r >s

(4) [Ers,i)s Fso—a;] = § @ijrFls—r)o—a, K s if dj|r and r < s

J
0 otherwise;
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(5) [Ers.i)> Ess,5)] = 05
K5 — K
(6) (Ers,i)> F(s5,5)] = OrsTijr———7;
4 — 4q;
where
( (o(i)o(j))rw in the non twisted case and

in case Aéi) with (i,7) # (1,1)

Lijr = [23:111 (¢ + (=1)""1 4+ ¢72") in case Agi) withi=j7=1

—_—l otherwise
[di] q

and o : Iy — {1} is such that a;; < 0 = o(i)o(j) = —1.

Proof: For ¢ = j, the claim is nothing but proposition 2.2.4 and ¢ applied to
3.5.3 and 3.5.4.

For a;; = 0, the claim follows from remark 5.1.

For a;; < 0, (1) and (2) are found as an application of lemma 5.1.2 and of the
results of paragraph 5.2 by a standard argument: see [1] and proposition 3.5.2;
(3) and (4) are found applying a suitable power of T}, respectively to (2) and (1);
(5) follows immediately from (1) and (2) while (6) follows from (3) and (4) (using
proposition 2.2.4,2)). a

6. A PBW-BASIS.

An important and useful consequence of the commutation relations given in
the preceding section is the construction of a PBW-basis for the general quantum
algebra of affine type. The aim of this section is thus to exhibit such a basis using
a convex ordering of the root system, to recall its principal properties (such as the
Levendorskii-Soibelman formula) and to introduce some notations.

§6.1. A convex ordering.

Definition 6.1.1. .
We denote by < the total ordering of ® defined by:

VTGZ,V&G@T: G asr<o,

~. >
W(r6, 1), (56, 1) € B - <r5,i>f<s5,j><:>{r oY
r=s and 1 < j.

Remark 6.1.2. B
=< is a convex ordering of & (see [2]).
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Notation 6.1.3.
Vn € Q define P(n) as follows:

Pn)={y= (1, € U S %,Zp(%,) =n};
reN u=1
define also P to be P = [, .o P(n)-

We denote by p : |,y @, — P the natural (reordering) map; moreover Vo € P,
p® i P — N (y = pf) indicates the occurrence of « in v, that is if v = (v1,...,7)

then ui = #{u=1,..,ry =al.

Definition 6.1.4.
By abuse of notation we denote by =< also the induced lessicographical ordering

of P:if v = (71,.-,7r) and v = (71, .., V) we set

Y= eif l=minf{u=1,...,r]y, #v,} then v <.

§6.2. PBW-basis and L-S formula.

Notation 6.2.1.
Let v : &, — U, (a — z4) be any function. Then Vy = (71,...,7,) € P we set

T(Y) = Tyt Ty
We are now ready to state the main theorem of this section.

Theorem 6.2.2
The set {E(y)|y € P} is a C(g)-basis of U;"; more precisely Vn € Q {E(7)|y €

q )
P(n)} is a C(g)-basis of U], , while more generally { E(y)KAF(y')|A € Q,7,7' € P}
is a C(q)-basis of U,.

Proof: The argument used in [26] applies here word for word. a

The following theorem is the Levendorskii-Soibelman formula:

Theorem 6.2.3

1) Va,B€d, a3 = E,Ez — q(p(a)|p(5))EﬁEa = Z’y>(ﬁ,a) a,yE(z);

2) V1,7 €P,y =7 = BEMEQ) - " TVENR)E®N) = Lspprqn EA),
where (v,7") = r(7;7/) is the only function compatible with 1).

Proof: See [23] and [1]. a

§6.3. Some subspaces of U,.

