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1 Introduction

What is representation theory? To say it in one sentence, it is an exciting area of mathematics
which studies representations of associative algebras. Representation theory has a wide variety
of applications, ranging from physics (elementary particles) and chemistry (atoms, molecules) to
probability (card shuffles) and number theory (Fermat’s last theorem).

Representation theory was born in 1896 in the work of the German mathematician F. G.
Frobenius. This work was triggered by a letter to Frobenius by R. Dedekind. In this letter Dedekind
made the following observation: take the multiplication table of a finite group G and turn it into a
matrix XG by replacing every entry g of this table by a variable xg. Then the determinant of XG

factors into a product of irreducible polynomials in xg, each of which occurs with multiplicity equal
to its degree. Dedekind checked this surprising fact in a few special cases, but could not prove it in
general. So he gave this problem to Frobenius. In order to find a solution of this problem (which
we will explain below), Frobenius created representation theory of finite groups.

The general content of representation theory can be very briefly summarized as follows.

An associative algebra over a field k is a vector space A over k equipped with an associative
bilinear multiplication a, b → ab, a, b ∈ A. We will always consider associative algebras with unit,
i.e., with an element 1 such that 1 · a = a · 1 = a for all a ∈ A. A basic example of an associative
algebra is the algebra EndV of linear operators from a vector space V to itself. Other important
examples include algebras defined by generators and relations, such as group algebras and univeral
enveloping algebras of Lie algebras.

A representation of an associative algebra A (also called a left A-module) is a vector space
V equipped with a homomorphism ρ : A→ EndV , i.e., a linear map preserving the multiplication
and unit.

A subrepresentation of a representation V is a subspace U ⊂ V which is invariant under all
operators ρ(a), a ∈ A. Also, if V1, V2 are two representations of A then the direct sum V1 ⊕ V2

has an obvious structure of a representation of A.

A representation V of A is said to be irreducible if its only subrepresentations are 0 and V itself,
and indecomposable if it cannot be written as a direct sum of two nonzero subrepresentations.
Obviously, irreducible implies indecomposable, but not vice versa.

Typical problems of representation theory are as follows:
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1. Classify irreducible representations of a given algebra A.

2. Classify indecomposable representations of A.

3. Do 1 and 2 restricting to finite dimensional representations.

As mentioned above, the algebra A is often given to us by generators and relations. For
example, the universal enveloping algebra U of the Lie algebra sl(2) is generated by h, e, f with
defining relations

he− eh = 2e, hf − fh = −2f, ef − fe = h. (1)

This means that the problem of finding, say, N -dimensional representations of A reduces to solving
a bunch of nonlinear algebraic equations with respect to a bunch of unknown N by N matrices,
for example system (1) with respect to unknown matrices h, e, f .

It is really striking that such, at first glance hopelessly complicated, systems of equations can
in fact be solved completely by methods of representation theory! For example, we will prove the
following theorem.

Theorem 1.1. Let k = C be the field of complex numbers. Then:

(i) The algebra U has exactly one irreducible representation Vd of each dimension, up to equiv-
alence; this representation is realized in the space of homogeneous polynomials of two variables x, y
of degree d− 1, and defined by the formulas

ρ(h) = x
∂

∂x
− y ∂

∂y
, ρ(e) = x

∂

∂y
, ρ(f) = y

∂

∂x
.

(ii) Any indecomposable finite dimensional representation of U is irreducible. That is, any finite
dimensional representation of U is a direct sum of irreducible representations.

As another example consider the representation theory of quivers.

A quiver is a finite oriented graph Q. A representation of Q over a field k is an assignment
of a k-vector space Vi to every vertex i of Q, and of a linear operator Ah : Vi → Vj to every directed
edge h going from i to j. We will show that a representation of a quiver Q is the same thing as a
representation of a certain algebra PQ called the path algebra of Q. Thus one may ask: what are
indecomposable finite dimensional representations of Q?

More specifically, let us say that Q is finite if it has finitely many indecomposable representa-
tions.

We will prove the following striking theorem, proved by P. Gabriel about 30 years ago:

Theorem 1.2. The finiteness property of Q does not depend on the orientation of edges. The
graphs that yield finite quivers are given by the following list:

• An : ◦−−◦ · · · ◦−−◦

• Dn:
◦−−◦ · · · ◦−−◦

|◦
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• E6 : ◦−−◦−−◦−−◦−−◦
|◦

• E7 : ◦−−◦−−◦−−◦−−◦−−◦
|◦

• E8 :

◦−−◦−−◦−−◦−−◦−−◦−−◦|◦

The graphs listed in the theorem are called (simply laced) Dynkin diagrams. These graphs
arise in a multitude of classification problems in mathematics, such as classification of simple Lie
algebras, singularities, platonic solids, reflection groups, etc. In fact, if we needed to make contact
with an alien civilization and show them how sophisticated our civilization is, perhaps showing
them Dynkin diagrams would be the best choice!

As a final example consider the representation theory of finite groups, which is one of the most
fascinating chapters of representation theory. In this theory, one considers representations of the
group algebra A = C[G] of a finite group G – the algebra with basis ag, g ∈ G and multiplication
law agah = agh. We will show that any finite dimensional representation of A is a direct sum of
irreducible representations, i.e. the notions of an irreducible and indecomposable representation
are the same for A (Maschke’s theorem). Another striking result discussed below is the Frobenius’
divisibility theorem: the dimension of any irreducible representation of A divides the order of G.
Finally, we will show how to use representation theory of finite groups to prove Burnside’s theorem:
any finite group of order paqb, where p, q are primes, is solvable. Note that this theorem does not
mention representations, which are used only in its proof; a purely group-theoretical proof of this
theorem (not using representations) exists but is much more difficult!

This text is based on a mini-course given by Pavel Etingof at the 2004 Clay Mathematics Insti-
tute Research Academy. The remaining authors, who were participants of the Academy, improved
and extended the initial lecture notes, and added solutions of homework problems.

The goal of the text is not to provide a systematic introduction to representation theory, but
rather to convey to the reader the spirit of this fascinating subject, and to highlight its beauty by
discussing a few striking results. In other words, the authors would like to share with the reader
the fun they had during the days of the Academy! 1.

The text contains many problems, whose solutions are given in the last section. These problems
were given as homework during the CMI Research Academy. Sometimes they are designed to
illustrate a notion or result from the main text, but often contain new material. The problems are
a very important part of the text, and we recommend the reader to try to solve them after reading
the appropriate portions.

The only serious prerequisite for reading this text is a good familiarity with linear algebra, and
some proficiency in basic abstract algebra (groups, fields, polynomials etc.) The necessary material
is discussed in the first seven chapters of Artin’s “Algebra” textbook. Perhaps the only basic notion
from linear algebra we’ll need which is not contained in standard texts is that of tensor product of

1For more about the subject, we recommend the reader the excellent textbook of Fulton and Harris “Representation
theory”
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vector spaces; we recommend the reader to solve the preparatory problems below to attain a better
familiarity with this notion.

Acknowledgments. The authors are very grateful to the Clay Mathematics Institute (and
personally to David Ellwood and Vida Salahi) for hospitality and wonderful working conditions.
They also are very indebted to the Academy fellows Josh Nichols-Barrer and Victor Ostrik, whose
mathematical insights and devotion were crucial in making the Academy a success and in creating
this text.

1.1 Preparatory problems on tensor products

Recall that the tensor product V ⊗W of vector spaces V and W over a field k is the quotient of
the space V ∗W whose basis is given by formal symbols v ⊗ w, v ∈ V , w ∈ W , by the subspace
spanned by the elements

(v1+v2)⊗w−v1⊗w−v2⊗w, v⊗(w1 +w2)−v⊗w1−v⊗w2, (av)⊗w−a(v⊗w), v⊗(aw)−a(v⊗w),

where v ∈ V,w ∈W,a ∈ k.

Problem 1.3. (a) Let U be any k-vector space. Construct a natural bijection between bilinear
maps V ×W → U and linear maps V ⊗W → U .

(b) Show that if {vi} is a basis of V and {wj} is a basis of W then {vi ⊗ wj} is a basis of
V ⊗W .

(c) Construct a natural isomorphism V ∗ ⊗ W → Hom(V,W ) in the case when V is finite
dimensional.

(d) Let V be a vector space over C. Let SnV be the subspace of V ⊗n (n-fold tensor product of
V ) which consists of the tensors that are symmetric under permutation of components. Let ΛnV be
the subspace of V ⊗n which consists of the tensors which are antisymmetric, i.e., sijT = −T , where
sij is the permutation of i and j. (These spaces are called the n-th symmetric, respectively exterior,
power of V ). If {vi} is a basis of V , can you construct a basis of SnV,ΛnV ? If dimV = m, what
are their dimensions?

(e) Let A : V →W be a linear operator. Then we have A⊗n : V ⊗n →W⊗n, and its restrictions
SnA : SnV → SnW , ΛnA : ΛnV → ΛnW . Suppose V = W and has dimension N , and assume that
the eigenvalues of A are λ1, ..., λN . Find Tr(SnA), T r(ΛnA). In particular, show that Tr(ΛNA) =
det(A).

Problem 1.4. Let JN be the linear operator on CN given in the standard basis by the formula
JNei = ei−1 for i > 1, JNe1 = 0. Thus JN is a Jordan block of size N .

Find the Jordan normal form of the operator B = JN ⊗ 1M + 1N ⊗ JM on CN ⊗CM , where 1L

denotes the identity operator on CL.

Hint. Compute dimensions of kernels of Bj for all j.

Problem 1.5. Hilbert’s problem. It is known that if A and B are two polygons of the same
area then A can be cut by finitely many straight cuts into pieces from which one can make B. David
Hilbert asked in 1900 whether it is true for polyhedra in 3 dimensions. In particular, is it true for
a cube and a regular tetrahedron of the same volume?

The answer is “no”, as was found by Dehn in 1901. The proof is very beautiful. Namely, to any
polyhedron A let us attach its “Dehn invariant” D(A) in
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V = R⊗ (R/Q) (the tensor product of Q-vector spaces). Namely,

D(A) =
∑

a

l(a)⊗ β(a)

π
,

where a runs over edges of A and l(a), β(a) are the length of a and the angle at a.

(a) Show that if you cut A into B and C by a straight cut, then D(A) = D(B) +D(C).

(b) Show that α = arccos(1/3)/π is not a rational number.

Hint. Let pn, n ≥ 1 be the sequence defined by the recursive equation pn+1 = p2
n − 2, p0 = 2/3.

Show that pn = 2cos2nπα. On the other hand, show that pn must take infinitely many different
values. From this, derive that α cannot be rational.

(c) Using (a) and (b), show that the answer to Hilbert’s question is negative. (Compute the
Dehn invariant of the regular tetrahedron and the cube).

2 Basic notions of representation theory

2.1 Algebras

Let k be a field. Unless stated otherwise, we will assume that k is algebraically closed, i.e. any
nonconstant polynomial with coefficients in k has a root in k. The main example is the field of
complex numbers C, but we will also consider fields of characteristic p, such as the algebraic closure
Fp of the finite field Fp of p elements.

Definition 2.1. An associative algebra over k is a vector space A over k together with a bilinear
map A×A→ A, (a, b) 7→ ab, such that (ab)c = a(bc).

Definition 2.2. A unit in an associative algebra A is an element 1 ∈ A such that 1a = a1 = a.

Proposition 2.3. If a unit exists, it is unique.

Proof. Let 1, 1′ be two units. Then 1 = 11′ = 1′.

From now on, by an algebra A we will mean an associative algebra with a unit. We will also
assume that A 6= 0.

Example 2.4. Here are some examples of algebras over k:

1. A = k.

2. A = k[x1, ..., xn] – the algebra of polynomials in variables x1, ..., xn.

3. A = EndV – the algebra of endomorphisms of a vector space V over k (i.e., linear maps from
V to itself). The multiplication is given by composition of operators.

4. The free algebra A = k〈x1, ..., xn〉. The basis of this algebra consists of words in letters
x1, ..., xn, and multiplication is simply concatenation of words.

5. The group algebra A = k[G] of a group G. Its basis is {ag, g ∈ G}, with multiplication law
agah = agh.

Definition 2.5. An algebra A is commutative if ab = ba for all a, b ∈ A.
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For instance, in the above examples, A is commutative in cases 1 and 2, but not commutative in
cases 3 (if dimV > 1), and 4 (if n > 1). In case 5, A is commutative if and only if G is commutative.

Definition 2.6. A homomorphism of algebra f : A→ B is a linear map such that f(xy) = f(x)f(y)
for all x, y ∈ A, and f(1) = 1.

2.2 Representations

Definition 2.7. A representation of an algebra A (also called a left A-module) is a vector space
V together with a homomorphism of algebras ρ : A→ EndV .

Similarly, a right A-module is a space V equipped with an antihomomorphism ρ : A→ EndV ;
i.e., ρ satisfies ρ(ab) = ρ(b)ρ(a) and ρ(1) = 1.

