ESERCIZI - Algebra 1, a.a. 2024/25 (Ilaria Damiani/Flaminio Flamini)

COMPLEMENTI

DALL'ASSIOMA DELLA SCELTA AL PRINCIPIO DI BUON ORDINAMENTO

Gli esercizi guidati che seguono affrontano temi che esulano dal programma di Algebra 1.

Rispondono alle domande poste da alcuni studenti e studentesse sulle condizioni sotto le quali l'unione di insiemi ben ordinati è un insieme ben ordinato e su come convincersi/dimostrare che ogni insieme è ben ordinabile.

Notazione Dati due insiemi ordinati (X, \leq) e (Y, \preceq) scriviamo

$$(X, \leq) \sqsubseteq (Y, \preceq)$$

(che possiamo leggere " (X, \leq) precede (Y, \preceq) ") se si verificano le seguenti condizioni:

- i) $X \subseteq Y$;
- ii) $\leq \subseteq \preceq$, cioè: $\forall x_1, x_2 \in X$ tali che $x_1 \leq x_2$ si ha $x_1 \leq x_2$;
- iii) $X \times (Y \setminus X) \subseteq \preceq$, cioè: $\forall x \in X, y \in Y \setminus X$ si ha $x \preceq y$.
- 1) Fare esempi di insiemi ordinati (X, \leq) e (Y, \preceq) tali che:
- i) $(X, \leq) \sqsubseteq (Y, \preceq);$

oppure

ii)
$$(X, \leq) \not\sqsubseteq (Y, \preceq)$$
 e $(Y, \preceq) \not\sqsubseteq (X, \leq)$.

- 2) Sia (X, \leq) un insieme totalmente ordinato e sia $p \notin X$. Dimostrare che esiste un unico ordinamento \leq di $X \cup \{p\}$ tale che $(X, \leq) \sqsubseteq (X \cup \{p\}, \leq)$. Descrivere \leq e dimostrare che $(X \cup \{p\}, \leq)$ è totalmente ordinato.
- 3) Sia $\mathcal F$ una famiglia (cioè un insieme) di insiemi ordinati. Dimostrare che $(\mathcal F,\sqsubseteq)$ è un insieme ordinato.
- 4) Sia $(\mathcal{F},\sqsubseteq)$ un insieme totalmente ordinato di insiemi ordinati e sia (A,ρ) definito nel modo seguente:

$$A = \bigcup_{(X, \le_X) \in \mathcal{F}} X;$$

dati $a, b \in A$ $a \rho b \Leftrightarrow \exists (X, \leq_X) \in \mathcal{F}$ tale che $a, b \in X$ e $a \leq_X b$.

Dimostrare che:

- i) (A, ρ) è un insieme ordinato; è vero che per ogni $(X, \leq_X) \in \mathcal{F}$ si ha $(X, \leq_X) \sqsubseteq (A, \rho)$?
- ii) Se tutti gli insiemi ordinati che appartengono a \mathcal{F} sono totalmente ordinati allora (A, ρ) è totalmente ordinato.
- iii) Se tutti gli insiemi ordinati che appartengono a \mathcal{F} sono ben ordinati allora (A, ρ) è ben ordinato.

L'assioma della scelta implica il principio di buon ordinamento

In quello che segue X è un insieme e $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ è una funzione di scelta, cioè una funzione tale che $s(U) \in U$ per ogni $U \subseteq X$ tale che $U \neq \emptyset$.

Vogliamo far vedere che la funzione s consente di costruire un buon ordinamento su X.

Più precisamente dimostreremo che esiste un unico buon ordinamento \leq su X con la seguente proprietà:

$$(*)_s \qquad \forall x_0 \in X \ x_0 = s(X \setminus \{x \in X | x < x_0\}).$$

Notiamo che $x_0 \notin \{x \in X | x < x_0\}$ da cui $x_0 \in X \setminus \{x \in X | x < x_0\}$, quindi la prima osservazione è che la condizione che richiediamo su \leq non è in contraddizione con la proprietà della funzione s.

Prima di affrontare questo problema nella massima generalità facciamo qualche esercizio e osservazione per capire di che cosa stiamo parlando e quali sono le difficoltà che si presentano.

- 5) Sia $X \neq \emptyset$ e sia \leq un buon ordinamento su X con la proprietà $(*)_s$. Dimostrare che $min_{\leq}(X) = s(X)$.
- 6) Sia $X = \{a, b, c\}$ e sia $s : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ definita nel modo seguente:

$$s(U) = \begin{cases} b & \text{se } b \in U \\ x & \text{se } U = \{x\} . \\ a & \text{altrimenti} \end{cases}$$

Dimostrare che s è una funzione di scelta, calcolarla esplicitamente e determinare un (il) buon ordinamento \leq su X che gode della proprietà $(*)_s$.