In this paragraph we first list some notations and then give a characterization
of some subspaces of L{C;L )

Notation 6.3.1. 3 3
Vr € Z U {£o00, +0,im} we define a a subset ® (r) of ®:
({Bs]l <s<r} ifr>1
{Bs]0>s>r} ifr<o0
O, (r) =< &)‘frn if r =1im
Us0 O (+s) if r=4oc0
L &Dfl Udy(£oo) if r = Fc;
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moreover we define U (r) and Uz°(r) by:

u;(?") = SpanC(q){E<l)‘1 = (717 -"778) € 737”)’u € é-l—(r) Vu = ]-a ey S}a
>0 =740
Uq— (T’) = UqL{j(T)

In order to describe U (r) we need the following lemma.
Lemma 6.3.2

Va € ™ we have that

T, ' (Eo) €eUS Vr>1, T, 1(E,) €Ul Vr<o0.
“...- s, then

Proof: Following [2], we have to prove that Vj € Iy if A\; = 755,
T;, - ...-T;,(Eq) € L{; Vr =1,...,d; let @« = (md;6,i) with i € Iy, m > 0.

If ¢ # j the claim is obvious; if ¢ = j and (Xék), i) # (Agi), 1), see [2].
(2) 1): first of all

Finally we need to study the case when (X;Lk),i,j) = (A, 1,
remark that j; = 1 and that Vm > 0

O1E(Ems—a,) = 01 2(ToTh)™ Ty (Ey) = o1 (Ty Ty )" T (Ey) =
= o1 (ToT1) " (Ey) = T T, " (EL)

which belongs to Uf; then

Tl(E(mé,l)) = SplTl(Em(S) = SplE(Em(;) =

= —E\IVT, " (E1) 4+ q *ThT, " (Ev)Ey € U

The claim now follows remarking that I(sj, - ...-s;, ,s1) = d, that m > 0 and that
O

Tj Tjd71T1Tw_11 = (le e Tjr_l)_l-

r cee

Proposition 6.3.3
Vr € Z U {#£o0, £00,im} U/ (r) is a subalgebra of U,

Moreover
US (£oo) = {z e U |Fm > 0 s.t. Tj}}l (z) €U} =
={x € Z/{;|Tj§n (z) €U Ym >> 0},
U (o) = {z € u;wjﬁ (z) € Uf Ym > 0},
U (im) = U (c0) NUS (—0) = {z e U] T, (z) = x Vi € I}

Proof: The first assertion follows from L-S formula and from the convexity of
=; for the second it is enough to apply lemma 6.3.2 (see [2] and [6]), while the third

follows immediately from the preceding ones, remarking that Ty, (E,) = E, Vi € I
O

Va € .

7. THE R-MATRIX.
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Here it will be shown, applying to the present situation the strategy and the
results used for the non twisted quantum algebras (see [24] and [6]), how it is
possible to exhibit an explicit multiplicative formula for the R-matrix (denoted by
R) in the twisted case.

Hence most of this section will be devoted to follow the fundamental steps which
lead to the description of the R-matrix for the non twisted quantum algebras, to
recall the main properties used to establish them, and to remark how, thanks to
the results developed in the preceding parts of this paper, the same properties (and
consequently the same results) are still valid in this more general setting: we shall
refer to [22] and [6] for the proofs. Also, some minor differences occurring in the

twisted case (mainly in case Agi)) will be discussed, and the computations needed
to complete the argument performed.

§7.1. General strategy for the construction of the R-matrix.

First of all we recall a very general result connecting the R-matrix to the Killing
form (see [31]).

Theorem 7.1.1
Let C, e U}, U, _, (withn € Q1) be the canonical element of (-, ')‘zﬁ
) ’ q,m

Then
R: ( Z Cn>q_too7

neEQT

Xuq,—"l

where ¢~*>= is the diagonal operator on V ® V (V and V U,-modules) which acts
as q_(”‘ﬁ) on V, ® V5. O

Then we recall the behaviour of the real root vectors with respect to the coprod-
uct and to the Killing form.

Proposition 7.1.2

U (ryouUf ifr>1
If o = 3, € @ then A(E,) — (B, ®1+ K, ® E,) € {

uqz() @US(r) if r <0.
Moreover let v = (v1,...,%), 7" = (71, --,7%) € P be such that 7,7, € ®(c0)
Yu, v or vy,7), € ®,(—00) Yu,v; then

(13)a!

ps

(B0, F(/) =6y [ ——=
cd (Ga — o)™

acdy

Proof: The proof given in [22] and [6] depends only on the action of the braid
group on U, and on its connection with the coproduct A (that is on the construction
of “partial R-matrices” and on their properties), hence it applies word for word to
the present situation. O

Before going to the next proposition we shall introduce a notation and give a
simple lemma.