The usual abbreviated notation for ρ(a)v is av for a left module and va for the right module.
Then the property that ρ is an (anti)homomorphism can be written as a kind of associativity law:
(ab)v = a(bv) for left modules, and (va)b = v(ab) for right modules.

Example 2.8. 1. V = 0.

2. V = A, and ρ : A→ EndA is defined as follows: ρ(a) is the operator of left multiplication by
a, so that ρ(a)b = ab (the usual product). This representation is called the regular representation
of A. Similarly, one can equip A with a structure of a right A-module by setting ρ(a)b := ba.

3. A = k. Then a representation of A is simply a vector space over k.

4. A = k〈x1, ..., xn〉. Then a representation of A is just a vector space V over k with a collection
of arbitrary linear operators ρ(x1), ..., ρ(xn) : V → V (explain why!).

Definition 2.9. A subrepresentation of a representation V of an algebra A is a subspace W ⊂ V
which is invariant under all operators ρ(a) : V → V , a ∈ A.

For instance, 0 and V are always subrepresentations.

Definition 2.10. A representation V 6= 0 of A is irreducible (or simple) if the only subrepresenta-
tions of V are 0 and V .

Definition 2.11. Let V1, V2 be two representations over an algebra A. A homomorphism (or
intertwining operator) φ : V1 → V2 is a linear operator which commutes with the action of A, i.e.
φ(av) = aφ(v) for any v ∈ V1. A homomorphism φ is said to be an isomorphism of representations
if it is an isomorphism of vector spaces.

Note that if a linear operator φ : V1 → V2 is an isomorphism of representations then so is the
lienar operator φ−1 : V2 → V1 (check it!).

Two representations between which there exists an isomorphism are said to be isomorphic. For
practical purposes, two isomorphic representations may be regarded as “the same”, although there
could be subtleties related to the fact that an isomorphism between two representations, when it
exists, is not unique.

Definition 2.12. Let V = V1, V2 be representations of an algebra A. Then the space V1 ⊕ V2 has
an obvious structure of a representation of A, given by a(v1 ⊕ v2) = av1 ⊕ av2.

Definition 2.13. A representation V of an algebra A is said to be indecomposable if it is not
isomorphic to a direct sum of two nonzero representations.
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It is obvious that an irreducible representation is indecomposable. On the other hand, we will
see below that the converse statement is false in general.

One of the main problems of representation theory is to classify irredicible and indecomposable
representations of a given algebra up to isomorphism. This problem is usually hard and often can
be solved only partially (say, for finite dimensional representations). Below we will see a number
of examples in which this problem is partially or fully solved for specific algebras.

We will now prove our first result – Schur’s lemma. Although it is very easy to prove, it is
fundamental in the whole subject of representation theory.

Proposition 2.14. (Schur’s lemma) Let V1, V2 be irreducible representations of an algebra A over
any field F . Let φ : V1 → V2 be a nonzero homomorphism of representations. Then φ is an
isomorphism.

Proof. The kernel K of φ is a subrepresentation of V1. Since φ 6= 0, this subrepresentation cannot
be V1. So by irreducibility of V1 we have K = 0. The image I of φ is a subrepresentation of V2.
Since φ 6= 0, this subrepresentation cannot be 0. So by irreducibility of V2 we have I = V2. Thus
φ is an isomorphism.

Corollary 2.15. (Schur’s lemma for algebraically closed fields) Let V be a finite dimensional
irreducible representation of an algebra A over an algebraically closed field k, and φ : V → V is an
intertwining operator. Then φ = λ · Id (the scalar operator).

Proof. Let λ be an eigenvalue of φ (a root of the characteristic polynomial of φ). It exists since
k is an algebraically closed field. Then the operator φ − λId is an intertwining operator V → V ,
which is not an isomorphism (since its determinant is zero). Thus by Schur’s lemma this operator
is zero, hence the result.

Corollary 2.16. Let A be a commutative algebra. Then every irreducible finite dimensional rep-
resentation V of A is 1-dimensional.

Remark. Note that a 1-dimensional representation of any algebra is automatically irreducible.

Proof. For any element a ∈ A, the operator ρ(a) : V → V is an intertwining operator. Indeed,

ρ(a)ρ(b)v = ρ(ab)v = ρ(ba)v = ρ(b)ρ(a)v

(the second equality is true since the algebra is commutative). Thus, by Schur’s lemma, ρ(a) is a
scalar operator for any a ∈ A. Hence every subspace of V is a subrepresentation. So 0 and V are
the only subspaces of V . This means that dimV = 1 (since V 6= 0).

Example 2.17. 1. A = k. Since representations of A are simply vector spaces, V = A is the only
irreducible and the only indecomposable representation.

2. A = k[x]. Since this algebra is commutative, the irreducible representations of A are its
1-dimensional representations. As we discussed above, they are defined by a single operator ρ(x).
In the 1-dimensional case, this is just a number from k. So all the irreducible representations of A
are Vλ = k, λ ∈ k, which the action of A defined by ρ(x) = λ. Clearly, these representations are
pairwise non-isomorphic.

The classification of indecomposable representations is more interesting. To obtain it, recall
that any linear operator on a finite dimensional vector space V can be brought to Jordan normal
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form. More specifically, recall that the Jordan block Jλ,n is the operator on kn which in the standard
basis is given by the formulas Jλ,nei = λei + ei−1 for i > 1, and Jλ,ne1 = λe1. Then for any linear
operator B : V → V there exists a basis of V such that the matrix of B in this basis is a direct
sum of Jordan blocks. This implies that all the indecomosable representations of A are Vλ,n = kn,
λ ∈ k, with ρ(x) = Jλ,n. The fact that these representations are indecomposable and pairwise
non-isomorphic follows from the Jordan normal form theorem (which in particular says that the
Jordan normal form of an operator is unique up to permutation of blocks).

This example shows that an indecomposable representation of an algebra need not be irreducible.

Problem 2.18. Let V be a nonzero finite dimensional representation of an algebra A. Show that
it has an irreducible subrepresentation. Then show by example that this does not always hold for
infinite dimensional representations.

Problem 2.19. Let A be an algebra over an algebraically closed field k. The center Z(A) of A
is the set of all elements z ∈ A which commute with all elements of A. For example, if A is
commutative then Z(A) = A.

(a) Show that if V is an irreducible finite dimensional representation of A then any element
z ∈ Z(A) acts in V by multiplication by some scalar χV (z). Show that χV : Z(A) → k is a
homomorphism. It is called the central character of V .

(b) Show that if V is an indecomposable finite dimensional representation of A then for any
z ∈ Z(A), the operator ρ(z) by which z acts in V has only one eigenvalue χV (z), equal to the
scalar by which z acts on some irreducible subrepresentation of V . Thus χV : Z(A) → k is a
homomorphism, which is again called the central character of V .

(c) Does ρ(z) in (b) have to be a scalar operator?

Problem 2.20. Let A be an associaive algebra, and V a representation of A. By EndA(V ) one
denotes the algebra of all morphisms of representations V → V . Show that EndA(A) = Aop, the
algebra A with opposite multiplication.

Problem 2.21. Prove the following “Infinite dimensional Schur’s lemma” (due to Dixmier): Let
A be an algebra over C and V be an irreducible representation of A with at most countable basis.
Then any homomorphism of representations φ : V → V is a scalar operator.

Hint. By the usual Schur’s lemma, the alegbra D := EndA(V ) is an algebra with division.
Show that D is at most countably dimensional. Suppose φ is not a scalar, and consider the subfield
C(φ) ⊂ D. Show that C(φ) is a simple transcendental extension of C. Derive from this that C(φ)
is uncountably dimensional and obtain a contradiction.

2.3 Ideals

A left ideal of an algebra A is a subspace I ⊆ A such that aI ⊆ I for all a ∈ A. Similarly, a right
ideal of an algebra A is a subspace I ⊆ A such that Ia ⊆ I for all a ∈ A. A two-sided ideal is a
subspace that is both a left and a right ideal.

Left ideals are the same as subrepresentations of the regular representation A. Right ideals are
the same as subrepresentations of the regular representation of the opposite algebra Aop, in which
the action of A is right multiplication.

Below are some examples of ideals:

• If A is any algebra, 0 and A are two-sided ideals. An algebra A is called simple if 0 and A
are its only two-sided ideals.
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• If φ : A→ B is a homomorphism of algebras, then kerφ is a two-sided ideal of A.

• If S is any subset of an algebra A, then the two-sided ideal generated by S is denoted 〈S〉 and
is the span of elements of the form asb, where a, b ∈ A and s ∈ S. Similarly we can define
〈S〉` = span{as} and 〈S〉r = span{sb}, the left, respectively right, ideal generated by S.

2.4 Quotients

Let A be an algebra and I a two-sided ideal in A. Then A/I is the set of (additive) cosets of I.
Let π : A→ A/I be the quotient map. We can define multiplication in A/I by π(a) ·π(b) := π(ab).
This is well-defined because if π(a) = π(a′) then

π(a′b) = π(ab+ (a′ − a)b) = π(ab) + π((a′ − a)b) = π(ab)

because (a′ − a)b ∈ Ib ⊆ I = ker π, as I is a right ideal; similarly, if π(b) = π(b′) then

π(ab′) = π(ab+ a(b′ − b)) = π(ab) + π(a(b′ − b)) = π(ab)

because a(b′ − b) ∈ aI ⊆ I = kerπ, as I is also a left ideal. Thus multiplication in A/I is
well-defined, and A/I is an algebra.

Similarly, if V is a representation of A, and W ⊂ V is a subrepresentation, then V/W is also a
representation. Indeed, let π : V → V/W be the quotient map, and set ρV/W (a)π(x) := π(ρV (a)x).

Above we noted the equivalence of left ideals of A and subrepresentations of the regular repre-
sentation of A. Thus, if I is a left ideal in A, then A/I is a representation of A.

Problem 2.22. Let A = k[x1, ..., xn] and I 6= A be any ideal in A containing all homogeneous
polynomials of degree ≥ N . Show that A/I is an indecomposable representation of A.

Problem 2.23. Let V 6= 0 be a representation of A. We say that a vector v ∈ V is cyclic if it
generates V , i.e., Av = V . A representation admitting a cyclic vector is said to be cyclic. Show
that

(a) V is irreducible if and only if all nonzero vectors of V are cyclic.

(b) V is cyclic if and only if it is isomorphic to A/I, where I is a left ideal in A.

(c) Give an example of an indecomposable representation which is not cyclic.

Hint. Let A = C[x, y]/I2, where I2 is the ideal spanned by homogeneous polynomials of degree
≥ 2 (so A has a basis 1, x, y). Let V = A∗ be the space of linear functionals on A, with the action
of A given by (ρ(a)f)(b) = f(ba). Show that V provides a required example.

2.5 Algebras defined by generators and relations

A representation V of A is said to be generated by a subset S of V if V is the span of {as | a ∈
A, s ∈ S}.

If f1, . . . , fm are elements of the free algebra k〈x1, . . . , xn〉, we say that the algebra A :=
k〈x1, . . . , xn〉/〈{f1, . . . , fm}〉 is generated by x1, . . . , xn with defining relations f1 = 0, . . . , fm = 0.
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2.6 Examples of algebras

Throughout the following examples G will denote a group, and k a field.

1. The group algebra k[G], whose basis is {eg | g ∈ G}, and where multiplication is defined
by egeh = egh. A representation of a group G over a field k is a homomorphism of groups
ρ : G → GL(V ), where V is some vector space over k. In fact, a representation of G over k
is the “same thing” as a representation of k[G].

2. The Weyl algebra, k〈x, y〉/〈yx− xy − 1〉. A basis for the Weyl algebra is {xiyj} (show this).

The space C[t] is a representation of the Weyl algebra over C with action given by xf = tf
and yf = df/dt for all f ∈ C[t]. Thus, the Weyl algebra over C is the algebra of polynomial
differential operators.

Definition. A representation ρ : A→ End V is faithful if ρ is injective.

C[t] is a faithful representation of the Weyl algebra.

3. The q-Weyl algebra over k, generated by x+, x−, y+, y− with defining relations y+x+ = qx+y+

and x+x− = x−x+ = y+y− = y−y+ = 1. One customarily writes x+ as x, x− as x−1, y+ as
y, and y− as y−1.

Problem 2.24. Let A be the Weyl algebra, generated over an algebraically closed field k by two
generators x, y with the relation yx− xy = 1.

(a) If chark = 0, what are the finite dimensional representations of A? What are the two-sided
ideals in A? .

(b) Suppose for the rest of the problem that chark = p. What is the center of A?

(c) Find all irreducible finite dimensional representations of A.

Problem 2.25. Let q be a nonzero complex number, and A be the algebra over C generated by
X±1 and Y ±1 with defining relations XX−1 = X−1X = 1, Y Y −1 = Y −1Y = 1, and XY = qY X.

(a) What is the center of A for different q? If q is not a root of unity, what are the two-sided
ideals in A?

(b) For which q does this algebra have finite dimensional representations?