- 7) Sia $X = \emptyset$; dimostrare che:
 - i) esiste un'unica funzione di scelta $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$;

- ii) esiste un unico buon ordinamento \leq su X;
- iii) \leq ha la proprietà $(*)_s$.
- 8) Determinare una funzione di scelta $s: \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ tale che l'ordinamento naturale \leq su \mathbb{N} abba la proprietà $(*)_s$. Dimostrare che s non è unica.
- 9) Sia \leq l'ordinamento naturale su \mathbb{N} e sia $s: \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ la funzione definita nel modo seguente:

$$s(U) = \begin{cases} min_{\leq}(U) & \text{se } \#U = \infty \\ max_{\leq}(U) & \text{altrimenti.} \end{cases}$$

Dimostrare che s è una (ben definita) funzione di scelta e determinare un (il) buon ordinamento \leq che ha la proprietà $(*)_s$.

10) Sia \leq l'ordinamento naturale su $\mathbb N$ e sia $s:\mathcal P(\mathbb N)\setminus\{\emptyset\}\to\mathbb N$ la funzione definita nel modo seguente:

$$s(U) = \begin{cases} \min_{\leq} (U \cap 2\mathbb{N}) & \text{se } \exists n \in U \text{ pari} \\ \min_{\leq} (U) & \text{altrimenti.} \end{cases}$$

Osservare che s è una funzione di scelta e determinare un (il) buon ordinamento \leq che ha la proprietà $(*)_s$.

- 11) Siano $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ una funzione di scelta e $Y \subseteq X$. Dimostrare che:
 - i) $s|_{\mathscr{P}(Y)\setminus\{\emptyset\}}$ ha valori in Y;
 - ii) $s' = s \Big|_{\mathscr{Q}(Y) \setminus \{\emptyset\}} : \mathscr{P}(Y) \setminus \{\emptyset\} \to Y$ è una funzione di scelta.

Definizione

Siano X un insieme e $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ una funzione di scelta.

Un insieme ben ordinato (Y, \leq) si dice s-compatibile se $Y \subseteq X$ e per ogni $y_0 \in Y$ si ha $y_0 = s(X \setminus \{y \in Y | y < y_0\})$.

Un insieme $Y \subseteq X$ si dice s-insieme se esiste un buon ordinamento \leq tale che (Y, \leq) sia s-compatibile.

Vogliamo far vedere che X è un s-insieme (quindi in particolare è ben ordinabile).

I prossimi esercizi hanno lo scopo di ragionare sulla nozione di "insieme ben ordinato s-compatibile" e di confrontarla con la nozione di "buon ordinamento con la proprietà $(*)_s$ ".

Siano X un insieme e $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ una funzione di scelta.

- 12) Osservare che (X, \leq) è s-compatibile se e solo se (X, \leq) ha la proprietà $(*)_s$.
- 13) Dimostrare che \emptyset è un s-insieme.
- 14) Dimostrare che se $X \neq \emptyset$ esiste un unico s-insieme $Y \subseteq X$ tale che #Y = 1: determinare tale Y.
- 15) Sia (Y, \leq) s-compatibile con $Y \neq \emptyset$. Determinare $min_{\leq}(Y)$.
- 16) Siano $X = \mathbb{N}$, s come nell'esercizio 9). Per ogni $n \in \mathbb{N}$, sia $I_n = \{r \in \mathbb{N} | r < n\}$.
 - i) Dimostrare che I_n è un s-insieme.
 - ii) Determinare un buon ordinamento \leq tale che (I_n, \leq) sia s-compatibile.
- iii) Determinare un buon ordinamento \leq' tale che (I_n, \leq') abbia la proprietà $(*)_{s'}$ (s' come definito nell'esercizio 11)).
 - iv) Confrontare \prec e \preceq' .
- 17) Siano $Y \subsetneq X$, s' la funzione di scelta indotta da s (v. esercizio 11)), \leq un buon ordinamento su Y. Dimostrare che le condizioni
 - i) (Y, \leq) è s-compatibile
- ii) (Y, \leq) ha la proprietà $(*)_{s'}$ non sono equivalenti.
- 18) Dimostrare che se (Y, \leq) è s-compatibile e $Y \neq X$ allora esiste un unico (Y', \leq') s-compatibile tale che $(Y, \leq) \sqsubseteq (Y', \leq')$ e $\#(Y' \setminus Y) = 1$: determinare tale Y'.
- 19) Dimostrare che se (Y, \leq) è s-compatibile e $Z \subseteq Y$ è tale che

$$z \in Z, y \in Y, y \le z \Rightarrow y \in Z$$

allora (Z, \leq') è s-compatibile dove \leq' è l'ordinamento indotto su Z da \leq .

