*** TT ***

RICHIAMI

Definizione 1: Sia X un insieme; si chiama *ordinamento totale su* X una relazione $\leq (\subseteq X \times X)$, con le seguenti proprietà:

- i) \leq è riflessiva: per ogni $a \in X$ si ha $a \leq a$;
- ii) \leq è antisimmetrica: $a \leq b$ e $b \leq a \Rightarrow a = b$;
- iii) \leq è transitiva: $a \leq b$ e $b \leq c \Rightarrow a \leq c$;
- iv) \leq è totale: per ogni $a, b \in X$ si ha $a \leq b$ oppure $b \leq a$.

 (X, \leq) si chiama insieme totalmente ordinato.

Notazione: $a \le b$ si scrive anche $b \ge a$.

Osservazione: Se \leq è un ordinamento totale anche \geq è un ordinameto totale.

Definizione 2: Si chiama anello ordinato il dato $(A, +, \cdot, \geq)$ dove:

- i) $(A, +, \cdot)$ è un anello;
- ii) (A, \geq) è un insieme totalmente ordinato;
- iii) $a \ge b \Leftrightarrow a b \ge 0$;
- iv) $a, b \ge 0 \Rightarrow ab \ge 0$.

Definizione 3: Si chiama *campo ordinato* il dato $(K, +, \cdot, \geq)$ dove:

- i) $(K, +, \cdot)$ è un campo;
- ii) $(K, +, \cdot, \geq)$ è un anello ordinato.

ESERCIZI sulle PROPRIETÀ ELEMENTARI di anelli e campi ordinati

1) Sia $(A, +, \cdot, \ge)$ un anello ordinato e siano $a, b, c \in A$.

Dimostrare che:

- i) $a \ge b \Rightarrow a + c \ge b + c$;
- ii) $a \ge b \Rightarrow -b \ge -a$;
- iii) $a \ge b$ e $c \ge 0 \Rightarrow ac \ge bc$ e $ca \ge cb$;
- iv) $a^2 \ge 0$;
- v) $1 \ge 0$ (quindi $1 \ge 0 \ge -1$);
- vi) se a è invertibile allora $a \ge 0 \Leftrightarrow a^{-1} \ge 0$ e $a \ge 1 \Leftrightarrow 1 \ge a^{-1} \ge 0$;
- vii) se $0 \neq 1$ allora non esiste $m \in A$ tale che $m \geq a \ \forall a \in A$.
- 2) Sia $(K, +, \cdot, \leq)$ un campo ordinato.

Dimostrare che l'equazione $x^2 + 1 = 0$ non è risolubile.

Concludere che per risolvere le equazioni algebriche (polinomiali) di grado maggiore di 1 è necessario liberare il concetto di numero da quello di misura e confronto (ordine) tra grandezze.