(c) Find all finite dimensional irreducible representations of A for such q.

2.7 Quivers

Definition 2.26. A quiver Q is a directed graph, possibly with self-loops and/or multiple arrows
between two vertices.

Example 2.27.

• // • •oo

•

OO
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We denote the set of vertices of the quiver Q as I, and the set of edges as E. For an edge h ∈ E,
let h′, h′′ denote the source and target, respectively, of h.

•
h′ h

// •
h′′

Definition 2.28. A representation of a quiver Q is an assignment to each vertex i ∈ I of a vector
space Vi and to each edge h ∈ E of a linear map xh : Vh′ −→ Vh′′ .

It turns out that the theory of representations of quivers is part of the theory of representations
of algebras in the sense that for each quiver Q, there exists a certain algebra PQ, called the path
algebra of Q, such that a representation of the quiver Q is “the same” as a representation of the
algebra PQ. We shall first define the path algebra of a quiver and then justify our claim that
representations of these two objects are “the same”.

Definition 2.29. The path algebra PQ of a quiver Q is the algebra generated by pi for i ∈ I and
ah for h ∈ E with the relations:

1. p2
i = pi, pipj = 0 for i 6= j

2. ahph′ = ah, ahpj = 0 for j 6= h′

3. ph′′ah = ah, piah = 0 for i 6= h′′

Remark 2.30. It is easy to see that
∑

i∈I

pi = 1, and that ah2
ah1

= 0 if h′′1 6= h′2.

This algebra is called the path algebra because a basis of PQ is formed by elements aπ, where π is
a path in Q (possibly of length 0). If π = hn · · · h2h1←−−−−−−− (read right-to-left), then aπ = ahn

· · · ah2
ah1

.

If π is a path of length 0, starting and ending at point i, then aπ is defined to be pi. Clearly
aπ2

aπ1
= aπ2π1

(where π2π1 is the concatenation of paths π2 and π1) if the final point of π1 equals
the initial point of π2 and aπ2

aπ1
= 0 otherwise.

We now justify our statement that a representation of a quiver is the same as a representation
of the path algebra of a quiver.

Let V be a representation of the path algebra PQ. From this representation of the algebra PQ, we
can construct a representation of Q as follows: let Vi = piV and let xh = ah|ph′V : ph′V −→ ph′′V.

Similarly, let (Vi, xh) be a representation of a quiver Q. From this representation, we can
construct a representation of the path algebra PQ: let V =

⊕

i Vi, let pi : V → Vi → V be the
projection onto Vi, and let ah = ih′′ ◦ xh ◦ ph′ : V → Vh′ → Vh′′ → V where ih′′ : Vh′′ → V is the
inclusion map.

It is clear that the above assignments V 7→ (piV) and (Vi) 7→
⊕

i Vi are inverses of each other.
Thus, we have a bijection between isomorphism classes of representations of the algebra PQ and of
the quiver Q.

Remark 2.31. In practice, it is generally easier to consider a representation of a quiver as in
Definition 2.28. The above serves to show, as stated before, that the theory of representations of
quivers is a part of the larger theory of representations of algebras.

We lastly define several previous concepts in the context of quivers representations.

Definition 2.32. A subrepresentation of a representation (Vi, xh) of a quiver Q is a representation
(Wi, x

′
h) where Wi ⊆ Vi for all i ∈ I and where xh(Wh′) ⊆Wh′′ and x′h = xh|Wh′

: Wh′ −→Wh′′ for
all h ∈ E.
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Definition 2.33. The direct sum of two representations (Vi, xh) and (Wi, yh) is the representation
(Vi ⊕Wi, xh ⊕ yh).

As with representations of algebras, a representation (Vi) of a quiver Q is said to be irreducible
if its only subrepresentations are (0) and (Vi) itself, and indecomposable if it is not isomorphic to
a direct sum of two nonzero representations.

Definition 2.34. Let (Vi, xh) and (Wi, yh) be representations of the quiver Q. A homomorphism
ϕ : (Vi) −→ (Wi) of quiver representations is a collection of maps ϕi : Vi −→ Wi such that
yh ◦ ϕh′ = ϕh′′ ◦ xh for all h ∈ E.

Problem 2.35. Let A be a Z+-graded algebra, i.e., A = ⊕n≥0A[n], and A[n] · A[m] ⊂ A[n +m].
If A[n] is finite dimensional, it is useful to consider the Hilbert series hA(t) =

∑
dimA[n]tn (the

generating function of dimensions of A[n]). Often this series converges to a rational function, and
the answer is written in the form of such function. For example, if A = k[x] and deg(xn) = n then

hA(t) = 1 + t+ t2 + ...+ tn + ... =
1

1− t

Find the Hilbert series of:

(a) A = k[x1, ..., xm] (where the grading is by degree of polynomials);

(b) A = k < x1, ..., xm > (the grading is by length of words);

(c) A is the exterior algebra ∧k[x1, ..., xm], generated by x1, ..., xm with the defining relations
xixj + xjxi = 0 for all i, j (grading is by degree).

(d) A is the path algebra PQ of a quiver Q as defined in the lectures.

Hint. The closed answer is written in terms of the adjacency matrix MQ of Q.

2.8 Lie algebras

Let g be a vector space over a field k, and let [ , ] : g× g −→ g be a skew-symmetric bilinear map.
(So [a, b] = −[b, a].) If k is of characteristic 2, we also require that [x, x] = 0 for all x (a requirement
equivalent to [a, b] = −[b, a] in fields of other characteristics).

Definition 2.36. (g, [ , ]) is a Lie algebra if [ , ] satisfies the Jacobi identity
[
[a, b] , c

]
+

[
[b, c] , a

]
+

[
[c, a] , b

]
= 0. (2)

Example 2.37. Some examples of Lie algebras are:

1. R3 with [u, v] = u× v, the cross-product of u and v

2. Any space g with [ , ] = 0 (abelian Lie algebra)

3. Any associative algebra A with [a, b] = ab− ba

4. Any subspace U of an associative algebra A such that [a, b] ∈ U for all a, b ∈ U

5. sl(n), the set of n× n matrices with trace 0
For example, sl(2) has the basis

e =

(
0 1
0 0

)

f =

(
0 0
1 0

)

h =

(
1 0
0 −1

)

with relations [e, f ] = h, [h, f ] = −2f , [h, e] = 2e.
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6. The Heisenberg Lie algebra H of matrices
(

0 ∗ ∗
0 0 ∗
0 0 0

)

It has the basis

x =





0 0 0
0 0 1
0 0 0



 y =





0 1 0
0 0 0
0 0 0



 c =





0 0 1
0 0 0
0 0 0





with relations [y, x] = c and [y, c] = [x, c] = 0.

7. The algebra aff(1) of matrices ( ∗ ∗
0 0 )

Its basis consists of X = ( 1 0
0 0 ) and Y = ( 0 1

0 0 ), with [X,Y ] = Y .

8. so(n), the space of skew-symmetric n× n matrices, with [a, b] = ab− ba

Definition 2.38. Let g1, g2 be Lie algebras. A homomorphism ϕ : g1 −→ g2 of Lie algebras is a
linear map such that ϕ([a, b]) = [ϕ(a), ϕ(b)].

Definition 2.39. A representation of a Lie algebra g is a vector space V with a homomorphism
of Lie algebras ρ : g −→ EndV .

Example 2.40. Some examples of representations of Lie algebras are:

1. V=0

2. Any vector space V with ρ = 0

3. Adjoint representation V = g with ρ(a)(b) = [a, b]
def
= ab− ba

That this is a representation follows from Equation (2).

It turns out that a representation of a Lie algebra g is the same as a representation of a certain
associative algebra U(g). Thus, as with quivers, we can view the theory of representations of Lie
algebras as part of the theory of representations of associative algebras.

Definition 2.41. Let g be a Lie algebra with basis xi and [ , ] defined by [xi, xj ] =
∑

k c
k
ijxk. The

universal enveloping algebra U(g) is the associative algebra generated by the xi’s with the
relations xixj − xjxi =

∑

k c
k
ijxk.

Example 2.42. The associative algebra U(sl(2)) is the algebra generated by e, f , h with relations

he− eh = 2e hf − fh = −2f ef − fe = h.

Example 2.43. The algebra U(H), where H is the Heisenberg Lie algebra of Example 2.37.6, is
the algebra generated by x, y, c with the relations

yx− xy = c yc− cy = 0 xc− cx = 0.

The Weyl algebra is the quotient of U(H) by the relation c = 1.

Finally, let us define the important notion of tensor product of representations.

Definition 2.44. The tensor product of two representations V,W of a Lie algebra g is the space
V ⊗W with ρV ⊗W (x) = ρV (x)⊗ Id+ Id⊗ ρW (x).

It is easy to check that this is indeed a representation.
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Problem 2.45. Representations of sl(2). According to the above, a representation of sl(2) is
just a vector space V with a triple of operators E,F,H such that HE − EH = 2E,HF − FH =
−2F,EF − FE = H (the corresponding map ρ is given by ρ(e) = E, ρ(f) = F , ρ(h) = H.

Let V be a finite dimensional representation of sl(2) (the ground field in this problem is C).

(a) Take eigenvalues of H and pick one with the biggest real part. Call it λ. Let V̄ (λ) be the
generalized eigenspace corresponding to λ. Show that E|V̄ (λ) = 0.

(b) Let W be any representation of sl(2) and w ∈ W be a nonzero vector such that Ew = 0.
For any k > 0 find a polynomial Pk(x) of degree k such that EkF kw = Pk(H)w. (First compute
EF kw, then use induction in k).

(c) Let v ∈ V̄ (λ) be a generalized eigenvector of H with eigenvalue λ. Show that there exists
N > 0 such that FNv = 0.

(d) Show that H is diagonalizable on V̄ (λ). (Take N to be such that FN = 0 on V̄ (λ), and
compute ENFNv, v ∈ V̄ (λ), by (b). Use the fact that Pk(x) does not have multiple roots).

(e) Let Nv be the smallest N satisfying (c). Show that λ = Nv − 1.

(f) Show that for each N > 0, there exists a unique up to isomorphism irreducible representation
of sl(2) of dimension N . Compute the matrices E,F,H in this representation using a convenient
basis. (For V finite dimensional irreducible take λ as in (a) and v ∈ V (λ) an eigenvector of H.
Show that v, Fv, ..., F λv is a basis of V , and compute matrices of all operators in this basis.)

Denote the λ + 1-dimensional irreducible representation from (f) by Vλ. Below you will show
that any finite dimensional representation is a direct sum of Vλ.

(g) Show that the operator C = EF + FE +H2/2 (the so-called Casimir operator) commutes

with E,F,H and equals λ(λ+2)
2 Id on Vλ.

Now it will be easy to prove the direct sum decomposition. Assume the contrary, and let V be
a representation of the smallest dimension, which is not a direct sum of smaller representations.

(h) Show that C has only one eigenvalue on V , namely λ(λ+2)
2 for some nonnegative integer λ.

(use that the generalized eigenspace decomposition of C must be a decomposition of representations).

(i) Show that V has a subrepresentation W = Vλ such that V/W = nVλ for some n (use (h)
and the fact that V is the smallest which cannot be decomposed).

(j) Deduce from (i) that the eigenspace V (λ) of H is n + 1-dimensional. If v1, ..., vn+1 is its
basis, show that F jvi, 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ λ are linearly independent and therefore form a basis
of V (establish that if Fx = 0 and Hx = µx then Cx = µ(µ−2)

2 x and hence µ = −λ).

(k) Define Wi = span(vi, F vi, ..., F
λvi). Show that Vi are subrepresentations of V and derive a

contradiction with the fact that V cannot be decomposed.

(l) (Jacobson-Morozov Lemma) Let V be a finite dimensional complex vector space and A : V →
V a nilpotent operator. Show that there exists a unique, up to an isomorphism, representation of
sl(2) on V such that E = A. (Use the classification of the representations and Jordan normal form
theorem)

(m) (Clebsch-Gordan decomposition) Find the decomposition into irreducibles of the represen-
tation Vλ ⊗ Vµ of sl(2).

Hint. For a finite dimensional representation V of sl(2) it is useful to introduce the character
χV (x) = Tr(exH), x ∈ C. Show that χV ⊕W (x) = χV (x) + χW (x) and χV ⊗W (x) = χV (x)χW (x).
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Then compute the character of Vλ and of Vλ⊗Vµ and derive the decomposition. This decomposition
is of fundamental importance in quantum mechanics.

(n) Let V = CM ⊗ CN , and A = JM (0) ⊗ IdN + IdM ⊗ JN (0). Find the Jordan normal form
of A using (l),(m), and compare the answer with Problem 1.4.

Problem 2.46. (Lie’s Theorem) Recall that the commutant K(g) of a Lie algebra g is the linear
span of elements [x, y], x, y ∈ g. This is an ideal in g (i.e. it is a subrepresentation of the adjoint
representation). A finite dimensional Lie algebra g over a field k is said to be solvable if there exists
n such that Kn(g) = 0. Prove the Lie theorem: if k = C and V is a finite dimensional irreducible
representation of a solvable Lie algebra g then V is 1-dimensional.