L'esercizio che segue è cruciale per costruire un buon ordinamento su $X\colon$ si tratta di provare che

se
$$(Y, \leq)$$
 e $(Z \leq)$ sono s-compatibili allora $(Y, \leq) \sqsubseteq (Z \leq)$ oppure $(Z \leq) \sqsubseteq (Y, \leq)$.

Notazione Dato un insieme ordinato (Y, \leq) e un sottoinsieme $Y' \subseteq Y$, per non appesantire le notazioni denotiamo ancora con \leq l'ordinamento indotto su Y' da \leq , cioè l'ordinamento $\leq \cap (Y' \times Y')$.

20) Siano (Y, \leq) e (Z, \preceq) s-compatibili e sia U il sottoinsieme di $Y \cap Z$ definito nel modo seguente:

$$U = \{x \in Y \cap Z | (\{y \in Y | y \le x\}, \le) = (\{z \in Z | z \le x\}, \le);$$

per ogni $u \in U$ si ponga $W_u = \{y \in Y | y \le u\} = \{z \in Z | z \le x\} \subseteq Y \cap Z;$ osservare che per definizione $(W_u, \le) = (W_u, \le).$

Dimostrare che:

- i) Se Y e Z sono non vuoti allora anche U è non vuoto (v. esercizio 15)).
- ii) $(U, \leq) = (U, \leq)$.
- iii) $U \subseteq Y$ ha la proprietà che $x \in Y$, $u \in U$, $x \le u \Rightarrow x \in U$.
- iii') $U \subseteq Z$ ha la proprietà che $z \in Z$, $u \in U$, $z \preceq u \Rightarrow z \in U$.

Osservare che iii) e iii') significano che $(Y, \leq) \supseteq (U, \leq) = (U, \preceq) \sqsubseteq (Z, \preceq)$.

iv)
$$(U, \leq) = (U, \preceq)$$
 è s-compatibile.

Adesso vogliamo provare che U = Y oppure U = Z.

Supponiamo per assurdo che $U \subsetneq Y$ e $U \subsetneq Z$ e siano $y_0 = min_{\leq}(Y \setminus U)$, $z_0 = min_{\prec}(Z \setminus U)$.

Dimostrare che:

- v) $y_0 = s(X \setminus U) = z_0$
- vi) $s(X \setminus U) \in U$.

Poiché questa conclusione è assurda, abbiamo provato che U=Y oppure U=Z.

Infine dimostrare che:

vii) se
$$U = Y$$
 si ha $(Y, <) \sqsubset (Z, \prec)$; se $U = Z$ si ha $(Z, \prec) \sqsubset (Y, <)$.

- 21) Osservare che l'esercizio 20) implica in particolare che se Y è un s-insieme allora esiste un unico buon ordinamento \leq su Y tale che (Y, \leq) sia s-compatibile.
- 22) Sia $\mathcal{F} = \{(Y, \leq_Y) \text{ s-compatibile}\}$ e si consideri l'insieme ordinato $(\mathcal{F}, \sqsubseteq)$. Osservare che l'esercizio 20) implica che $(\mathcal{F}, \sqsubseteq)$ è totalmente ordinato (in particolare è un insieme totalmente ordinato di insiemi ben ordinati).

Con le notazioni dell'esercizio 4) dimostrare che (A, ρ) è s-compatibile (cioè che $(A, \rho) \in \mathcal{F}$) e che $(A, \rho) = \max_{\sqsubseteq}(\mathcal{F})$.

Dimostrare che A = X (ricordare l'esercizio 18)).

Concludere che X è ben ordinabile.

Possiamo adesso concludere dimostrando che l'assioma della scelta implica il principio di buon ordinamento.

Assioma della scelta

L'assioma della scelta afferma che per ogni famiglia di insiemi non vuoti esiste una funzione di scelta:

$$\emptyset \not\in X \Rightarrow \exists s : X \in \bigcup X$$
 tale che $s(a) \in a$ per ogni $a \in X$.

Equivalentemente:

$$X_i \neq \emptyset \ \forall i \in I \Rightarrow \exists s: \{X_i | i \in I\} \rightarrow \bigcup_{i \in I} X_i \ \text{tale che} \ s(X_i) \in X_i \ \text{per ogni} \ i \in I.$$

Principio di buon ordinamento

Il principio di buon ordinamento afferma che ogni insieme è ben ordinabile:

 $\forall X$ insieme $\exists \leq \subseteq X \times X$ tale che (X, \leq) sia un insieme ben ordinato.

Teorema

L'assioma della scelta implica il principio di buon ordinamento.

Dimostrazione

Sia X un insieme; l'assioma della scelta implica che esiste una funzione di scelta $s: \mathcal{P}(X) \setminus \{\emptyset\} \to X$.

Ma allora gli esercizi precedenti mostrano come costruire un buon ordinamento su X.