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0. INTRODUCTION.

The aim of this paper is describing the center of the specialization (or, we should say, of a
chosen specialization, see paragraph 1.3) of twisted affine quantum algebras at primitive
odd roots of 1 (with some further very slight conditions on the order of these roots, see
notation 1.3.3). This result is already known for quantum algebras of finite type (see [5])
and of untwisted affine type (see [2]); on the other hand the investigation of the structure
of twisted affine quantum algebras carried out in [3] allows to complete this program with
just a little more effort.
Actually the structure needed on Uq is very rich: for this reason section 1, where the nota-
tions are introduced, is the occasion for recalling, as shortest as possible, the instruments
that will be used in the arguments presented.
In section 2 the contravariant form is used, following an argument introduced in [5] and
refined in [2], in order to get a control on the “dimension” of the center: the contravariant
form is studied by making use of both its general properties and its connections with the
Killing form, which, on its side, was studied in details, for the twisted algebras, in [3].
In section 3 some specific computations are developed, in order to find the missing central
elements, which are not simply powers of root vectors, but which are linear combinations
of (non central) imaginary root vectors. Thanks to these additional elements we obtain
the complete picture of the positive part of Z(Uε).
Finally section 4 is devoted to glueing the pieces together, in order to state the desired
assertion about the center: it is the quotient of an algebra of polynomials in an infinite
number of variables by a very “small” ideal, which is indeed a principal ideal generated by
an element PZ ∈ U0

ε .
I want to thank Prof. Neda Bokan, who made it possible, as the Dean of the Faculty of
Mathematics of the University of Belgrade, to establish a scientific cooperation with the
Department of Mathematics of the University of Rome “Tor Vergata” and to make this
collaboration official with the signature (by both Rectors, Prof. Purić and Prof. Finazzi-
Agrò) of a bilateral agreement. It is thanks to her efforts that the first contacts between
our universities, in summer 1999, immediately after the aggression of the NATO countries
against the Federal Republic of Yugoslavia, turned into proficuous meetings in Belgrade
and into the participation of a delegation from the Second University of Rome in the
X Congress of Yugoslav Mathematicians: for me it has been a particular pleasure to be
in Belgrade again, to meet the colleagues that I had already met in 1999 and to give a
continuity to our scientific exchanges, which shall go on, in the very next future, with a
program of invitations in Rome.
As a mathematician concerned about the deformed use of science (to make war, to destroy
a country, to isolate a community,...) and as part of the movement which in Italy carried
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out a total opposition against that war and is now fighting against its continuation in these
times of so-called peace, I’m happy to bring to this Congress my, unfortunately too small,
tribute and solidarity for the price that Yugoslavia paid and is still paying to the strategies
of domination of the world.
1. TWISTED AFFINE QUANTUM ALGEBRAS AT ROOTS OF 1: NOTATIONS.

§1.1. The Kac-Moody algebra.
Twisted affine quantum algebras are the quantization of the enveloping algebra of a class
of Lie algebras, namely the class of twisted affine Kac-Moody algebras.
A complete description of these KM-algebras, as well as a motivation for their denomina-
tion, can be found in [6], where they were introduced. What it is important to recall here
is that a KM-algebra g is a Lie algebra whose generators and relations can be expressed
in terms of a matrix A, called the (generalized) Cartan matrix of g, and that the same
information contained in A can be encoded in a diagram Γ (the Dynkin diagram of g).
The Dynkin diagrams associated to twisted affine KM-algebras consist in three families
(A(2)

2n , A(2)
2n−1, D(2)

n+1) and two isolated cases (E(2)
6 , D(3)

4 ), which are listed below (the type
is in general denoted by X(k)

ñ , which means that, for example, in case E(2)
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The matrix A = (aij)ij∈I can be recovered from Γ as follows:
a) I is the set of vertices of Γ;

b)


aii= 2 ∀i ∈ I
aij = −#{edges in Γ connecting i and j} ∀i 6= j ∈ I s.t. ∃an arrow pointing at i

or there is no edge connecting i and j
aij= −1 otherwise.