Notation 7.1.3.
We denote by det, X T%k) the determinant of the matrix

<r~[di]q:cijr> = Ldiag(%

di[r]q igerr [rlq i

(S IT> (xijr)ijelr
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for the quantum algebra of type X ék).

Lemma 7.1.4
Vr > 0 we have det,,Xék) # 0 (equivalently det(zi;r),,.,» 7 0).
More precisely

([ + 1] in case A%
[2]3?1[2]611«(271_1) in case BS"
2] [2]q7'("+1) in case 07(11)
2] [2] grn—1) in case D
[Blar [2]46r : Eu(l) d G(l)
T2 in cases Eg ' and G,
—[2][1;] [23]:% in case Eél)

[2]q7' [2]q 5r . 1
247 [2]g7r — [Blgr = m in case Eé )

det, X =

—[2]65][;];’9T in case Ff)
2] [2n + 1] in case ASB if 2 fr
207 2] grntn in case Agi) if 2|r
= if k fr
[2] 4rn in cases Agi)_l and Dﬁ)_l if 2|r
Ezz: in case EéQ) if 2|r

\ [[2;]‘1: in case DS if 3|r.

Proof: The proof consists in simple computations: in the non twisted case we
have that detrXék) = det([d;aijlq )ijer,: see [7] and [6]; the result when k /|r
follows from the remark that detrX;(lk) = det([af;]4)ijerr (and from the result for

Aﬁf)). The remaining assertions follow considering that

n—2

det, AS) = (¥ + (=171 + ¢~ ) [2] % deto, AN | — [2]7 deta, AV

1< klr, X3 = A5 | DY = det, XV = [2] - det, ALY | — kdet, AL,

n

det, EY) = [2]+det, DS — det, AY.

Proposition 7.1.5

1) Let a € ®'™; then A(E,) — (Eo ® 1+ Kp(a) ® Eq) € UZ°(00) @ U (—00);

2) Let a € ¢, and 7 € P be such that (E,, F(vy)) # 0 or (E(v), Fa) # 0; then
7 = (B) with p(@) = p(B).

3) Let {E4|a € &} be elements of U, satisfying the following requirements:

i) B, = B, Vo € &,



45

ii) Vr > 0 {Es,0)|i € I"} and {E(,5,)]i € I"} are bases of the same C(g)-vector
subspace of Uy;

iii) (E(ré,i)7 F(ré,j)) =0ifi#j (Where Fa = Q(Ea));

then Vv,7" € P we have that

B P =0 T " e

aedle (qa QQ) - OzECI)lm

Proof: For the proof see [6]. Indeed the argument used in the non twisted case
is based on the following properties, which are still valid in the twisted case:

a) Th,...x.(Ep.) = Ep, ifr >00rr < —Nand Th,...x, (Ea) = E, ifa € &I
more precisely see proposition 6.3.3;

b) the matrix (x;j,)ijer- is non degenerate (see lemma 7.1.4);

¢) < is a convex ordering of @, . O

Corqllary 7.1.6
Let E,, F, (o € 1) be as in proposition 7.1.5; then

- (11 o (52— (] on (B o))

aGd:ur acd
_ 1 if a € ®I°
where ¢, = (¢ — qa)(Fa, Fo) = { . _ -
(07" — 4a)(Ea, Fy) if a € .
Proof: See [22] and [6]. a

Remark 7.1.7.
Remark that Vr > 0

H exp( 5, )E(r5 ) ® F(ré i) _ exp( Z E£T57i) ®F(r5,i) ) .
ielr E(r&,z)a F(ré,z)) eI (E(T'(S,i)7 F(r&,i))

Hence corollary 7.1.6 can be rewritten as

R=] [expg, (45, —45,.) Ep,.@Fp,) | [expCr- [ [expp,, (45 —a5.,.) Ep,, @ Fp,. g "

m<0 r>0 m>1

_ E(rs,i) ® Firs,i)
&I (Ers,iys Flro)

where C,. = 3

to

is the canonical element of the restriction of (-, -)

spang g { Ers,i)|i € 1"} x spang {1 Frs.0)li € 1"},

and both the first and the third products in the right hand side are performed in
decreasing order. O

§7.2. The Killing form on the imaginary root vectors.