Hint. Prove the result by induction in dimension. By the induction assumption, K(g) has a
common eigenvector v in V , that is there is a linear function χ : K(g) → C such that av = χ(a)v
for any a ∈ K(g). Show that g preserves common eigenspaces of K(g) (for this you will need to
show that χ([x, a]) = 0 for x ∈ g and a ∈ K(g). To prove this, consider the smallest vector subspace
U containing v and invariant under x. This subspace is invariant under K(g) and any a ∈ K(g)
acts with trace dim(U)χ(a) in this subspace. In particular 0 = Tr([x, a]) = dim(U)χ([x, a]).).

Problem 2.47. Classify irreducible representations of the two dimensional Lie algebra with basis
X,Y and commutation relation [X,Y ] = Y . Consider the cases of zero and positive characteristic.
Is the Lie theorem true in positive characteristic?

Problem 2.48. (hard!) For any element x of a Lie algebra g let ad(x) denote the operator g →
g, y 7→ [x, y]. Consider the Lie algebra gn generated by two elements x, y with the defining relations
ad(x)2(y) = ad(y)n+1(x) = 0.

(a) Show that the Lie algebras g1, g2, g3 are finite dimensional and find their dimensions.

(b) (harder!) Show that the Lie algebra g4 has infinite dimension. Construct explicitly a basis
of this algebra.

3 General results of representation theory

3.1 The density theorem

Theorem 3.1. (The density theorem) Let A be an algebra, and let V1, V2, . . . , Vr be pairwise non-
isomorphic irreducible finite dimensional representations of A, with homomorphisms ρi : A −→
EndVi. Then the homomorphism

ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρr : A −→
r⊕

i=1

EndVi

is surjective.

Proof. Let
VN1,...,Nr = (V1 ⊕ · · · ⊕ V1)

︸ ︷︷ ︸

N1 copies

⊕ (V2 ⊕ · · · ⊕ V2)
︸ ︷︷ ︸

N2 copies

⊕ · · · ⊕ (Vr ⊕ · · · ⊕ Vr)
︸ ︷︷ ︸

Nr copies

.

Let pij : VN1,...,Nr −→ Vi be the projection onto Vij, the jth copy of Vi.

We shall need the following two lemmas:
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Lemma 3.2. Let W ( V = VN1,...,Nr be a subrepresentation. Then, there exists an automorphism
α of V such that piNi

(α(W )) = 0 for some i.

Proof of Lemma 3.2. We induct on N =
∑r

i=1Ni. The base case, N = 0, is clear. For the inductive
step, first pick an irreducible nonzero subrepresentation Y of W (which clearly exists by Problem
2.18). As Y 6= 0, there exist some i, j such that pij|Y : Y −→ Vi is nonzero. Assume, without loss of
generality, that j = 1. As pi1|Y is nonzero, by Schur’s lemma, pi1|Y is an isomorphism, and Y ∼= Vi.
As Y can be isomorphic to only one Vl, plm|Y = 0 for all l 6= i,m. As pim|Y ◦ (pi1|Y )−1 : Vi → Y →
Vi is a homomorphism, by Schur’s lemma for algebraically closed fields, pim|Y ◦ (pi1|Y )−1 = λm · Id
and pim|Y = λm · pi1|Y for some scalar λm.

We now define an automorphism γ : V −→ V. For v ∈ V, we write v = (vlm) where vlm =
plm(v) ∈ Vl. We now let γ(v) = (v′lm), where

v′lm = vlm for l 6= i,

v′i1 = vi1,

v′im = vim − λmvi1 for 2 ≤ m ≤ Ni.

Clearly γ is an automorphism. Suppose that v ∈ Y . As plm|Y = 0 for all l 6= i,m, v′lm = vlm =
plm(v) = 0 for l 6= i,m. As pim|Y = λm · pi1|Y , vim = λmvi1 and v′im = vim − λmvi1 = 0 for m 6= 1.
Thus, plm(γ(Y )) = v′lm = 0 unless l = i and m = 1. Also, pi1(γ(Y )) ∼= Y .

Consider the map

ϕ : V = VN1,...,Ni,,...,Nr −→ VN1,...,Ni−1,...,Nr

(vlm) 7−→ (vlm for (l,m) 6= (i, 1))

which has Vi1 (the first copy of Vi) as its kernel. But this is also γ(Y ), so kerϕ = γ(Y ). As
γ(Y ) ⊆ γ(W ), kerϕ|γ(W ) = γ(Y ) and ϕ(γ(W )) ∼= γ(W )/γ(Y ) ∼= W/Y .

By the inductive hypothesis, there exists some β : VN1,...,Ni−1,...,Nr −→ VN1,...,Ni−1,...,Nr such
that for some l, plN ′

l
(β(ϕ(γ(W )))) = 0, where N ′

l = Nl for l 6= i and N ′
i = Ni − 1. Define

α = (IdVi1
⊕ β) ◦ γ (where IdVi1

is the identity on the first copy of Vi). As IdVi1
⊕ ϕ = IdV,

IdVi1
⊕ β = (IdVi1

⊕ 0) + (β ◦ ϕ). Thus, plNl
(α(W )) = plN ′

l
(β(ϕ(γ(W )))) = 0 (as (l, Nl) 6= (i, 1)).

This completes the inductive step.

Lemma 3.3. Let W ⊆ VN1,...,Nr be a subrepresentation. Then, W ∼= VM1,...,Mr for some Mi ≤ Ni.

Proof of Lemma 3.3. We induct on N =
∑r

i=1Ni. The base case, N = 0 is clear, as then W = 0.
If W = VN1,...,Nr , then we simply have Mi = Ni. Otherwise, by Lemma 3.2, there exists an
automorphism α of VN1,...,Nr such that piNi

(α(W )) = 0 for some i. Thus, α(W ) ⊆ VN1,...,Ni−1,...,Nr .
By the inductive assumption, W ∼= α(W ) ∼= VM1,...,Mr .

Proof of Theorem 3.1. First, by replacing A with A/ ker ρ1⊕ρ2⊕· · · ⊕ρr, we can assume, without
loss of generality, that the map ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρr is injective. As A is now isomorphic to its
image, we can also assume that A ⊆ EndV1 ⊕ · · · ⊕ EndVr. Thus, A is a subrepresentation of
EndV1 ⊕ · · · ⊕ EndVr.

Let di = dimVi. As EndVi
∼= Vi ⊕ · · · ⊕ Vi

︸ ︷︷ ︸

di copies

, we have A ⊆ Vd1,...,dr
. Thus, by Lemma 3.3,

A ∼= VM1,...,Mr for some Mi ≤ di. Thus, dimA =
∑r

i=1Midi.
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Next, consider EndA(A). As the Vi’s are pairwise non-isomorphic, by Schur’s lemma, no copy
of Vi in A can be mapped to a distinct Vj . Also, by Schur, EndA (Vi) = k. Thus, EndA(A) ∼=
⊕

i MatMi
(k), so dimEndA(A) =

∑r
i=1M

2
i . By Problem 2.20, EndA(A) ∼= A, so

∑r
i=1M

2
i =

dimA =
∑r

i=1Midi. Thus,
∑r

i=1Mi (di −Mi) = 0. As Mi ≤ di, di −Mi ≥ 0. Next, as 1 ∈ A, the
map ρi : A −→ EndVi is nontrivial. As EndVi is a direct sum of copies of Vi, A must contain a copy
of Vi. Thus Mi > 0, and we must have di−Mi = 0 for all i, so Mi = di, and A =

⊕r
i=1 EndVi.

3.2 Representations of matrix algebras

In this section we consider representations of algebras A =
⊕

i Matdi
(k).

Theorem 3.4. Let A =
⊕r

i=1 Matdi
(k). Then the irreducible representations of A are V1 =

kd1 , . . . , Vr = kdr , and any finite dimensional representation of A is a direct sum of copies of
V1, . . . , Vr.

In order to prove Theorem 3.4, we shall need the notion of a dual representation.

Definition 3.5. (Dual representation) Let V be a representation of A. Then the dual space V ∗ is
a right A-module (or equivalently, a representation of Aop) with the action

f · a = (v 7−→ f(av)) ,

as (f · (ab)) (v) = f((ab)v) = f(a(bv)) = (f · a)(bv) = ((f · a) · b)(v).

Proof of Theorem 3.4. First, the given representations are clearly irreducible, as for any v, w ∈
Vi r 0, there exists a ∈ A such that av = w. Next, let X be an n dimensional representation
of A. Then, X∗ is an n dimensional representation of Aop. But (Matdi

(k))op ∼= Matdi
(k) with

isomorphism ϕ(X) = XT , as (AB)T = BTAT . Thus, A ∼= Aop and X∗ is an n dimensional
representation of A. Define

φ : A⊕ · · · ⊕A
︸ ︷︷ ︸

n copies

−→ X∗

by
φ(a1, . . . , an) = a1x

∗
1 + · · ·+ anx

∗
n

where {x∗i } is a basis of X∗. φ is clearly surjective, as k ⊂ A. Thus, the dual map φ∗ : X −→ An∗ is

injective. But An∗ ∼= An. Hence, Imφ∗ ∼= X is a subrepresentation of An. Next, as Matdi
(k) = V di

i ,
A = Vd1,...,dr

and An = Vnd1,...,ndr
. By Lemma 3.3, X ∼= VM1,...,Mr = M1V1 ⊕ · · · ⊕MrVr for some

Mi as desired.

3.3 Finite dimensional algebras

Definition 3.6. The radical I of a finite dimensional algebra A is the set of all elements of A
which act by 0 in all irreducible representations of A. It is denoted Rad(A).

Proposition 3.7. Rad(A) is a two-sided ideal.

Proof. If i ∈ I, a ∈ A, v ∈ V , where V is any irreducible representation of A, then aiv = a · 0 = 0
and iav = iv′ = 0 where v′ = av.
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Theorem 3.8. A finite dimensional algebra A has only finitely many irreducible representations
Vi up to isomorphism, these representations are finite dimensional, and

A/I ∼=
⊕

i

EndVi,

where I = Rad(A).

Proof. First, for any irreducible representation V of A, and for any nonzero v ∈ V , Av ⊆ V is a
finite dimensional subrepresentation of V . (It is finite dimensional as A is finite dimensional.) As
V is irreducible and Av 6= 0, V = Av and V is finite dimensional.

Next, suppose that we had infinitely many non-isomorphic irreducible representations. Let
V1, V2, . . . , Vr be any r nontrivial non-isomorphic irreducible representations, with r > dimA. By
Theorem 3.1, the homomorphism

⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. But this is impossible as
∑

dimEndVi ≥ r > dimA. Thus, A has only finitely many
non-isomorphic irreducible representations.

Next, let V1, V2, . . . , Vr be all non-isomorphic irreducible finite dimensional representations of
A. By Theorem 3.1, the homomorphism

⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. The kernel of this map is exactly I.

Corollary 3.9.
∑

i (dimVi)
2 ≤ dimA, where the Vi’s are the irreducible representations of A.

Proof. As dimEndVi = (dimVi)
2, Theorem 3.8 implies that dimA − dim I =

∑

i dimEndVi =
∑

i (dimVi)
2. As dim I ≥ 0,

∑

i (dimVi)
2 ≤ dimA.

Definition 3.10. A finite dimensional algebra A is said to be semisimple if Rad(A) = 0.

Proposition 3.11. For a finite dimensional algebra A over an algebraically closed field k, the
following are equivalent:

1. A is semisimple

2.
∑

i (dimVi)
2 = dimA, where the Vi’s are the irreducible representations of A

3. A ∼=
⊕

i Matdi
(k) for some di

4. Any finite dimensional representation of A is completely reducible (that is, isomorphic to a
direct sum of irreducible representations)

5. A (as a vector space) is a completely reducible representation of A

Proof. As dimA− dim I =
∑

i (dimVi)
2, clearly dimA =

∑

i (dimVi)
2 if and only if I = 0. Thus,

(1)⇔ (2).

Next, by Theorem 3.8, if I = 0, then clearly A ∼=
⊕

i Matdi
(k) for di = dimVi. Thus, (1)⇒ (3).

Conversely, if A ∼=
⊕

i Matdi
(k), then A ∼=

⊕

i EndUi for some Ui’s with dimUi = di. Clearly
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each Ui is irreducible (as for any u, u′ ∈ Ui r 0, there exists a ∈ A such that au = u′), and the
Ui’s are pairwise non-isomorphic representations. Thus, the Ui’s form a subset of the irreducible
representations Vi of A. Thus, dimA =

∑

i (dimUi)
2 ≤∑

i (dimVi)
2 ≤ dimA. Thus, (3)⇒ (2)(⇒

(1)).