Remark that the set I has been identified with {0, 1, ..., n}; the set {1, ..., n} =̇. I \ {0} is
denoted by I0.
Attached to these data there is the notion of root system Φ ⊆ Q =̇. ⊕i∈I Zαi, of positive
and negative, real and imaginary roots, and of multiplicity of a root: Φ+ =̇. Φ ∩ Q+ =
Φ ∩ (

∑
i∈I Nαi), Φ− =̇. − Φ+ = Φ \ Φ+, Φim =̇. Zδ \ {0} with δ =

∑
i∈I riαi, r0 = 1

and
∑
j∈I aijrj = 0 ∀i ∈ I, and Φre = Φ \ Φim. The multiplicity of each real root is

1, while the multiplicity of rδ can be described as follows: ∀r 6= 0 denote by Ir the set
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Ir =̇.

{
I0 in case A(2)

2n

{i ∈ I0|di|r} otherwise
where {di|i ∈ I} is the set of positive integers such that

min{di|i ∈ I} = 1 and diaij = djaji ∀i, j ∈ I (the di’s exist and are uniquely determined
since A is symmetrizable and indecomposable, see [6]). Then the multiplicity of rδ is #Ir.
Thus the set of positive roots with multiplicities, denoted by Φ̃+, can be described as
Φ̃+ = Φre

+ ∪ Φ̃im
+ = Φre

+ ∪ (∪r>0{rδ} × Ir): remark that the condition i ∈ Ir is equivalent

to (rδ, i) ∈ Φ̃+ and that #Ir =
{
n if k|r
ñ−n
k−1 otherwise.

It is worth noticing that Φ̃+ is an index set for a basis of n+ ⊆g (see [6]).
§1.2. The quantum algebra.
In this paragraph a short account of the quantum algebra Uq associated to a (twisted)
affine Cartan matrix A (or to the corresponding Dynkin diagram Γ) will be given, and
some of the main structures will be shortly recalled.
Definition 1.2.1.
Uq is the C(q)-associative unitary algebra generated by {Ei, Fi,K±1

i |i ∈ I} with relations:

[Ki,Kj ] = 0, KiEj = qdiaijEjKi, KiFj = q−diaijFjKi, [Ei, Fj ] = δij
Ki −K−1

i

qdi − q−di
∀i, j ∈ I

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qdi

EriEjE
1−aij−r
i =0=

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qdi

F ri FjF
1−aij−r
i ∀i 6= j ∈ I

where ∀m ≥ m′, r ∈ N [m]qr =̇. qmr−q−mr
qr−q−r , [m]qr ! =̇.

∏m
s=1[s]qr ,

[
m
m′

]
qr

=̇.
[m]qr !

[m′]qr ![m−m′]qr ! .
In the following remark some fundamental structures that Uq can be endowed with are
listed, and the references given.
Remark 1.2.2.
a) Uq = U−q ⊗C(q) U0

q ⊗C(q) U+
q where U−q , U0

q , U+
q are the subalgebras of Uq respectively

generated by {Fi|i ∈ I}, {K±1
i |i ∈ I}, {Ei|i ∈ I} (see [7]);

b) Uq = ⊕η∈QUq,η is the Q-gradation induced by Ei ∈ Uq,αi , Fi ∈ Uq,−αi , K±1
i ∈ Uq,0;

c) Ω : Uq → Uq is the antilinear antiinvolution such that Ei
Ω↔ Fi, Ki

Ω↔ K−1
i , q Ω7→ q−1;

d) the braid group B acts on Uq and its quotient W (the Weyl group) acts on Q in such a
way that T (Uq,η) = Uq,w(η) where w is the image of T in W (see [7]);
e) W.{αi|i ∈ I} = Φre; this allows to construct elements Eα ∈ U+

q,α ∀α ∈ Φre
+ (with

Eαi = Ei), which are called positive real root vectors (see [7], [1], [3]);
f) by the commutation of the Eα’s (α ∈ Φre

+) the imaginary root vectors E(rδ,i) ∈ U+
q,rδ

with (rδ, i) ∈ Φ̃im
+ are defined: they generate a commutative subalgebra of U+

q (see [1], [3]);
g) given a total ordering< of Φ̃+ set, ∀η ∈ Q+, P(η) =̇. {γ = (γ1≤ ...≤γm)|

