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1-i) Descrivere le proprietà dell’anello Z/7Z.

1-ii) Descrivere la struttura del gruppo (Z/7Z)∗.

1-iii) Risolvere il sistema di congruenze

(∗)

{
3x ≡ 2 (mod 7)

3x ≡ 2 (mod 7).

1-iv) Determinare il numero di interi positivi x minori di 100 che risolvono
il sistema (∗).

2) Siano:
G un gruppo abeliano;
σ : G→ G un omomorfismo di gruppi tale che σ2 = idG;
K = {g ∈ G|σ(g) = g} l’insieme dei punti fissi di σ.

Dimostrare che:

i) σ è un automorfismo di G e K è un sottogruppo di G; descrivere σ
∣∣
K

.

ii) σ induce un omomorfismo di gruppi σ̄ : G/K 3 gK 7→ σ(g)K ∈ G/K; σ̄
è un automorfismo?

iii) se G è finito di cardinalità dispari allora l’unico punto fisso di σ̄ è
l’elemento neutro di G/K.

iv) Esibire un esempio di G gruppo abeliano e σ ∈ Aut(G) con σ2 = idG
tali che K sia un sottogruppo non banale di G; descrivere G/K e σ̄.

3) Sia v : Z \ {0} → N la funzione definita nel modo seguente:

v(n) = m⇔ 2m ≤ |n| < 2m+1

e siano a, b, q, r ∈ Z elementi tali che

(∗) a = bq + r.

i) Dimostrare che v è una valutazione euclidea su Z.

ii) Se a = 2 e b = 3 determinare q, r tali che (∗) sia una divisione euclidea
in (Z, v).

iii) Mostrare un esempio di divisione euclidea (∗) in (Z, | · |) che non è una
divisione euclidea in (Z, v).

iv) Dimostrare che se (∗) è una divisione euclidea in (Z, v) allora (∗) è una
divisione euclidea anche in (Z, | · |).
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SOLUZIONI

1-i) Z/7Z è un quoziente di Z, quindi è un anello commutativo unitario;
Z/7Z ha 7 elementi; poiché 7 è un numero primo Z/7Z è un campo.

1-ii) (Z/7Z)∗ ha 6 elementi; è il gruppo moltiplicativo di un campo finito,
quindi è un gruppo ciclico; dunque (Z/7Z)∗ ∼= Z/6Z.
Oltre all’unità (l’elemento 1) che ha ordine 1, in (Z/7Z)∗ ci sono due elementi
di ordine 6 (ciascuno dei quali genera tutto il gruppo), due elementi di
ordine 3 e un elemento di ordine 2 (l’elemento −1 = 6). Osserviamo che
33 = 27 = −1 6= 1, quindi 3 ha ordine 6 ed è un generatore di (Z/7Z)∗.

1-iii) Il punto 1-ii) implica che la congruenza 3x ≡ a (mod 7) è risolubile per
ogni a primo con 7 e la soluzione è definita modulo 6.
Poiché 32 = 9 ≡ 2 (mod 7), la congruenza 3x ≡ 2 (mod 7) equivale alla
congruenza x ≡ 2 (mod 6).
Inoltre l’inverso di 3 in Z/7Z è 5, quindi la congruenza 3x ≡ 2 (mod 7)
equivale alla congruenza x ≡ 5 · 3x ≡ 5 · 2 = 10 ≡ 3 (mod 7).
Dunque il sistema (∗) equivale al sistema di congruenze lineari{

x ≡ 3 ≡ −4 (mod 7)

x ≡ 2 ≡ −4 (mod 6).

−4 è chiaramente una soluzione di questo sistema, e dal fatto che 6 e 7 sono
primi tra loro segue che la soluzione del sistema (∗) è definita modulo 42,
ed è quindi x ≡ −4 (mod 42).

1-iv) Abbiamo visto che le soluzioni del sistema (∗) sono tutti i numeri
della forma −4+42k al variare di k in Z. La condizione 0 < −4+42k < 100
equivale alle condizioni 42k > 4 e 42k < 104, cioè k > 0 e k ≤ 2, dunque ci
sono esattamente due soluzioni di (∗) nell’intervallo dei numeri interi da 1 a
99.