Next (3) ⇒ (4) by Theorem 3.4. Clearly (4) ⇒ (5). To see that (5) ⇒ (3), let A =
⊕

i niVi.
Consider EndA(A) (endomorphisms of A as a representation of A). As the Vi’s are pairwise non-
isomorphic, by Schur’s lemma, no copy of Vi in A can be mapped to a distinct Vj . Also, by Schur,
EndA (Vi) = k. Thus, EndA(A) ∼=

⊕

i Matni
(k). But EndA(A) ∼= Aop by Problem 2.20, so Aop ∼=

⊕

i Matni
(k). Thus, A ∼= (

⊕

i Matni
(k))op =

⊕

i (Matni
(k))op. But (Matni

(k))op ∼= Matni
(k) with

isomorphism ϕ(X) = XT , as (AB)T = BTAT . Thus, A ∼=
⊕

i Matni
(k).

Let A be an algebra and V a finite-dimensional representation of A with action ρ. Then the
character of V is the linear function χV : A→ k given by

χV (a) = tr|V (ρ(a)).

If [A,A] is the span of commutators [x, y] := xy− yx over all x, y ∈ A, then [A,A] ⊆ kerχV . Thus,
we may view the character as a mapping χV : A/[A,A]→ k.

Theorem 3.12. (1) Characters of irreducible finite-dimensional representations of A are linearly
independent. (2) If A is a finite-dimensional semisimple algebra, then the characters form a basis
of (A/[A,A])∗.

Proof. (1) If V1, . . . , Vr are nonisomorphic irreducible finite-dimensional representations of A, then
ρV1
⊕· · ·⊕ρVr : A→ End V1⊕· · ·⊕End Vr is surjective by the density theorem, so χV1

, . . . , χVr are
linearly independent. (Indeed, if

∑
λiχVi

(a) = 0 for all a ∈ A, then
∑
λiTr(Mi) = 0 for all Mi ∈

EndkVi. But each tr(Mi) can range independently over k, so it must be that λ1 = · · · = λr = 0.)

(2) First we prove that [Matd(k),Matd(k)] = sld(k), the set of all matrices with trace 0. It is
clear that [Matd(k),Matd(k)] ⊆ sld(k). If we denote by Eij the matrix with 1 in the ith row of
the jth column and 0’s everywhere else, we have [Eij , Ejm] = Eim for i 6= m, and [Ei,i+1, Ei+1,i] =
Eii−Ei+1,i+1. Now {Eim}∪{Eii−Ei+1,i+1} forms a basis in sld(k), and indeed [Matd(k),Matd(k)] =
sld(k), as claimed.

By semisimplicity, we can write A = Matd1
k⊕· · ·⊕Matdr

k. Then [A,A] = sld1
(k)⊕· · ·⊕sldr

(k),
and A/[A,A] ∼= kr. By the corollary to the density theorem, there are exactly r irreducible
representations of A (isomorphic to kd1 , . . . , kdr , respectively), and therefore r linearly independent
characters in the r-dimensional vector space A/[A,A]. Thus, the characters form a basis.

3.4 Jordan-Holder and Krull-Schmidt theorems

To conclude the discussion of associative algebras, let us state two important theorems about their
finite dimensional representations.

Let A be an algebra over an algebraically closed field k. Let V be a representation of A. A
(finite) filtration of A is a sequence of subrepresentations 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V .

Theorem 3.13. (Jordan-Holder theorem). Let V be a finite dimensional representation of A,
and 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V , 0 = V ′

0 ⊂ ... ⊂ V ′
m = V be filtrations of V , such that the

representations Wi := Vi/Vi−1 and W ′
i := V ′

i /V
′
i−1 are irreducible for all i. Then n = m, and there

exists a permutation σ of 1, ..., n such that Wσ(i) is isomorphic to W ′
i .
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Proof. First proof (for k of characteristic zero). Let I ⊂ A be the annihilating ideal of V (i.e.
the set of elements that act by zero in V ). Replacing A with A/I, we may assume that A is finite
dimensional. The character of V obviously equals the sum of characters of Wi, and also the sum of
characters of W ′

i . But by Theorem 3.12, the characters of irreducible representations are linearly
independent, so the multiplicity of every irreducible representation W of A among Wi and among
W ′

i are the same. This implies the theorem.

Second proof (general). The proof is by induction on dimV . The base of induction is clear,
so let us prove the induction step. If W1 = W ′

1 (as subspaces), we are done, since by the induction
assumption the theorem holds for V/W1. So assume W1 6= W ′

1. In this case W1 ∩ W ′
1 = 0 (as

W1,W
′
1 are irreducible), so we have an embedding f : W1 ⊕W ′

1 → V . Let U = V/(W1 ⊕W ′
1), and

0 = U0 ⊂ U1 ⊂ ... ⊂ Up = U be a filtration of U with simple quotients Zi = Ui/Ui−1. Then we see
that:

1) V/W1 has a filtration with successive quotients W ′
1, Z1, ..., Zp, and another filtration with

successive quotients W2, ....,Wn.

2) V/Y has a filtration with successive quotients W1, Z1, ..., Zp, and another filtration with
successive quotients W ′

2, ....,W
′
n.

By the induction assumption, this means that the collection of irreducible modules with mul-
tiplicities W1,W

′
1, Z1, ..., Zp coincides on one hand with W1, ...,Wn, and on the other hand, with

W ′
1, ...,W

′
m. We are done.

Theorem 3.14. (Krull-Schmidt theorem) Any finite dimensional representation of A can be uniquely
(up to order of summands) decomposed into a direct sum of indecomposable representations.

Proof. It is clear that a decomposition of V into a direct sum of indecomposable representation
exists, so we just need to prove uniqueness. We will prove it by induction on dimV . Let V =
V1⊕ ...⊕Vm = V ′

1 ⊕ ...⊕V ′
n. Let is : Vs → V , i′s : V ′

s → V , ps : V → Vs, p
′
s : V → V ′

s be the natural
maps associated to these decompositions. Let θs = p1i

′
sp

′
si1 : V1 → V1. We have

∑n
s=1 θs = 1. Now

we need the following lemma.

Lemma 3.15. Let W be a finite dimensional indecomposable representation of A. Then

(i) Any homomorphism θ : W → W is either an isomorphism of nilpotent;

(ii) If θs : W →W , s = 1, ..., n are nilpotent homomorphisms, then so is θ := θ1 + ...+ θn.

Proof. (i) Generalized eigenspaces of θ are subrepresentations of V , and V is their direct sum.
Thus, θ can have only one eigenvalue λ. If λ is zero, θ is nilpotent, otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make the induction step (n− 1 to n),
assume that θ is not nilpotent. Then by (i) θ is an isomorphism, so

∑n
i=1 θ

−1θi = 1. The morphisms
θ−1θi are not isomorphisms, so they are nilpotent. Thus 1 − theta−1θn = θ−1θ1 + ... + θ−1θn−1 is
an isomorphism, which is a contradiction with the induction assumption.

By the lemma, we find that for some s, θs must be an isomorphism; we may assume that s = 1.
In this case, V ′

1 = Imp′1i1⊕Ker(p1i
′
1), so since V ′

1 is indecomposable, we get that f := p′1i1 : V1 → V ′
1

and g := p1i
′
1 : V ′

1 → V1 are isomorphisms.

Let B = ⊕j>1Vj , B
′ = ⊕j>1V

′
j ; then we have V = V1 ⊕ B = V ′

1 ⊕ B′. Consider the map
h : B → B′ defined as a composition of the natural maps B → V → B ′ attached to these
decompositions. We claim that h is an isomorphism. To show this, it suffices to show that Kerh = 0
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(as h is a map between spaces of the same dimension). Assume that v ∈ Kerh ⊂ B. Then v ∈ V ′
1 .

On the other hand, the projection of v to V1 is zero, so gv = 1. Since g is an isomorphism, we get
v = 0, as desired.

Now by the induction assumption, m = n, and Vj = V ′
σ(j) for some permutation σ of 2, ..., n.

The theorem is proved.

3.5 Problems

Problem 3.16. Extensions of representations.

Let A be an algebra over an algebraically closed field k, and V,W be a pair of representations
of A. We would like to classify representations U of A such that V is a subrepresentation of U ,
and U/V = W . Of course, there is an obvious example U = V ⊕W , but are there any others?

Suppose we have a representation U as above. As a vector space, it can be (non-uniquely)
identified with V ⊕W , so that for any a ∈ A the corresponding operator ρU (a) has block triangular
form

ρU (a) =

(
ρV (a) f(a)

0 ρW (a)

)

,

where f : A→ Homk(W,V ).

(a) What is the necessary and sufficient condition on f(a) under which ρU (a) is a repre-
sentation? Maps f satisfying this condition are called (1-)cocycles (of A with coefficients in
Homk(W,V )). They form a vector space denoted Z1(W,V ).

(b) Let X : W → V be a linear map. The coboundary of X, dX, is defined to be the function A→
Homk(W,V ) given by dX(a) = ρV (a)X−XρW (a). Show that dX is a cocycle, which vanishes if and
only if X is a homomorphism of representations. Thus coboundaries form a subspace B 1(W,V ) ⊂
Z1(W,V ), which is isomorphic to Homk(W,V )/HomA(W,V ). The quotient Z1(W,V )/B1(W,V ) is
denoted Ext1(W,V ).

(c) Show that if f, f ′ ∈ Z1(W,V ) and f − f ′ ∈ B1(W,V ) then the corresponding extensions
U,U ′ are isomorphic representations of A. Conversely, if φ : U → U ′ is an isomorphism which
acts as the identity on V and projects onto IdW , then f − f ′ ∈ B1(V,W ). Such an isomorphism is
called an isomorphism of extensions. Thus, the space Ext1(W,V ) “classifies” extensions of W
by V .

(d) Assume that W,V are finite-dimensional irreducible representations of A. For any f ∈
Ext1(W,V ), let Uf be the corresponding extension. Show that Uf is isomorphic to Uf ′ as repre-
sentations if and only if f and f ′ are proportional. Thus isomorphism classes (as representations)
of nontrivial extensions of W by V (i.e., those not isomorphic to W ⊕ V as representations) are
parametrized by the projective space P Ext1(W,V ). In particular, every extension is trivial if and
only if Ext1(W,V ) = 0.

Problem 3.17. (a) Let A = C[x1, ..., xn], and for a,= (a1, . . . , an) ∈ Cn let Va be the one-
dimensional representations in which xi act by ai. Find Ext1(Va, Vb) and classify 2-dimensional
representations of A.

(b) Let B be the algebra over C generated by x1, ..., xn with the defining relations xixj = 0 for
all i, j. Show that for n > 1 the algebra B has infinitely many non-isomorphic indecomposable
representations.
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Problem 3.18. Let Q be a quiver without oriented cycles, and PQ the path algebra of Q. Find
irreducible representations of PQ and compute Ext1 between them. Classify 2-dimensional repre-
sentations of PQ.

Problem 3.19. Let A be an algebra, and V a representation of A. Let ρ : A→ EndV . A formal
deformation of V is a formal series

ρ̃ = ρ0 + tρ1 + ...+ tnρn + ...,

where ρi : A→ End(V ) are linear maps, ρ0 = ρ, and ρ̃(ab) = ρ̃(a)ρ̃(b).

If b(t) = 1 + b1t+ b2t
2 + ..., where bi ∈ End(V ), and ρ̃ is a formal deformation of ρ, then bρ̃b−1

is also a deformation of ρ, which is said to be isomorphic to ρ̃.

(a) Show that if Ext1(V, V ) = 0, then any deformation of ρ is trivial, i.e. isomorphic to ρ.

(b) Is the converse to (a) true? (consider the algebra of dual numbers A = k[x]/x2).

4 Representations of finite groups: basic results

4.1 Maschke’s Theorem

Theorem 4.1 (Maschke). Let G be a finite group and k an algebraically closed field whose charac-
teristic does not divide |G|. Then the algebra k[G] is semisimple. In particular, k[G] = ⊕iEndVi,
where Vi are the irreducible representation of G.

Proof. We need to show that if V is a finite-dimensional representation of G and W ⊂ V is any
subrepresentation, then there exists a subrepresentation W ′ ⊂ V such that V = W ⊕W ′ as the
direct sum of representations.

Choose any complement Ŵ of W in V . (Thus V = W ⊕ Ŵ as vector spaces, but not necessarily
as representations.) Let P be the projection along Ŵ onto W , i.e., the operator on V defined by
P |W = Id and P |Ŵ = 0. Let

P :=
1

|G|
∑

g∈G

ρ(g)Pρ(g−1),

where ρ(g) is the action of g on V , and let

W ′ = kerP .

Now P |W = Id and P (V ) ⊆W , so P
2

= P , so P is a projection along W ′. Thus, V = W ⊕W ′ as
vector spaces.

Moreover, for any h ∈ G and any y ∈W ′,

Pρ(h)y =
1

|G|
∑

g∈G

ρ(g)Pρ(g−1h)y =
1

|G|
∑

`∈G

ρ(h`)Pρ(`−1)y = ρ(h)Py = 0,

so ρ(h)y ∈ kerP = W ′. Thus, W ′ is invariant under the action of G and is therefore a subrepre-
sentation of V . Thus, V = W ⊕W ′ is the desired decomposition into subrepresentations.