∑m
s=1p(γs) = η}

(where p : Φ̃+→Φ+ is the natural projection), par(η) =̇. #P(η) and, ∀x : Φ̃+3 α 7→ xα ∈ Uq,
∀γ = (γ1, ..., γm) ∈ P(η), x(γ) =̇. xγ1 · ... · xγm ; then {E(γ)|γ ∈ ∪η∈Q+P(η)} is a basis of
U+
q , called PBW-basis (for a discussion on the admitted orderings on Φ̃+, see [3]);

h) the Killing form (·, ·) : U≥0
q ×U≤0

q → C(q) connects the algebra and coalgebra structures
of Uq (see [9]);
i) the (“universal”) contravariant form H : U−q ×U−q → U0

q contains information about the
commutation relations (see [5]); its restriction to U−q,−η is denoted by Hη.
§1.3. The specialization at (odd) roots of 1.
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The aim of this paragraph is to define the specialization of Uq at ε when ε is a nonzero
complex number. Roughly speaking, the idea is to transform the indeterminate q into a
parameter which takes values in C∗, thus obtaining, for each value ε of the parameter, an
associative C-algebra, that will be denoted by Uε; this can be done in different ways: in
this paper one of these different methods to specialize Uq is chosen (see [5]), but it can be
useful to recall that other specializations (see [8]) have an essentially different behaviour
exactly under the aspect that we are going to consider, the center.
Definition 1.3.1.
Let Uq be a quantum algebra of type X(k)

ñ and let A be the subalgebra of C(q) generated
over C by {q, q−1, (qm−q−m)−1|1 ≤ m ≤ k}, i.e. A =̇. C[q, q−1, (qm−q−m)−1|1 ≤ m ≤ k];
the A-subalgebra UA of Uq generated by {Ei, Fi,K±1

i |i ∈ I} is called the integer form of
Uq. Remark that if ε ∈ C∗ is such that ε2m 6= 0 ∀m = 1, ..., k than q − ε is not invertible
in UA. In this case we call specialization of Uq at ε, and denote it by Uε, the quotient
Uε =̇. UA/(q − ε).
Remark 1.3.2.
It is possible to avoid the restrictions on ε introduced for the construction above, but since
we are actually interested in further restrictions it is useless, for the purpose of this paper,
to look for an unnecessary generality.
Notation 1.3.3.
From now on l will denote an odd integer bigger than k, and ε a primitive lth root of 1.
Remark that such an ε satisfies the restrictions required in definition 1.3.1.
Proposition 1.3.4.
Uε inherits from Uq most of its structures:
a) the triangular decomposition: Uε = U−ε ⊗C U0

ε ⊗C U+
ε ;

b) the Q-gradation: Uε = ⊕η∈QUε,η;

c) the antilinear antiinvolution Ω : Uε → Uε such that U+
ε

Ω↔U−ε ;
d) The structure of U0

ε : U0
ε = C[K±1

i |i ∈ I]; ∀λ =
∑
i∈I miαi ∈ Q, Kλ =̇.

∏
i∈I K

mi
i ;

e) the braid group action, the root vectors and their basis-properties (PBW basis).
Moreover recall that (q − ε)|[m]qr (that is [m]qr = 0 in Uε) ⇔ l|mr and l 6 |r, and that
(q−ε)2 never divides [m]qr (if m 6= 0); given an element a in an A-algebra, multεa denotes
the multiplicity of ε in a (that is (q − ε)multεa||a).
Proof: See [4], paragraph 1.D1.
2. AN UPPER BOUND FOR dim(Z(Uε) ∩ U+

ε,η).
The strategy followed to describe the center of the algebras that we are dealing with passes
through the investigation of its positive part, which is the goal of this and the next section;
it consists in exhibiting a family of central elements, proving that they constitute a set of
generators and showing that there are no relations among them.
Exhibiting a first set of central elements is not difficult: it can be done thanks to the results
on the commutation relations between the root vectors and to the commutation properties
of the elements Kλ’s. Analogously, it is thanks to the PBW basis (see [3], section 6) that
we can deduce that there are no relations among these central root vectors.
Thus the starting point of this section is an estimate of the dimension of the center, or
better of the homogeneous components of its positive part, which could allow us to say
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that the number of independent central elements cannot be too big: this estimate comes
from the comparison of dim(Z(Uε) ∩ U+

