Moduli su anelli - esercizi (Damiani) Generatori

In questi esercizi A è un anello unitario.

- 1) Siano A un anello, M un A-modulo e $X \subseteq M$ un sottoinsieme. Si chiama A-sottomodulo di M generato da X, e si denota $< X >_A$ o $< x | x \in X >_A$ o semplicemente < X > se non ci sono ambiguità, il minimo A-sottomodulo di M contenente X.
- i) Dimostrare che tale definizione è ben posta: se $\{M_i|i\in I\}$ è una famiglia di A-sottomoduli di M contenenti X, esiste un A-sottomodulo N di M tale che $X\subseteq N\subseteq M_i$ $\forall i\in I$; d'altra parte un A-sottomodulo di M contenente X esiste (esibirne uno); concludere che nell'insieme degli A-sottomoduli di M contenenti X esiste un (unico: perché?) elemento minimo rispetto all'inclusione.
- ii) Dimostrare che

$$< X >_{A} = \left\{ \sum_{x \in X} a_{x} x | a_{x} \in A \ \forall x \in X \ e \ \#\{x \in X | a_{x} \neq 0\} < \infty \right\}.$$

- iii) Si dice che X genera M, o è un insieme di generatori per M, se $< X >_A = M$; dimostrare che per ogni A-modulo M esiste un insieme di generatori $X \subseteq M$.
- 2) Siano I un insieme,

$$A^I = \prod_{i \in I} A = \{(a_i)_{i \in I} | a_i \in A \ \forall i \in I\}$$

e $e_i = (\delta_{ij})_{j \in I} \in A^I$ per ogni $i \in I$.

- i) Dimostrare che per ogni $i \in I < e_i >_A \cong A$.
- ii) Determinare l'A-sottomodulo $\langle e_i | i \in I \rangle_A$ di A^I generato da $\{e_i | i \in I\}$.
- iii) Dimostrare che $\{e_i|i\in I\}$ è un insieme di generatori per A^I se e solo se $\#I<\infty$.
- 3) Con le notazioni introdotte nell'esercizio 2) siano M un A-modulo, I un insieme, $e: I \to A^I$ la funzione definita da $i \mapsto e_i$ e $f: I \to M$ una funzione.
- i) Dimostrare che esiste un unico omomorfismo di A-moduli

$$\varphi_f : \langle e_i | i \in I \rangle_A \to M$$

che estende f cioè tale che il diagramma

commuti.

- ii) Dimostrare che $Im(\varphi_f) = \langle f(I) \rangle_A$.
- iii) Dimostrare che se $X \subseteq M$ e $\varphi : \langle e_x | x \in X \rangle_A \to M$ è l'omomorfismo che estende l'inclusione $X \hookrightarrow M$ si ha che φ è suriettivo se e solo se X è un insieme di generatori per M.
- 4) Un A-modulo M si dice finitamente generato se esiste un sottoinsieme finito $X \subseteq M$ tale che $\langle X \rangle_A = M$.
- i) Esibire esempi di A-moduli finitamente generati e di A-moduli che non sono finitamente generati.
- ii) Dimostrare che se $n \in \mathbb{N}$ allora A^n è un A-modulo finitamente generato.
- iii) Dimostrare che un A-modulo M è finitamente generato se e solo se esistono $n \in \mathbb{N}$ e un omomorfismo suriettivo di A-moduli $A^n \to M$.
- 5) Un A-modulo M si dice ciclico se esiste un insieme di generatori di M di cardinalità 1, cioè se esiste $x \in M$ tale che $M = \langle x \rangle_A = Ax$. In particolare ogni A-modulo ciclico è finitamente generato.
- i) Esibire esempi di A-moduli ciclici e di A-moduli finitamente generati che non sono ciclici.
- ii) Dimostrare che se M è un A-modulo ciclico esiste un omomorfismo suriettivo $f: A \to M$; se M = Ax descrivere esplicitamente f.
- iii) Dimostrare che M è ciclico se e solo se esiste un omomorfismo suriettivo $A \to M$; in particolare A è un A-modulo ciclico.
- iv) Dimostrare che $\mathbb Q$ è un $\mathbb Q$ -modulo ciclico e non è finitamente generato come $\mathbb Z$ -modulo.
- v) Dimostrare che A[x] è un A[x]-modulo ciclico e non è finitamente generato come A-modulo; determinare un isomorfismo di A-moduli $A^{\oplus \mathbb{N}} \cong A[x]$ ed esibire un insieme numerabile di generatori di A[x].
- vi) Dimostrare che $\mathbb C$ è un $\mathbb C$ -modulo ciclico e un $\mathbb R$ -modulo finitamente generato ma non ciclico.
- vii) Esibire un A-modulo ciclico M tale che esistano due elementi non nulli $x, y \in M$ con la proprietà che $M \neq \langle x \rangle_A$, $M \neq \langle y \rangle_A$, $M = \langle x, y \rangle_A$.
- viii) Esibire un A-modulo ciclico M tale che esistano due elementi non nulli $x,y\in M$ con la proprietà che $M=< x>_A \oplus < y>_A$.
- ix) È possibile esibire un A-modulo M con le proprietà del punto viii) se A è un campo? se $A = \mathbb{Z}$? se A = K[x]?