Proposition 4.2. Conversely, if k[G] is semisimple, then the characteristic of k does not divide
|G|.
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Proof. Write k[G] =
⊕r

i=1 End Vi, where the Vi are irreducible representations and V1 = k is the
trivial one-dimensional representation. Then

k[G] = k ⊕
r⊕

i=2

End Vi = k ⊕
r⊕

i=2

diVi,

where di = dimVi. By Schur’s Lemma,

Homk[G](k, k[G]) = kΛ

Homk[G](k[G], k) = kε,

for nonzero homomorphisms ε : k[G] → k and Λ : k → k[G] unique up to scaling. We can take ε
such that ε(g) = 1 for all g ∈ G, and Λ such that Λ(1) =

∑

g∈G g. Then

ε ◦ Λ(1) = ε

(
∑

g∈G

g

)

=
∑

g∈G

1 = |G|.

If |G| = 0, then Λ has no left inverse, a contradiction.

4.2 Characters

If V is a finite-dimensional representation of a finite group G, then its character is defined by the
formula χV (g) = tr|V (ρ(g)). Obviously, χV (g) is simply the restriction of the character χV (a) of
V as a representation of the algebra A = k[G] to the basis G ⊂ A, so it carries exactly the same
information. The character is a central or class function: χV (g) depends only on the conjugacy
class of g; i.e., χV (hgh−1) = χV (g).

Theorem 4.3. If the characteristic of k does not divide |G|, characters of irreducible representa-
tions of G form a basis in the space Fc(G, k) of class functions on G.

Proof. By the Maschke theorem, k[G] is semisimple, so by Theorem 3.12, the characters are linearly
independent and are a basis of (A/[A,A])∗, where A = k[G]. It suffices to note that, as vector
spaces over k,

(A/[A,A])∗ ∼= {ϕ ∈ Homk(k[G], k) | gh − hg ∈ kerϕ ∀g, h ∈ G}
∼= {f ∈ Fun(G, k) | f(gh) = f(hg) ∀g, h ∈ G},

which is precisely Fc(G, k).

Corollary 4.4. The number of irreducible representations of G equals the number of conjugacy
classes of G.

Corollary 4.5. Any representation of G is determined by its character; namely, χV = χW implies
V ∼= W if k has characteristic 0.

4.3 Sum of squares formula

Theorem 4.6. If G is a finite group and C[G] is its regular representation, then

C[G] ∼=
⊕

V ∈Irrep G

(dimV )V,

where the direct sum is taken over all nonisomorphic irreducible representations.
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Proof. By the Maschke theorem we can write C[G] as a direct sum of irreducible representations:

C[G] ∼=
⊕

V ∈Irrep G

nV V.

By the corollary to Schur’s lemma, an endomorphism of representations on V must be a scalar
times the identity. For any irreducible representation V ′ 6= V , any homomorphism of representa-
tions from V ′ to V must be 0. Thus,

dimHomG(V ′, V ) =

{

1 if V ′ = V

0 else.

Comparing dimensions in

HomG(C[G], V ) =
⊕

V ′∈Irrep G

nV ′HomG(V ′, V )

gives dimHomG(C[G], V ) = nV . Furthermore,

HomG(C[G], V ) = {ϕ : G→ V ‖ϕ(hg) = ρV (h)ϕ(g)},

so such ϕ are of the form ϕ(h) = ρV (h)v for an arbitrary vector v ∈ V . It follows that dimHomG(C[G], V ) =
dimV .

Thus, nV = dimV , and the theorem is proved.

4.4 Examples

The following are examples of representations of finite groups over C.

1. Finite abelian groups G = Zn1
× · · · × Znk

. Let G∨ be the set of irreducible representations
of G. Every element of G forms a conjugacy class, so |G∨| = |G|. Recall that all irreducible
representations over C (and algebraically closed fields in general) of commutative algebras and
groups are one-dimensional. Thus, G∨ is an abelian group: if ρ1, ρ2 : G→ C∗ are irreducible
representations then so are ρ1(g)ρ2(g) and ρ1(g)

−1. G∨ is called the dual or character group
of G.

For given n ≥ 2, define ρ : Zn → C∗ by ρ(m) = e2πim/n. Then Z∨
n = {ρk : k = 0, . . . , n− 1},

so Z∨
n
∼= Zn. In general,

(G1 ×G2 × · · · ×Gn)∨ = G∨
1 ×G∨

2 × · · · ×G∨
n ,

so G∨ ∼= G for any finite abelian group G. This isomorphism is, however, noncanonical:
the particular decomposition of G as Zn1

× · · · × Znk
is not unique as far as which elements

of G correspond to Zn1
, etc. is concerned. On the other hand, G ∼= (G∨)∨ is a canonical

isomorphism, given by ϕ : G→ (G∨)∨, where ϕ(g)(χ) = χ(g).

2. The symmetric group S3. In Sn, conjugacy classes are based on cycle decomposition sizes:
two permutations are conjugate iff they have the same number of cycles of each length. For
S3, there are 3 conjugacy classes, so there are 3 different irreducible representations over C.
If their dimensions are d1, d2, d3, then d2

1 + d2
2 + d2

3 = 6, so S3 must have two 1-dimensional
and one 2-dimensional representations. The 1-dimensional representations are the trivial
representation ρ(σ) = 1 and the sign representation ρ(σ) = (−1)σ .
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The 2-dimensional representation can be visualized as representing the symmetries of the
equilateral triangle with vertices 1, 2, 3 at the points (cos 120◦, sin 120◦), (cos 240◦, sin 240◦),
(1, 0) of the coordinate plane, respectively. Thus, for example,

ρ((12)) =

(
1 0
0 −1

)

, ρ((123)) =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)

.

To show that this representation is irreducible, consider any subrepresentation V . V must be
the span of a subset of the eigenvectors of ρ((12)), which are the nonzero multiples of (1, 0)
and (0, 1). V must also be the span of a subset of the eigenvectors of ρ((123)), which are the
nonzero multiples of (1, i) and (i, 1). Thus, V must be either C2 or 0.

3. The quaternion group Q8 = {±1,±i,±j,±k}, with defining relations

i = jk = −kj, j = ki = −ik, k = ij = −ji, −1 = i2 = j2 = k2.

The 5 conjugacy classes are {1}, {−1}, {±i}, {±j}, {±k}, so there are 5 different irreducible
representations, the sum of the squares of whose dimensions is 8, so their dimensions must
be 1, 1, 1, 1, and 2.

The center Z(Q8) is {±1}, and Q8/Z(Q8) ∼= Z2 × Z2. The four 1-dimensional irreducible
representations of Z2 × Z2 can be “pulled back” to Q8. That is, if q : Q8 → Q8/Z(Q8) is the
quotient map, and ρ any representation of Q8/Z(Q8), then ρ ◦ q gives a representation of Q8.

The 2-dimensional representation is V = C2, given by ρ(−1) = −Id and

ρ(i) =

(
0 1
−1 0

)

, ρ(j) =

(√
−1 0
0 −

√
−1

)

, ρ(k) =

(
0 −

√
−1

−
√
−1 0

)

.

These are the Pauli matrices, which arise in quantum mechanics.

4. The symmetric group S4. The order is 24, and there are 5 conjugacy classes: e, (12), (123), (1234), (12)(34).
Thus the sum of the squares of the dimensions of 5 irreducible representations is 24. As with
S3, there are two of dimension 1: the trivial and sign representations, C and C−1. The other
three must have dimensions 2, 2, and 3. Because S3

∼= S4/V , where V is the Viergruppe
{e, (12)(34), (13)(24), (14)(23)}, the 2-dimensional representation of S3 can be pulled back to
the 2-dimensional representation of S4, which we will call C2.

We can consider S4 as the group of rotations of a cube (acting by permuting the interior
diagonals); this gives the 3-dimensional representation C3

+.

The last 3-dimensional representation is C3
−, the product of C3

+ with the sign representation,
or equivalently the permutation group of a regular tetrahedron. C3

+ and C3
− are different, for

if g is a transposition, det g|C3
+

= 1 while det g|C3
−

= (−1)3 = −1.

4.5 Duals and tensor products of representations

If V is a representation of a finite group G, then V ∗ is also a representation, via

ρV ∗(g) = (ρV (g)∗)−1 = (ρV (g)−1)∗ = ρV (g−1)∗.

The character is χV ∗(g) = χV (g−1).

For complex representations, χV (g) =
∑
λi, where the λi are the eigenvalues of g in V . These

eigenvalues must be roots of unity because ρ(g)|G| = ρ(g|G|) = ρ(e) = Id. Thus

χV ∗(g) = χV (g−1) =
∑

λ−1
i =

∑

λi =
∑

λi = χV (g).
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In particular, V ∼= V ∗ as representations (not just as vector spaces) iff χV (g) ∈ R for all g ∈ G.

If V,W are representations of G, then V ⊗W is also a representation, via

ρV ⊗W (g) = ρV (g) ⊗ ρW (g).

It is an interesting problem to decompose V ⊗W into the direct sum of irreducible representations.

4.6 Orthogonality of characters

We define the Hermitian inner product form on Fc(G,C) (the space of central functions) by

(f1, f2) =
1

|G|
∑

g∈G

f1(g)f2(g).

The following theorem says that characters of irreducible representations of G form an orthonormal
basis of Fc(G,C) under this inner product.

Theorem 4.7. For any representations V,W

(χV , χW ) = dimHom(V,W ),

and

(χV , χW ) =

{
1, if V ∼= W,
0, if V � W

if V,W are irreducible.

Proof. By the definition

(χV , χW ) =
1

|G|
∑

g∈G

χV (g)χW (g) =
1

|G|
∑

g∈G

χV (g)χW ∗(g)

=
1

|G|
∑

g∈G

χV ⊗W ∗(g) = tr |V ⊗W ∗(P ),

where P = 1
|G|

∑

g∈G g ∈ Z(C[G]). (Here Z(C[G]) denotes the center of C[G]). If X is an irreducible
representation of G then

P |X =

{
Id, if X = C,
0, X 6= C.

Therefore, for any representation X the operator P |X is the G-invariant projector onto the subspace
XG of G-invariants in X. Thus,

tr |V ⊗W ∗(P ) = dimHomG(C, V ⊗W ∗)

= dim(V ⊗W ∗)G = dimHomG(W,V ).

Here is another “orthogonality formula” for characters, in which summation is taken over irre-
ducible representations rather than group elements.
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Theorem 4.8. Let g, h ∈ G, and let Zg denote the centralizer of g in G. Then

∑

V

χV (g)χV (h) =
|Zg|ifgisconjugatetoh
0, otherwise.

where the summation is taken over all irreducible representations of G.

Proof. As noted above, χV (h) = χV ∗(h), so the left hand side equals (using Maschke’s theorem):

∑

V

χV (g)χV ∗(h) = tr|C[G](x 7→ gxh−1).

If g and h are not conjugate, this trace is clearly zero, since the matrix of the operator x→ gxh−1

in the basis of group elements has zero diagonal entries. On the other hand, if g and h are in the
same conjugacy class, the trace is equal to the number of elements x such that x = gxh−1, i.e., the
order of the centralizer Zg of g. We are done.

4.7 Unitary representations. Another proof of Maschke’s theorem for complex

representations

Definition 4.9. A unitary finite dimensional representation of a group G is a representation of G
on a complex finite dimensional vector space V over C equipped with a G-invariant positive definite
Hermitian form (, ), i.e. such that ρV (g) are unitary operators: (ρV (g)v, ρV (g)w) = (v, w).

Remark 4.10. Not any finite dimensional representation admits a unitary structure.

Theorem 4.11. If G is finite, then any finite dimensional representation of G has a unitary
structure. If the representation if irreducible, this structure is unique up to scaling.

Proof. Take any positively defined form B on V and define another form B as follows:

B(v, w) =
∑

g∈G

B(gv, gw)

Then B is a positive definite Hermitian form on V, and ρV (g) are unitary operators. If V is an
irreducible representation and B1, B2 are two Hermitian forms on V, then B1(v, w) = B2(v,Aw)
for some homomorphism A : V → V. This implies A = λId, λ ∈ R.

Theorem 4.12. A finite dimensional unitary representation V of any group G is completely re-
ducible.

Proof. Let W be a subrepresentation of V . Let W⊥ be the orthogonal complement of W in V
under the Hermitian inner product. Then W⊥ is a subrepresentation of W , and V = W ⊕W⊥.
This implies that V is completely reducible.

4.8 Orthogonality of matrix elements

Let V be an irreducible representation of G, and v1, v2, . . . , vn be an orthonormal basis of V under
the Hermitian form. The matrix elements of V are T V

ij (x) = (vi, ρV (x)vj).