ε,η) with the multiplicity of ε in detHη.
Proposition 2.1.
Suppose given {xα|α ∈ Φ̃+}, with xα ∈ U+

A,α, such that:
a) ∀η ∈ Q+ {x(γ)|γ ∈ P(η)} is a basis of U+

ε,η;

b) ∃f : J → Z+ (with J ⊆ Φ̃+) such that xf(α)
α ∈ Z(Uε) ∀α ∈ J ;

c) ∀η ∈ Q+ multεdetHη ≤
∑
α∈J,m>0 par(η −mf(α)p(α));

then Z(Uε) ∩ U+
ε is the algebra of polynomials in {xf(α)

α |α ∈ J}.
Proof: See [2] (corollary 3.2.4 and proposition 3.2.5) or equivalently [4] (proposition
3.2.12).
The aim is now to find elements xα’s satisfying the conditions of proposition 2.1.
Lemma 2.2.
a) ∀α ∈ Φ̃re

+ the element Elαα is central in Uε, where lα =̇. l
g.c.d.(l,dα) and dα =̇. di where i ∈ I

is such that ∃w ∈W with α = w(αi);
b) ∀i ∈ I0, ∀r > 0 the root vector E(lrδ,i) is central in Uε.
Proof: Part a) is the immediate generalization to the real root vectors of a classical result
by Kac (see [5]). For part b) see the commutation formulas in [3] (theorem 5.3.2).
Remark 2.3.
A comparison between proposition 2.1 and lemma 2.2 suggests to look for a set J containing
J ′ =̇. Φre

+ ∪ {(lrδ, i)|i ∈ I0, r > 0} and for a function f : J → Z+ such that f(α) = lα
∀α ∈ Φre

+ and f((lrδ, i)) = 1 ∀i ∈ I0, r > 0; of course following this suggestion we shall
have xα = Eα ∀α ∈ J ′.
Proposition 2.4.
∀η ∈ Q+ the multiplicity of ε in detHη is less than or equal to∑

α∈Φre
+

m>0

par(η −mlαα) +
∑
r,m>0

multε(detHr)par(η −mrδ)

where Hr is the matrix defined by Hr =̇. (E(rδ,i), F(rδ,j))ij∈Ir (and Fα =̇. Ω(Eα) ∀α ∈ Φ̃+).
Proof: For general affine quantum algebras we have that the highest coefficient of detHη

is, up to an invertible element of C[q, q−1],∏
α∈Φre

+
m>0

(
[m]qdα

qdα − q−dα

)par(η−mα)

·

∏(rδ,i)∈Φ̃im
+

(E(rδ,i), F̄(rδ,i))∏
(rδ,i)∈Φ̃im

+
A

(r)
ii


∑

m>0
par(η−mrδ)

where F̄(rδ,i) − A
(r)
ii F(rδ,i) lies in the linear span of {F(rδ,j)|j > i} and (E(rδ,i), F̄(rδ,j)) = 0

∀i > j. Indeed this is nothing but a reformulation of theorem 2.5.4 of [2] (which in this
generality does not depend on the peculiar characteristics of the untwisted algebras, but
is valid for all the affine cases), remarking the connection between the Killing form and
the contravariant form: if x and y belong to the linear span of the imaginary root vectors,
x ∈ U+

q,rδ, y ∈ U
−
q,−rδ, then [x, y] = −(x, y)(Krδ −K−1

rδ ) (see corollary 7.2.4 of [3]).

On the other hand ∀r > 0
∏

i∈Ir
(E(rδ,i),F̄(rδ,i))∏
i∈Ir

A
(r)
ii

is evidently detHr because the matrix of

passage from {F̄(rδ,i)|i ∈ Ir} to {F(rδ,i)|i ∈ Ir} is triangular. The claim then follows
remarking that the multiplicity of ε in detHη is less than or equal to the multiplicity of ε
in the highest coefficient of detHη.
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Remark 2.5.
Comparing proposition 2.1, remark 2.3 and proposition 2.4, we see that for the real part
they coincide. So we can concentrate our attention on the imaginary root vectors, going
into the details of the twisted cases.
Lemma 2.6.
In the twisted algebras the multiplicity of ε in detHr is given by:

multε(detHr) =


#I0 if l|r
1 if l 6 |r, 2 6 |r, and l|(2n+ 1)r in case A(2)