2)

i) Per ogni g ∈ G si ha g = σ2(g) = σ(σ(g)), quindi g ∈ Im(σ), cioè σ è
suriettiva; d’altra parte se g ∈ Ker(σ) si ha g = σ(σ(g)) = σ(e) = e, quindi
il nucleo di σ è banale, cioè σ è iniettiva.
Ne segue che σ è un omomorfismo di gruppi iniettivo e suriettivo, quindi è
invertibile, cioè è un automorfismo.
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Alternativamente: σ2 = id implica che σ è inverso sinistro e destro di σ,
cioè che σ è invertibile (con inverso σ).
Se g ∈ K, cioè se σ(g) = g, si ha σ(g−1) = σ(g)−1 = g−1, quindi g−1 ∈ K;
se inoltre anche σ(g′) = g′ si ha σ(gg′) = σ(g)σ(g′) = gg′, quindi gg′ ∈ K.
Dunque K è chiuso rispetto all’inverso e al prodotto, cioè è un sottogruppo
di G.
Se g ∈ K si ha che σ(g) = g, quindi σ

∣∣
K

= idK .

ii) Poiché G è un gruppo abeliano e K è un sottogruppo, G/K è un gruppo.
Poiché σ(K) ⊆ K (più precisamente σ(K) = K), K è contenuto nel nucleo
della composizione G 3 g 7→ σ(g) 7→ σ(g)K ∈ G/K, che dunque induce un
omomorfismo di gruppi σ̄ : G/K → G/K.
Ovviamente σ̄2 = idG/K , quindi per il punto i) σ̄ è un automorfismo.

iii) Osserviamo innanzitutto che l’ipotesi implica che ancheG/K è un gruppo
finito di cardinalità dispari; ne segue che tutti i suoi elementi hanno ordine
dispari.
Sia x ∈ G/K tale che σ̄(x) = x e sia g ∈ G tale che x = gK; allora
gK = x = σ̄(x) = σ(g)K, cioè g−1σ(g) ∈ K.
Dunque σ(g−1σ(g)) = g−1σ(g), cioè σ(g)−1g = g−1σ(g), cioè g2 = σ(g2).
Questo significa che g2 ∈ K, cioè x2 = g2K = K, quindi o(x)|2; ma x ha
ordine dispari, quindi o(x) = 1, cioè x è l’elemento neutro di G/K.

iv) Sia H un gruppo abeliano non banale e siano G = H ×H, σ : G → G
la funzione definita da σ(h1, h2) = (h2, h1). Ovviamente G è un gruppo
abeliano e σ è un omomorfismo di gruppi con σ2 = id.
Abbiamo che K = {(h1, h2) ∈ G|h1 = h2} = {(h, h)|h ∈ H}.
Osserviamo che se h ∈ H \ {eH} allora (e, h) ∈ G, (e, h) 6∈ K (dunque
K 6= G) ed eG 6= (h, h) ∈ K (dunque K 6= {eG}), quindi K è un sottogruppo
non banale di G.
Sia f : G→ H la funzione definita da f((h1, h2)) = h1h

−1
2 .

Ovviamente f è suriettiva (h = f((h, e)) per ogni h ∈ H); poiché H è
abeliano f è un omomorfismo di gruppi; il suo nucleo è K. Dunque f induce
un isomorfismo f̄ : G/K → H, cioè G/K ∼= H.
Infine osserviamo che se g = (h1, h2) abbiamo

gσ(g) = (h1, h2)(h2, h1) = (h1h2, h2h1) ∈ K

quindi σ̄(gK) = (gK)−1 per ogni g ∈ G, cioè σ̄(x) = x−1 per ogni x ∈ G/K.

3)

i) Siano a, b ∈ Z \ {0}. Vogliamo provare che v(ab) ≥ v(a).
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Questo è vero perché

v(a) = n⇒ |a| ≥ 2n ⇒ |ab| ≥ |a| ≥ 2n ⇒ v(ab) ≥ n = v(a).

Siano a, b ∈ Z con b 6= 0. Vogliamo provare che esistono q, r ∈ Z tali che
a = bq + r e v(r) < v(b).

Sappiamo che esistono q, r ∈ Z tali che a = bq + r e |r| ≤ |b|
2 (cioè un

rappresentante r di a in Z/bZ può essere scelto in modo tale che |r| ≤ |b|2 ).
Con tale scelta abbiamo

v(b) = n⇒ |b| < 2n+1 ⇒ |r| ≤ |b|
2
<

2n+1

2
= 2n ⇒ v(r) < n = v(b).

Ne segue che (Z, v) è un dominio euclideo.

ii) 2 = 3 ·1−1; se poniamo q = 1, r = −1 abbiamo quindi 2 = 3q+r; d’altra
parte 20 ≤ 1 < 21 ≤ 3 < 22 quindi v(−1) = 0 < 1 = v(3).

iii) 2 = 3 · 0 + 2 è una divisione euclidea in (Z, | · |) perché |2| < |3| ma non
in (Z, v) perché v(2) = 1 = v(3), quindi v(2) 6< v(3).

iv) Siano b 6= 0 e a = bq + r una divisione euclidea in (Z, v) , cioè r = 0
oppure v(r) < v(b); se r = 0 allora a = bq + r è una divisione euclidea in
(Z, | · |); se v(r) < v(b) allora

|r| < 2v(r)+1 ≤ 2v(b) ≤ |b|,

quindi anche in questo caso a = bq + r è una divisione euclidea in (Z, | · |).
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