Proposition 4.13. (1) Matrix elements of nonisomorphic representations are orthogonal in F (G,C)
under the form (f, g) = 1

|G|
∑

x∈G f(x)g(x).
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(2) (tVij , t
V
i′j′) = δii′δjj′ · 1

dimV

Proof. Let V and W be two representations of G. Take {vi} to be an orthonormal basis of V and
{wi} to be an orthonormal basis of W. Putting P =

∑

x∈G x, we have

∑

x∈G

〈vi, xvj〉〈wi′ , xwj′〉 =
∑

x∈G

〈vi, xvj〉〈w∗
i′ , xw

∗
j′〉 = 〈vi ⊗w∗

i′ , P (vj ⊗ w∗
j′)〉

If V 6= W, this is zero, since P projects to the trivial representation. If V = W, we need to
consider 〈vi ⊗ v∗i′ , P (vj ⊗ v∗j′)〉. We have

V ⊗ V ∗ = C⊕ L
C = span(

∑

vk ⊗ v∗k)

L = span({
∑

P

akl=0

aklvk ⊗ v∗l })

The projection of vi ⊗ v∗i′ to C ⊂ C⊕ L is

1

dimV

∑

vk ⊗ v∗kδii′

This shows that

〈vi ⊗ vi′ , P (vj ⊗ v∗j′))〉 =
δii′δjj′

dimV

which finishes the proof.

4.9 Character tables, examples

The characters of all the irreducible representations of a finite group can be arranged into a char-
acter table, with conjugacy classes of elements as the columns, and characters as the rows. More
specifically, the first row in a character table lists representatives of conjugacy classes, the second
one the numbers of elements in the conjugacy classes, and the other rows are the values of the char-
acters on the conjugacy classes. Due to theorems 4.7 and 4.8 the rows and columns of a character
table are orthonormal with respect to the appropriate inner products.

Note that in any character table, the row corresponding to the trivial representation consists
of ones, and the column corresponding to the neutral element consists of the dimensions of the
representations.

Here is, for example, the character table of S3 :

S3 Id (12) (123)

# 1 3 2

C 1 1 1

C− 1 -1 1

C2 2 0 1

It is obtained by explicitly computing traces in the irreducible representations.

For another example consider A4, the group of even permutations of 4 items. There are three
one-dimensional representations. Since there are four conjugacy classes in total, there is one more
irreducible representation of dimension 3. Finally, the character table is
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A4 Id (123) (132) (12)(34)

# 1 4 4 3

C 1 1 1 1

Cε 1 ε ε2 1

Cε2 1 ε2 ε 1

C3 3 0 0 −1

where ε = exp( 2πi
3 ).

The last row can be computed using the orthogonality of rows. Another way to compute the
last row is to note that C3 is the representation of A4 by rotations of the regular tetrahedron: in
this case (123), (132) are the rotations by 1200 and 2400 around a perpendicular to a face of the
tetrahedron, while (12)(34) is the rotation by 1800 around an axis perpendicular to two opposite
edges.

Example 4.14. The following three character tables are of Q8, S4, and A5 respectively.

Q8 1 -1 i j k

# 1 1 2 2 2

C++ 1 1 1 1 1

C+− 1 1 1 -1 -1

C−+ 1 1 -1 1 -1

C−− 1 1 -1 -1 1

C2 2 2 0 0 0

S4 Id (12) (12)(34) (123) (1234)

# 1 6 3 8 6

C 1 1 1 1 1

C− 1 -1 1 1 -1

C2 2 0 2 -1 0

C3
+ 3 -1 -1 0 1

C3
− 3 1 -1 0 -1

A5 Id (123) (12)(34) (12345) (13245)

# 1 20 15 12 12

C 1 1 1 1 1

V +
3 = C3

(1) 3 0 -1 1+
√

5
2

1−
√

5
2

V −
3 = C3

(2) 3 0 -1 1−
√

5
2

1+
√

5
2

V4 = C4 4 1 0 -1 -1

V5 = C5 5 -1 1 0 0

Indeed, the computation of the characters of the 1-dimensional representations is straightfor-
ward.

The character of the 2-dimensional representation of Q8 is obtained by using character orthog-
onality.

For S4, the 2-dimensional irreducible representation is obtained from the 2-dimensional irre-
ducible representation of S3 via the surjective homomorphism S4 → S3, which allows to obtain its
character from the character table of S3.

The character of the 3-dimensional representation C3
+ is computed from its geometric realization

by rotations of the cube. Namely, by rotating the cube, S4 permuts the main diagonals. Thus (12)
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is rotaion by 1800 around an axis that is perpendicular to two opposite edges, (12)(34) is rotation
by 1800 around an axis that is perpendicular to two opposite faces, (123) is rotation around a main
diagonal by 1200, and (1234) is rotation by 900 around an axis that is perpendicular to two opposite
faces; this allows us to compute the traces easily, using the fact that the trace of a rottation by the
angle φ in R3 is 1 + 2 cosφ. Now the character of C3

− is found by multiplying the character of C3
+

by the character of the sign representation.

Finally, we explain how to obtain the character table of A5. The group A5 is the group of
rotations of the regular icosahedron. Thus it has a 3-dimensional “rotation representation” V +

3 ,
in which (12)(34) is rotation by 1800 around an axis perpendicular to two opposite edges, (123)
is rotation by 1200 around an axis perpendicular to two opposite faces, and (12345), (13254) are
rotations by 720, respectively 1440, around axes going through two opposite vertices. The character
of this representation is computed from this description in a straightforward way.

Another representation of A5, which is also 3-dimensional, is V +
3 twisted by the automorphism

of A5 given by coinjugation by (12) inside S5. This representation is denoted by V −
3 . It has the

same character as V +
3 , except that the conjugacy classes (12345) and (13245) are interchanged.

There are two remaining irreducible representations, and by the sum of squares formula their
dimensions are 4 and 5. So we call them V4 and V5.

The representation V4 is realized on the space of functions on the set {1, 2, 3, 4, 5} with zero
sum of values (where A5 acts by permutations). The character of this representation is equal to the
character of the 5-dimensional permutation representation minus the character of the 1-dimensional
trivial representation (constant functions). The former at an element g equals to the number of
items among 1,2,3,4,5 which are fixed by g.

The representation V5 is realized on the space of functions on pairs of opposite vertices of
the icosahedron which has zero sum of values. The character of this representation is computed
similarly to the character of V4, or from the orthogonality formula.

4.10 Computing tensor product multiplicities and restriction multiplicities us-

ing character tables

Character tables allow us to compute the tensor product multiplicities N k
ij using

Vi ⊗ Vj =
∑

Nk
ijVk, Nk

ij = (χiχj , χk)

Example 4.15. The following tables represent computed tensor product multiplicities of irre-

ducible representations of S3, S4, and A4 respectively.

C C− C2

C C C− C2

C− C− C C2

C2 C2 C2 C⊕ C⊕ C2

C+ C− C2 C3
+ C3

−
C+ C+ C− C2 C3

+ C3
−

C− C− C+ C2 C3
− C3

+

C2 C2 C2 C⊕ C− ⊕ C3
− C3

+ ⊕ C3
− C3

+ ⊕ C3
−

C3
+ C3

+ C3
− C3

+ ⊕C3
− C2 ⊕ C+ ⊕ C3

+ ⊕ C3
− C2 ⊕ C− ⊕ C3

+ ⊕ C3
−

C3
− C3

− C3
+ C3

+ ⊕C3
− C2 ⊕ C− ⊕ C3

+ ⊕ C3
− C2 ⊕ C+ ⊕ C3

+ ⊕ C3
−
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C V +
3 V −

3 V4 V5

C C V +
3 V −

3 V4 V5

V +
3 C⊕ V5 ⊕ V +

3 V4 ⊕ V5 V −
3 ⊕ V4 ⊕ V5 V +

3 ⊕ V −
3 ⊕ V4 ⊕ V5

V −
3 C⊕ V5 ⊕ V +

3 V +
3 ⊕ V4 ⊕ V5 V +

3 ⊕ V −
3 ⊕ V4 ⊕ V5

V4 V +
3 ⊕ V −

3 ⊕ C⊕ V4 ⊕ V5 V +
3 ⊕ V −

3 ⊕ 2V5 ⊕ V4

V5 C⊕ V +
3 ⊕ V −

3 ⊕ 2V4 ⊕ 2V5

4.11 Problems

Problem 4.16. Let G be the group of symmetries of a regular N-gon (it has 2N elements).

(a) Describe all irreducible complex representations of this group.

(b) Let V be the 2-dimensional complex representation of G obtained by complexification of the
standard representation on the real plane (the plane of the polygon). Find the decomposition of
V ⊗ V in a direct sum of irreducible representations.

Problem 4.17. Let G be the group of 3 by 3 matrices over Fp which are upper triangular and have
1-s on the diagonal, under multiplication (its order is of course p3). It is called the Heisenberg
group. For any complex number z such that zp = 1 we define a representation of G on the space V
of complex functions on Fp, by

(ρ





1 1 0
0 1 0
0 0 1



 f)(x) = f(x− 1),

(ρ





1 0 0
0 1 1
0 0 1



 f)(x) = zxf(x).

(note that zx makes sense since zp = 1).

(a) Show that such a representation exists and is unique, and compute ρ(g) for all g ∈ G.

(b) Denote this representation by Rz. Show that Rz is irreducible if and only if z 6= 1.

(c) Classify all 1-dimensional representations of G. Show that R1 decomposes into a direct sum
of 1-dimensional representations, where each of them occurs exactly once.

(d) Use (a)-(c) and the “sum of squares” formula to classify all irreducible representations of
G.

Problem 4.18. Let V be a finite dimensional complex vector space, and GL(V ) be the group of
invertible linear transformations of V . Then SnV and ΛmV (m ≤ dim(V )) are representations of
GL(V ) in a natural way. Show that they are irreducible representations.

Hint: Choose a basis {ei} in V . Find a diagonal element H of GL(V ) such that ρ(H) has
distinct eigenvalues. (where ρ is one of the above representations). This shows that if W is a
subrepresentation, then it is spanned by a subset S of a basis of eigenvectors of ρ(H). Use the
invariance of W under the operators ρ(1+Eij) (where Eij is defined by Eijek = δjkei) for all i 6= j
to show that if the subset S is nonempty, it is necessarily the entire basis.

Problem 4.19. Recall that the adjacency matrix of a graph Γ (without multiple edges) is the matrix
in which the ij-th entry is 1 if the vertices i and j are connected with an edge, and zero otherwise.
Let Γ be a finite graph whose automorphism group is nonabelian. Show that the adjacency matrix
of Γ must have repeated eigenvalues.
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Problem 4.20. Let I be the set of vertices of a regular icosahedron (|I| = 12). Let F (I) be the
space of complex functions on I. Recall that the group G = A5 of even permutations of 5 items
acts on the icosahedron, so we have a 12-dimensional representation of G on F (I).

(a) Decompose this representation in a direct sum of irreducible representations (i.e., find the
multiplicities of occurrence of all irreducible representations).

(b) Do the same for the representation of G on the space of functions on the set of faces and
the set of edges of the icosahedron.

Problem 4.21. Let F be a finite field with q elements, and G be the group of inhomogeneous
linear transformations, x → ax + b, over F (i.e., a ∈ F ×, b ∈ F ). Find all irreducible complex
representations of G, and compute their characters. Compute the tensor products of irreducible
representations.

Hint. Let V be the representation of G on the space of functions on F with sum of all values
equal to zero. Show that V is an irreducible representation of G.

Problem 4.22. Let G = SU(2) (unitary 2 by 2 matrices with determinant 1), and V = C2 the
standard 2-dimensional representation of SU(2). We consider V as a real representation, so it is
4-dimensional.

(a) Show that V is irreducible (as a real representation).

(b) Let H be the subspace of EndR(V ) consisting of endomorphisms of V as a real representation.
Show that H is 4-dimensional and closed under multiplication. Show that every nonzero element
in H is invertible, i.e. H is an algebra with division.

(c) Find a basis 1, i, j, k of H such that 1 is the unit and i2 = j2 = k2 = −1, ij = −ji = k, jk =
−kj = i, ki = −ik = j. Thus we have that Q8 is a subgroup of the group H× of invertible elements
of H under multiplication.

The algebra H is called the quaternion algebra.

(d) For q = a+bi+cj+dk, a, b, c, d ∈ R, let q̄ = a−bi−cj−dk, and ||q||2 = qq̄ = a2+b2+c2+d2.
Show that q1q2 = q̄2q̄1, and ||q1q2|| = ||q1|| · ||q2||.

(e) Let G be the group of quaternions of norm 1. Show that this group is isomorphic to SU(2).
(Thus SU(2) is the 3-dimensional sphere).

(f) Consider the action of G on the space V ⊂ H spanned by i, j, k, by x → qxq−1, q ∈ G,
x ∈ V . Since this action preserves the norm on V , we have a homomorphism h : SU(2)→ SO(3).
Show that this homomorphism is surjective and that its kernel is {1,−1}.
Problem 4.23. Using the classification of finite subgroups of SO(3) (M. Artin, “Algebra”, p.184),
classify finite subgroups of SU(2) (use the homomorphism SU(2)→ SO(3)).