~ We have seen how to reduce the explicit description of R to the construction of
Cr, or equivalently to the construction of elements E, with the properties described
in proposition 7.1.5, and to the computation of (E,, Fy,) for a € ®I*. Of course for
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both approaches the problem is that of understanding (-, -). Thus we start from the
computation of (E(,s, F(rs)), following the path indicated in [6] and remarking

that in case Aéi) it has to be slightly modified: the problem arises, here too (see
lemma 2.2.1), from the fact that in this case § — 2a is a root.

Definition 7.2.1.

Let ¢ € Ip; we shall denote by m; the natural projection m; : U; ® quO —
U, @ C(q)E; (with respect to the @-gradation).

If r >0 and 4,j € I" we define ¢/ by the following property:

7 (AE o)) = 69 Brs—a, K; @ B

(¢ is well defined since 7 (A(E(rs,4))) is indeed a multiple of E,.5_o, K; ® Ej: see
[6], using proposition 7.1.5, 1) and the convexity of <).

Lemma 7.2.2
Let r > 0 and 7,7 € I"; then (E(T(g’i),F(T57j)) =

_2_ ¢
G, =)

Proof: The proof is based on proposition 7.1.5, 2), on 1.4.2, 7.i), and on propo-

sition 7.1.2 (see [6]). O

Lemma 7.2.3
Let r > 0 and 4,5 € I"; then ¢/ = qj_Q(qj — qj_l):l;ijr.

JJj

. . . Y CJJ . .
Proof: The proof consists in showing that ¢}/ = ﬁxijr and in computing
JJ

. Tjj1°
.. CJJ
For ¢ = =i see [6].
ii
For % = qj_Q(qj — qj_l) see [6], when we are not in the case Agi) with 7 = 1.

So it remains to study ci! just in case Agffz remark that m (A(Fs—24,)) = 0
(because 6 — 3a; ¢ ®); then, using corollary 4.3.6, we have that

T (A(Es_0,)) = —Es_00, Ki®E1+q *K1Es5_ 90, ®F1 = —(1—q %) Es_24, K1 E1;
it follows that
T (A(Es1))) = T1(A(Es—ay))(B1 @ 1) — ¢ 2 (E1 @ )11 (A(Es—a,))+

+Es 0, K1 ®@FE) —q ?K1Fs_o, ®FE1 = (*+1—q¢*—q¢ % Es_0, K1 ® E1,

6

which means that c%l =¢®+1—-qg*t—qg 5= q1_2(q1 — ql_l).rlu. O

Corollary 7.2.4

Let » > 0 and let z (respectively y) belong to the linear span of {E(,s i € I"}
(respectively {F,s:]i € I"}).

Then [z, y] = —(z,y)(Kys — K,5') and (Q(y), (z)) = —Q((z,y)).

Proof: The claim follows from lemmas 7.2.2 and 7.2.3, from theorem 5.3.2, from
the bilinearity of (-,-) and [-, -] and from the fact that € is an antiautomorphism. O

§7.3. A “canonical” form for the R-matrix.

Remark 7.1.7 reduces the problem of describing R to that of finding C, Vr > 0.
The goal of the present paragraph, which can be achieved thanks to the results of
§7.2, is to describe C, in terms of {E(,s ), F(rs,,|i € I"}.
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The following is a simple lemma of linear algebra.

Lemma 7.3.1

Let » > 0 and let C, = ngr Yi;iErs,iy @ Frs ). Then if y" = (yg“j)ijep and

H" = (E(5,4), Flro.j))ijerr we have y" = ("H")™1.