2n or
l|
(
ñ− n+ 1

)
r in cases A(2)

2n−1 and E
(2)
6

0 otherwise.
Proof: We have that, up to elements which give no contribution to the multiplicity of ε,

detHr = [r]#I
r

q ·

 [2n+ 1]qr if 2 6 |r in case A(2)
2n

[ ñ−nk−1 + 1]qr if k 6 |r in the other twisted cases
1 otherwise:

see [3] (theorem 5.3.2, notation 7.1.3, lemma 7.1.4, corollary 7.2.4). The claim follows
immediately remarking that in the case D(k)

ñ we have ñ−n
k−1 = 1.

Remark 2.7.
From the comparison between proposition 2.1, remark 2.3 and lemma 2.6 we can see that
they agree for what concerns the roots (rδ, i) with l|r. But we see also that J 6= J ′: more
precisely, in order to be able to apply proposition 2.1 we must have J = J ′ ∪J ′′, where J ′′

must be of the form

J ′′ =


{(rδ, i∗)|2 6 |r, l 6 |r, l|(2n+ 1)r} in case A(2)

2n

{(rδ, i∗)|2 6 |r, l 6 |r, l|
(
ñ− n+ 1

)
r} in cases A(2)

2n−1 and E
(2)
6

∅ in cases D(2)
n+1 and D

(3)
4 ;

and i∗ must be an element of Ir; at the same time we must have f(α) = 1 ∀α ∈ J ′′. This
means that we must look for a nonzero central element in the span of {E(rδ,i)|i ∈ Ir} when
2 6 |r, l 6 |r, l|(2n+ 1)r in case A(2)

2n and when 2 6 |r, l 6 |r, l|(ñ−n+ 1)r in cases A(2)
2n and E(2)

6 .
The results of this section prove that once that we have found these central elements, we
have described Z(Uε) ∩ U+

ε .
3. THE POSITIVE PART OF THE CENTER: Z(Uε) ∩ U+

ε .
The present section is devoted to conclude the program illustrated in section 2, that is to
go into the details in order to exhibit the central vectors that we are still missing.
Remark 3.1.
Let r be as described at the end of remark 2.7; then we are looking for an index i∗ ∈ Ir
and for an element E∗(rδ,i∗) =

∑
i∈Ir A

(r)
i E(rδ,i) such that:

a) E∗(rδ,i∗) is linearly independent of {E(rδ,i)|i ∈ Ir \ {i∗}} in Uε;
b) E∗(rδ,i∗) ∈ Z(Uε).
The above conditions a) and b) can be translated into the following ones:
a′) A(r)

i∗
6= 0 in Uε;

b′) (E(rδ,i∗), F(rδ,i)) = 0 in Uε ∀i ∈ Ir.
Indeed that a) and a′) are equivalent is obvious; the equivalence between b) and b′) is
a straightforward consequence of the commutation relations involving an imaginary root
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vector (see [3], theorem 5.3.2) and of the already mentioned connection between the bracket
and the Killing form (see the proof of proposition 2.4). But the computations needed to
find elements satisfying a′) and b′) have already been carried out in [3], so that now we
have just to recall the result.
Proposition 3.2.
Let X(k)

ñ = A
(2)
2n , 2 6 |r, l 6 |r, l|(2n+ 1)r, and let

E∗(rδ,i∗) = [n]q2rE(mδ,1) −
∑

i∈I0\{1}

(−1)r[2]q[n− i+ 1]qrE(mδ,i);

then E∗(rδ,i∗) is central in Uε; morover i∗ = n satisfies the requirement of a′).
Proof: See [3], lemma 7.4.1, remark 7.4.2 and propositions 7.4.7 and 7.5.2. As for the
assertion on i∗ it is enough to remark that the hypotheses imply that l 6 |2rn.
Proposition 3.3.
Let X(k)

ñ = A
(2)
2n−1 or E(2)

6 , 2 6 |r, l 6 |r, l|
(
ñ− n+ 1

)
r, and let

E∗(rδ,i∗) =
∑
i∈Ir

(−1)r[ν − i+ 1]qr where ν =̇.

