ESERCIZI - Algebra 1, a.a. 2024/25 (Ilaria Damiani/Flaminio Flamini)

*** III ***

RICHIAMI

Notazione:

Dati $a, b \in \mathbb{Z}$ scriviamo $a|b \Leftrightarrow \exists c \in \mathbb{Z}$ tale che b = ac (\Leftrightarrow l'equazione ax = b è risolubile).

Osservazione 1: Dati $a, b, n \in \mathbb{Z}$ si ha:

$$a|b\Leftrightarrow -a|b\Leftrightarrow a|-b;$$
 equivalentemente:
 $\{\text{divisori di }n\}=\{\text{divisori di }-n\}=-\{\text{divisori di }n\}$

Osservazione 2: Dati $a, b, c \in \mathbb{Z}$ si ha:

$$a| \pm a$$

 $a|b \in b|a \Leftrightarrow a = \pm b$
 $a|b \in b|c \Rightarrow a|c$

Osservazione 3: Dati $a, b, c \in \mathbb{Z}$ si ha:

$$a|b \Rightarrow ac|bc;$$

 $ac|bc, c \neq 0 \Rightarrow a|b$
 $a|b \Rightarrow a|bc$
 $a|b \in a|c \Rightarrow a|b+c$

Osservazione 4: Dato $a \in \mathbb{Z}$ si ha:

```
1|a e a|0;

a|1 \Leftrightarrow a|b \ \forall b \Leftrightarrow a = \pm 1

0|a \Leftrightarrow b|a \ \forall b \Leftrightarrow a = 0;
```

Definizione:

Dati $a, b \in \mathbb{Z}$ si dice massimo comun divisore (MCD) tra $a \in b$ un numero $d \in \mathbb{Z}$ tale che:

- i) $d|a \in d|b$;
- ii) se d'|a e d'|b allora d'|d

Osservazione:

- i) $d \in MCD(a, b) \Leftrightarrow -d \in MCD(a, b)$;
- ii) se d_1 e d_2 sono MCD tra a e b allora $d_1 = \pm d_2$.

In particolare il massimo comun divisore è definito a meno del segno e la condizione aggiuntiva $d \geq 0$ definisce univocamente il massimo comun divisore non negativo.

Osservazione:

- i) $a \in MCD(a, b) \Leftrightarrow a|b$; in particolare $a \in MCD(a, 0) \in MCD(0, 0) = 0$.
- ii) $a = bq + r \Rightarrow MCD(a, b) = MCD(b, r)$.
- iii) $d \in MCD(a, b) \Rightarrow dc \in MCD(ac, bc) \forall c$.
- iv) se $d \in MCD(a, b)$ allora $d'|a \in d'|b \Rightarrow |d'| \leq |d|$.
- v) MCD(a,b) = 1, $a|bc \Rightarrow a|c$.

Definizione

Dati $a, b \in \mathbb{Z}$ si dice minimo comune multiplo (mcm) tra $a \in b$ un numero $m \in \mathbb{Z}$ tale che:

- i) $a|m \in b|m$;
- ii) se a|m' e b|m' allora m|m'

Osservazione:

- 1) mcm(a, b) è definito a meno del segno.
- 2) mcm(a,0) = 0 per ogni $a \in \mathbb{Z}$.

Esercizio

Esercizio

Siano $a, b \in \mathbb{Z}$ non entrambi nulli e sia d un MCD(a, b). Dimostrare che $\frac{ab}{d}$ è mcm(a, b). E se a = b = 0?

(1) Siano $a, b, c \in \mathbb{Z}$; (a, b, c) si dice terna pitagorica se $a^2 + b^2 = c^2$.

Sia (a, b, c) una terna pitagorica; dimostrare che:

- i) (-a, b, c), (a, -b, c), (a, b, -c) sono terne pitagoriche;
- ii) Sia $d \in \mathbb{Z}$; allora $d|a \in d|b \Leftrightarrow d|a \in d|c \Leftrightarrow d|b \in d|c \Leftrightarrow d|a, d|b \in d|c$; equivalentemente MCD(a, b) = MCD(a, c) = MCD(b, c) = MCD(a, b, c).
- iii) 4|a oppure 4|b;
- iv) se $4|a \in 4|b$ allora MCD(c-b,c+b) = 2MCD(b,c).
- (2) Una terna pitagorica (a, b, c) si dice ridotta se:
 - a) $a, b, c \ge 0$;
 - b) MCD(a, b) = 1;

Dimostrare che esistono infinite terne pitagoriche ridotte e costruirle.