Proposition 7.3.2

In the notation of lemma 7.3.1, if we put

, _ (o)) dilr]y
9 rld,ld ]y = 0)

y;; with k:;,:{

O

k if klr, X =D,E

1 otherwise,

W i r. WS: u zld;, = 2%.d; u 1 ric);
e can describe z;; as follows: of course z;;d; 7idi (because H" is symmetric);

ij
if © < j then

A(l) Z',r’, — [i]qr [n - j + 1]qr
! Y [+ 1]gr
q
([n—itger oo
BW e ) Bgrea-y if i=1
n Zij o [Q]qr(2i—3) [n—j+1]q2r . .
2l 2] r2n 1) otherwise
[n}qr . .
ooy f i=i=1
r [n—j+1]4r o o
Cﬁll) Zij — < m lf j > 1= ;
W otherwise
( [(’i’L]q'r X .
Bl 2 yrtn-1y if i=j<2
_n=2er e
(1) r [2]‘17’[2]qr(n—1) if i=1,7=2
Dn Rij = [n—j+1],r . ‘
ey if i<2<
2] ri—2)n—g+1]gr .
\ = ([Q]Q)TETL,‘Z)—F : otherwise
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det”rEr(Ll)z;j =

zi =

\

;

1=j =
1=1<7<3
1=7=2
2<1<3=y
1=1,7>3
2<i<4<y
i =

i=

i =
1=7=28

( ]y !
7 = 1gr[n — 3], it
2lgr [2]grin—2 .
i = gl — Ugr !
Blyr[n — 5+ Uy if
2lgrli = Ugrn —j + 1] if
Blar[n— j + 1o !
2 [2ger[n —j + 1o if
[3]qr[2]q6r [n—j+1]gr 1
[2]q2r lf
[Q]q’"[z]qgr i
e if
[2}(137’[2](15’” ) =
e T
[2}(137‘[3]617"[5*]-](127" —
[2]q9r [2]qr 1=3
[2}q37“[2]q4’" =7 =
Thyor Blor =it
r [2]2r ( 6]~ [3]gr )
( 7,]) Jj€lo [2]q6T [B]qr [S]QT [2]qr
[20i—1]4r [n—j+1]q2T :
[Q]q’" [2n—|—1]q7“ lf 2 /rr
(2] ri—n) [n—i+1]2r .
pre
r h—ﬂqﬁgjj+1hr if k fr
[Zfl‘i’; if kjr,i=j=1
bﬂ?@:ﬁﬂw if klr,i=1<j
\ [2}qr(¢7[12)]i’:j+1]‘1’" otherwise
ﬁ it k& fr
m%%%ﬁ if klr,i=1
[2]qr<i—[12>] [t:jﬂ]‘ﬁ otherwise
tlgr [3=7glgm
% if &k /Yr
[21[2]& if klr,i=je{1,4}
(44)7[2f2f57jbr if klr,i=1<j
2] 2r [[1'2] }q;[f —ilar otherwise
ﬁ if k fr
Rlgrligr3=jlgr ¢ k|r

[2]q3r
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Proof: Thanks to lemma 7.3.1, the proof consists in the simple exercise of
inverting the matrix (x;j,)ijerr- O

Theorem 7.3.3
With the notations of proposition 7.3.2, we have that Rg'~ =

—Hexpﬁr 5 —a5,)Es, @Fs ] [exp Zwa(mz)@?F(rag) Hengr 45, —45,) Ep.OFp,.
r<0 r>0 ijel, r>0

Proof: The claim is an immediate consequence of remark 7.1.7, of lemma 7.3.1
and of proposition 7.3.2. O

§7.4. Linear triangular transformation: the E,’s.

It can be useful to determine explicitly the expression of R in the form given in
corollary 7.1.6, that is to describe R in terms of “dual” bases. To this aim we shall
look for elements E, with a € <I>+ satisfying the requirements of proposition 7.1.5.