{
ñ− n+ 1 = n in case A(2)

2n−1

ñ− n = 2 in case E(2)
6 ;

then E∗(rδ,i∗) is central in Uε; morover i∗ = ν satisfies the requirement of a′).
Proof: The references given for proposition 3.2 are still valid, but it is worth remarking
that in these cases the commutation relations involving an imaginary root vector are exactly
those of A(1)

ñ−n (see [3], remark 7.4.5), so one can also refer to [2], proposition 3.3.7. The
assertion about i∗ is trivial.
In conclusion the results found above lead to the explicit description of Z(Uε) ∩ U+

ε .
Corollary 3.4.
Z(Uε) ∩ U+

ε is a C-algebra of polynomials in an infinite set of variables; more precisely

Z(Uε) ∩ U+
ε = C[Elαα , E(lrδ,i), E

∗
β |α ∈ Φre

+ , r > 0, i ∈ I0, β ∈ J ′′]

where J ′′ is as defined in remark 2.7, with i∗ = n if X(k)
ñ = A

(2)
ñ , i∗ = 2 in case E(2)

6 , and
the elements E∗β ’s are the ones described in propositions 3.2 and 3.3.
Proof: This is the natural conclusion of proposition 2.1, lemma 2.2, proposition 2.4, lemma
2.6 and propositions 3.2 and 3.3.
4. THE CENTER.

Here we pass from the results obtained till now to the description of the whole center:
Z(Uε) will finally turn out to be, “essentially”, an algebra of polynomials (of course in
an infinite number of variables), with just one relation, regarding its null part. Since we
already know Z(Uε)∩U+

ε (then, by symmetry, we also know Z(Uε)∩U−ε ), we are just left
with the task of describing Z(Uε) ∩ U0

ε (which is trivial) and of understanding how the
structure of Z(Uε) can be directly found out from that of its positive, negative and null
parts.
Lemma 4.1.
Z(Uε) ∩ U0

ε is the subalgebra of U0
ε generated by {Kli

i ,Kδ|i ∈ I}, where li =̇. lαi . Remark
that while {Kli

i |i ∈ I} is a set of algebraically independent elements, there is a relation

between them and Kδ: namely,
∏
i∈I(K

li
i )

lri
li = Kl

δ.
Proof: The claim is obvious.
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Proposition 4.2.
Z(Uε) = (Z(Uε) ∩ U−ε )⊗ (Z(Uε) ∩ U0

ε )⊗ (Z(Uε) ∩ U+
ε ).

Proof: See [2], theorem 3.4.3, or equivalently [4], theorem 3.5.6. Remark that even
though the given references relate to the untwisted affine setting, the proof of the general
assertion that we are dealing with never makes use of the particular form of the untwisted
type algebras but it depends only on the existence of two strings of real root vectors
and on some properties (of the imaginary root vectors and of some commutation rules)
that are common to all the affine situations; the claim is then valid also in the twisted
cases. On the other hand it is worth noticing that this result is not true for the quantum
algebras of finite type (these are the quantization of the enveloping algebras of simple
finite dimensional complex Lie algebras), where there are also the Casimir elements, that
is central elements which cannot be decomposed as algebraic combinations of “positive”,
“negative” and “null” central elements.
Theorem 4.3.
Let Uε be the specialization at ε of an affine quantum algebra of twisted type X(k)

ñ , with
ε ∈ C primitive lth of 1 and l odd integer bigger than k. Then the center of Uε is

Z(Uε)=[Elαα , E(lrδ,i), E
∗
β , F

lα
α , F(lrδ,i), F

∗
β ,K

lj
j ,Kδ|α∈ Φre

+ , r > 0, i ∈ I0, j ∈ I, β ∈ J ′′]/(PZ)

where J ′′ and E∗β are those of corollary 3.4, F ∗β =̇. Ω(E∗β) and PZ =̇. Kl
δ −

∏
i∈I(K

li
i )

lri
li .

Proof: The theorem is the straightforward consequence of corollary 3.4, lemma 4.1 and
proposition 4.2.
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