Lemma 7 .4.1_
For r > 0 let E(,5,) (i € I") be elements of Z/{;ré such that:

H)Viel” E_'(T(; ;) is a linear combination of { E(,s j[j € I",j > i};
2)Vi<jel” (E(r6 i) Firs,j)) = 0.
Then, if F(m; i) = Q(E(mgyz)) we have that (E(r(; i) F(Ng])) =0Vi#£jel".
Proof: The assertion is clear for ¢+ < j once that one notices that F(T(;’j) lies in
the linear span of {F(,s |l € I",1 > j}; for i > j, it follows from corollary 7.2.4. O

Remark 7.4.2.
Lemma 7.4.1 allows us to reduce the construction of E(,s ;) to the solution of the
following system of linear equations:

(%), ST A w =0 forje I withi < j

1>

under the condition AE:) # 0, where B4 = D> AE;)E(MJ).
Notice that in the non twisted case

v [rais]g, o [rlgldiai;]qr
= (ol rU%lae o r 1 1q1®®G g™
Xij (0( )O(j)) r (0( )O(j)) T[dl]q
so that (x),, can be written as
(1) A o1y . o
(%), g —[dlalj]qr =0 forje€ Iy with i < j.

1> [ l]q
This system has been solved in [7], and those solutions will be used here in order
to simplify the computations in the general case.

Proposition 7.4.3
Consider the non twisted case (k= 1) and let » > 0, i € Ij.
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A solution of (*)(1) is given by:

%

(n—j+ 1]g2r in case B,(ll)and
if (4,7) # (1,1) in case F4(1)
n—7+1][2]g if j>i=11n case c{Mand
ifj—1>z'=11ncaseD7(ll)
n— 2] ifi=1,7=21n case DY

j—1gn—3lg if4>j>i=11in case B’

2] gr(n+1) if i =7 =1 in cases Fél) and Ggl)

[
[
0= +1)gr[8ly i j >4, =1in case B
[
[

L [n—Jj+ 1], otherwise,

where j € Iy is such that ¢ < j.
Proof: See [7]. O
We can now pass to the study of the twisted case. We shall consider three
different situations: the case ALY, the twisted case different from Agi) with k& Ar

2n
and the twisted case different from Agi) with k|r.

Remark 7.4.4.
Remark that xijr(Agn)) = xijT(BT(ll)) if (4,7) # (1,1) and that in the equations
(*)ri 11, Dever appears; then (*)M(Aéi)) = (*)T,Z-(By(f)); in particular the solutions

of (*),; in case Agi) are the same as the solutions of (x),; in case BY.

Remark 7.4.5.
Let Xék) # Agn) and r > 0 be such that k fr. Then Vi € I" (that is Vi € I such

that d; = 1) the system (*)r,i(Xék)) = (%)r <A(n12n> (with a shift of indices in case
T
AG), thatis A (AG) ) = A (A, ) = AT,y (AR) Vi e I7).

Remark 7.4.6. . .
In the twisted case different from Aéi), remarking that d;b;; = d;b;; when a;; # 0,
the system (%), ; becomes the following (under the condition that k|r):

A T , v
()7 Z [d;iq(o(])o(l))djbﬂ bjilaj;lq- =0 for j € Ip with i < j.

1>i

Notice that if i < j € I are such that b;; = 1 VI > 7 such that a;; # 0, then Jj =kl
and each equation above can be written as

_

; A o ()7
(*)i‘m Z A[afj]qr =0 forje Iy with i < j.
1>i [dl]q

This always happens when X;Lk) = D%k) (k = 2,3); on the other hand when X Tgk) =
Aéi)_l or EéQ) we have that b;; # 1 = j = 2, which implies that if ¢ # 1 then
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(k) = {(*)k‘r |7 > i}. Moreover we see also that

T71/7.]

tw _ klr - Ag?
()25 = {8l > 20 { >

£ @(0(2)0(1))mb21[af2]qr _ 0}_

Remark also that AYB does not appear in the equation (*)f'fj when (i,7) # (1,2),

so that the only condition on A 1 is the one arlslng from the last equation, i.e.
) e

[i‘zi]lq (0(2)0(1))d2b21 boy = Zl>l m(O(?)O(Z))deQI bar[as,]4r, where the Af;j)’s with

(1,7) # (1,1) are solutions of the system {(x )MJ|Z < jand (i,§) # (1,2)}.

Proposition 7.4.7
Let r > 0 and i € I". A solution of (x),; is given by:

([n—j+ 1] 42r in cases B{”and Aéi), nd
if (i,7) # (1,1) in case F( )
n—7+ 142 if j>i=11n case ciVand
if j—1>4=11in case D}
[n — 2], if i =1,j =2 in case DY
Ao [j —1)grln =3l if4>j>i=1in case ?}3)
”[dT: [n—j+ 1) [3lg if 5>4,4=11in case B
[2] o if i =j=1in case F.”
(3 — Jlgar if i =1 in case GS)
[Z=2 —j+ 1]y if k frin cases Dék) and Eék:2)
(_é)% [n]qr if 2|r and i = j =1 in case Agi)_l
(—1)2[2] 5 if 27 and i = j = 1 in case E5°)
[ [n— 7+ 1] otherwise,

where j € I" is such that ¢ < j.
Proof: The only statements which do not follow immediately from proposition
7.4.3 and remarks 7.4.4, 7.4.5 and 7.4.6 are those concerning the case when X;f) =

Aéi)q or Eéz), 2|rand i = j = 1, and it is a matter of straightforward computations.
O

§7.5. The Killing form on the new imaginary root vectors.
The next (and last) step is computing (E,, F,,) when « is an imaginary root.

Lemma 7.5.1
Let r >0 and 7 € I". Then

(r) AD
(E(’I’5 )1 F(T(S z) —A(T) Z A(T) szr A“

EEEE— —X;
o o -1 d 'LJT‘
jeIrj>i qi qz q q jeIrj>i [ J]q
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Proof: The definition of E, implies that (E.s,), Firs,)) = Ag:)(E(r57i), Firs4)),
because (E(rs.i), Frsi) — ASf Firs.i) = 0. But

r Zjir
(E(r5 )9 F(T(S 1) E A E(T(S i) F(r5 z) E A( s L - _1-
JelI™:j>i JEIT:5>1 4 —4;

Proposition 7.5.2
Let r > 0,7 € I". Then we have

i, = _
L(Ewrs)s Firs,iy) =

([2]gren-n if i =1 in case BY"
n—1+2] 22|, if 1 # 1 in cases By(Ll)and A(Q)and
q q 2n

if 4 > 2 in case F7§1:)4

2]~ [2] 4rn+1) if i =1 in case C\V
2] [2] gren—n) if i = 1 in case DS
[9_7?2”‘{ [f]qf’;g"“‘) if i = 1in case EWY with n = 6,7
—Eq;ﬁ]ﬁ]ﬂz: if 1 =1 in case Eél)
2] - if i = 2 in case F\")
[2](197’ . . . (1)
Lo it + =1 in case F)

) (6l if i =2 in case Ggl)
qu: if i =1 in case Ggl)
[2] jrzn+1) if i =1 and 2|r in case A( )
2]4r[2n + 1] 4 if i=1and 2 Jr in case AQn
(=2 — i+ 2] if k& fr in cases ng) and EF=2
(_1)52[2]‘1’% if © =1 and 2|r in case A2n 1
2] grn if i =1 and k = 2|r in case Dé )
[[22]]"3: if i=1and k= 3|r in case D%k)
[2] g if i =2 and 2|r in case Eé2)
(—1)3 Ezz: if i =1 and 2|r in case E(()-Q)

\[n— i+ 2] otherwise.

Proof: For the non twisted case see [7]. Then also the cases Aéi) with ¢ # 1,
Xék) with k& /r, Aéi)—l and D%k) with & # 1|r and 7 # 1, and Eé2) with 2|r and
i # 1,2 are clear. O
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§7.6. The expression of R in terms of the E,’s.

We can now collect the results obtained till now and get an explicit formula for
R.

Theorem 7.6.1

_ q;1 - Qa — — —too
R = H exXpy, | ———FE. ® Fo ) |q
Co

CVECB+

_ 1 if o € ®1°
where ¢, = (¢3! — qo)(Ea, Fo) = { _ _ -
(qgl _QQ)(EaaFa) if a € (I)inv
explicitly determined from proposition 7.5.2.

and ¢, is

Proof: The claim is a straightforward consequence of the preceding results:
corollary 7.1.6 and proposition 7.5.2. O
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