Problem 4.24. Find the characters and tensor products of irreducible complex representations of
the Heisenberg group from Problem 4.17.

Problem 4.25. Let G be a finite group, and V a complex representation of G which is faithful,
i.e. the corresponding map G→ GL(V ) is injective. Show that any irreducible representation of G
occurs inside SnV (and hence inside V ⊗n) for some n.

Problem 4.26. This problem is about an application of representation theory to physics (elasticity
theory). We first describe the physical motivation and then state the mathematical problem.

Imagine a material which occupies a certain region U in the physical space V = R3 (a space
with a positive definite inner product). Suppose the material is deformed. This means, we have
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applied a diffeomorphism (=change of coordinates) g : U → U ′. The question in elasticity theory
is how much stress in the material this deformation will cause.

For every point P , let AP : V → V be defined by AP = dg(P ). AP is nondegenerate, so
it has a polar decomposition AP = DPOP , where OP is orthogonal and DP is symmetric. The
matrix OP characterizes the rotation part of AP (which clearly produces no stress), and DP is
the distortion part, which actually causes stress. If the deformation is small, DP is close to 1, so
DP = 1+dP , where dP is a small symmetric matrix, i.e. an element of S2V . This matrix is called
the deformation tensor at P .

Now we define a stress tensor, which characterizes stress. Let v be a small nonzero vector in
V , and σ a small disk perpendicular to v centered at P of area ||v||. Let Fv be the force with which
the part of the material on the v-side of σ acts on the part on the opposite side. It is easy to deduce
from Newton’s laws that Fv is linear in v, so there exists a linear operator SP : V → V such that
Fv = SPv. It is called the stress tensor.

An elasticity law is an equation SP = f(dP ), where f is a function. The simplest such law is a
linear law (Hooke’s law): f : S2V → End(V ) is a linear function. In general, such a function is
defined by 9 · 6 = 54 parameters, but we will show there are actually only two essential ones – the
compression modulus K and the shearing modulus µ. For this purpose we will use representation
theory.

Recall that the group SO(3) of rotations acts on V , so S2V , End(V ) are representations of this
group. The laws of physics must be invariant under this group (Galileo transformations), so f must
be a homomorphism of representations.

(a) Show that End(V ) admits a decomposition R⊕V ⊕W , where R is the trivial representation,
V is the standard 3-dimensional representation, and W is a 5-dimensional representation of SO(3).
Show that S2V = R⊕W

(b) Show that V and W are irreducible, even after complexification. Deduce using Schur’s
lemma that SP is always symmetric, and for x ∈ R, y ∈ W one has f(x+ y) = Kx+ µy for some
real numbers K,µ.

In fact, it is clear from physics that K,µ are positive.

5 Representations of finite groups: further results

5.1 Frobenius-Schur indicator

Suppose that G is a finite group and V is an irreducible representation of G over C. We call V

- complex, if V � V ∗,

- real, if V has a nondegenerate symmetric form invariant under G,

- quaternionic, if V has a nondegenerate skew form invariant under G.

If we consider EndR V, then it is C for complex V, Mat2(R) for real V, and H for quaternionic V,
which suggests the names above.

Example 5.1. For S3 there all three irreducible representations C+,C−,C2 are real. For S4 there
are five irreducible representations C+, C−, C2, C3

+, C3
−, which are all real. Similarly, all five
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irreducible representations of A5 – C, V +
3 , V

−
3 , V4, V5 are real. As for Q8, its one-dimensional

representations are real, and the two-dimensional one is quaternionic.

Theorem 5.2. (Frobenius-Schur) The number of involutions (=elements of order 2) in G is equal
to the sum of dimensions of real representations minus the sum of dimensions of quaternionic
representations.

Proof. Let A : V → V have eigenvalues λ1, λ2, . . . , λn. We have

Tr|S2V (A⊗A) =
∑

i≤j

λiλj

Tr|Λ2V (A⊗A) =
∑

i<j

λiλj

Thus,

Tr|S2V (A⊗A)− Tr|Λ2V (A⊗A) =
∑

1≤i≤n

λ2
i = Tr(A2).

Thus for g ∈ G we have
χV (g2) = χS2V (g)− χΛ2V (g)

Therefore,

χV (
∑

g∈G

g2) = |G|







1, if V is real
−1, if V is quaternionic

0, if V is complex

Finally, the number of involutions in G equals

1

|G|
∑

V

dimV χV (
∑

g∈G

g2) =
∑

real V

dimV −
∑

quat V

dimV

5.2 Frobenius determinant

Enumerate the elements of a finite group G as follows: g1, g2, . . . , gn. Introduce n variables indexed
with the elements of G :

xg1
, xg2

, . . . , xgn .

Definition 5.3. Consider the matrix XG with entries aij = xgigj
. The determinant of XG is some

polynomial of degree n of xg1
, xg2

, . . . , xgn that is called Frobenius determinant.

The following theorem, discovered by Dedekind and proved by Frobenius, became the starting
point for creation of representation theory.

Theorem 5.4.

detXG =

r∏

j=1

Pj(x)deg Pj

for some pairwise non-proportional irreducible polynomials Pj(x).

We will need the following rather simple lemma.
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Lemma 5.5. Let Y be a n× n matrix with entries yij. Then detY is an irreducible polynomial of
{yij}.

Proof. Suppose that det Y = q1q2 . . . qk, k ≥ 2 where qi are irreducible homogeneous polynomials.
Because detY is linear on each column, there is exactly one qi that depends on any column.

Thus q1 is a linear function on some column, say j th. Pick {yij}ni=1 so that q1 = 0. Then any
matrix Y with such jth column must have detY = 0. This is clearly false for n ≥ 2. Contradiction.

Now we are ready to proceed to the proof Theorem 5.4.

Proof. Let V = C[G] be the regular representation of G. Consider operator-valued polynomial

L(x) =
∑

g∈G

xgρ(g),

where ρ(g) ∈ EndV is induced by g. The action of L(x) on element h ∈ G is

L(x)h =
∑

g∈G

xgρ(g)h =
∑

g∈G

xggh =
∑

z∈G

xzh−1z

So the matrix of the linear operator L(x) in the basis g1, g2, . . . , gn which is XG with permuted
columns and, hence, the same determinant up to sign. Further, we have

detV L(x) =

r∏

i=1

(detVi
L(x))dim Vi .

We set Pi = detVi
L(x). Recall that C[G] =

⊕r
i=1 EndVi. Let {eim} be bases of Vi and Ei,jk ∈ EndVi

be the matrix units in these bases. Then {Ei,jk} is a basis of C[G] and

L(x)|Vi
=

∑

yi,jkEi,jk,

where yi,jk are new coordinates on C[G] related to xg by a linear transformation. Then

Pi(x) = det |Vi
L(x) = det(yi,jk)

Hence, Pi are irreducible (by lemma 5.5) and not proportional.

5.3 Algebraic integers

We are now passing to deeper results in representation theory of finite groups. These results require
the theory of algebraic numbers, which we will now briefly review.

Definition 5.6. z ∈ C is an algebraic integer if z is a root of a monic polynomial with integer
coefficients.

Definition 5.7. z ∈ C is an algebraic integer if z is an eigenvalue of a matrix with integer
entries.

Proposition 5.8. Definitions (5.6) and (5.7) are equivalent.
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Proof. To show (5.7) ⇒ (5.6), notice that z is a root of the characteristic polynomial of the matrix
(a monic polynomial with integer coefficients).
To show (5.6) ⇒ (5.7), suppose z is a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an.

Then the characteristic polynomial of the following matrix is p(x):










0 0 0 . . . 0 −an

1 0 0 . . . 0 −an−1

0 1 0 . . . 0 −an−1
...

0 0 0 . . . 1 −a1










.

Since z is a root of the characteristic polynomial of this matrix, it is its eigenvalue.

We will sometimes be using the symbol A to denote the set of algebraic integers.

Proposition 5.9. A is a ring.

Proof. We will be using definition (5.7). Let α be an eigenvalue of

A ∈ Matn(C)

with eigenvector v, let β be an eigenvalue of

B ∈ Matm(C)

with eigenvector w. Then α+ β is an eigenvalue of

A⊗ Idm + Idn ⊗ B,
and αβ is an eigenvalue of

A⊗ B.
The corresponding eigenvector is in both cases v ⊗ w.

Proposition 5.10. A ∩Q = Z.

Proof. We will be using definition (5.6). Let z be a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an,

and suppose

z =
p

q
∈ Q, gcd(p, q) = 1.

Notice that the leading term of p(x) will have qn in the denominator, whereas all the other terms
will have a lower power of q there. Thus, if

q 6= ±1,

then
p(z) /∈ Z,

a contradiction. Thus,
z ∈ A ∩Q⇒ z ∈ Z.

The reverse inclusion follows because n ∈ Z is a root of x− n.
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5.4 Frobenius divisibility

Theorem 5.11. Let G be a finite group, and let V be an irreducible (necessarily finite-dimensional)
representation of G over C. Then

|G| divides dimV.

Proof. Let
C1, C2, . . . , Cn

be the conjugacy classes of G, with
C1 = {e}.

Let
pCi
∈ C[G]

be defined for each conjugacy class as

pCi
=

∑

g∈Ci

g.

Since G acts transitively on each conjugacy class, every conjugate of pCi
is equal to itself, i.e. pCi

is a central element in C[G]. By Schur’s lemma, pCi
acts on V by a scalar λi; therefore,

|Ci|χV (gCi
) = tr (pCi

) = dimV · λi.

Therefore,

λi = χV (gCi
)
|Ci|

dimV
,

where gCi
is a representative of Ci. Claim. The number λi is an algebraic integer for all i.

Proof of claim. Notice that

pCi
pCj

=
∑

g∈Ci,h∈Cj

gh =
∑

u∈G

ux,

where x is the number of ways to obtain u as gh for some g ∈ Ci, h ∈ Cj.
Thus,

pCi
pCj

=
∑

i,j,k

Nk
ijpCk

,

where Nk
ij is the number of ways to obtain some element of Ck as gh for some g ∈ Ci, h ∈ Cj .

Therefore,

λiλj =
∑

i,j,k

Nk
ijλk

Let ~λ =








λ1

λ2
...
λn








,

then
Ni(~λ) = λi

~λ,
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where Ni is the matrix whose jkth entry is Nk
ij . Since

~λ 6= 0,

λi is an eigenvalue of an integer matrix Ni, and by definition (5.7) an algebraic integer.

Now, consider
∑

i

λiχV (gCi
).

This is an algebraic integer, since λi was just proven to be an algebraic integer, and χV (gCi
) is a

sum of roots of unity (it is the sum of eigenvalues of the matrix of ρ(gCi
), and since

g
|G|
Ci

= e

in G, the eigenvalues of ρ(gCi
) are roots of unity), and A is a ring (5.9). On the other hand, from

the definition of λi,

∑

Ci

λiχV (gCi
) =

∑

i

|Ci|χV (gCi
)χV (gCi

)

dimV
.

Recalling that χV is a class function, this is equivalent to

∑

g∈G

χV (g)χV (g)

dimV
=
|G|(χV , χV )

dimV
.

Since V was an irreducible representation,

(χV , χV ) = 1,

so
∑

Ci

λiχV (gCi
) =

|G|
dimV

.

Since
|G|

dimV
∈ Q

and ∑

Ci

λiχV (gCi
) ∈ A,

by (5.10)
|G|

dimV
∈ Z.

5.5 Burnside’s Theorem

This famous result in group theory was proved by the British mathematician William Burnside
in the late 19th century. Here is a proof of his theorem using Representation Theory.

38



Definition 5.12. A group G is called solvable if there exists a series of nested normal subgroups

{e} = G1 / G2 / . . . / Gn = G

where Gi+1/Gi is abelian for all 1 ≤ i ≤ n− 1.

Remark 5.13. These groups are called solvable because they first arose as Galois groups of poly-
nomial equations which are solvable in radicals.

Theorem 5.14 (Burnside).

Any group G of order paqb, where p and q are prime and a, b ≥ 0, is solvable.

Before proving Burnside’s theorem we will prove several other results which may be of indepen-
dent interest.

Theorem 5.15. Let V be an irreducible representation of a finite group G and let C be a conjugacy
class of G with gcd(|C|,dim(V )) = 1.
Then for any g ∈ C, either χV (g) = 0 or g acts as a scalar on V .

The proof will be based on the following two lemmas.

The first lemma is a standard fact about algebraic numbers.

Lemma 5.16. Let x, y be algebraic numbers. Then any conjugate of x + y can be expressed as
xi + yj, where xi and yj are conjugates of x and y respectively.

Proof. Recall that, by definition, a conjugate of an algebraic number is any root of its minimal
polynomial (thus any number is its own conjugate).

Let {x1, . . . , xm} and {y1, . . . , yn} be the sets of all conjugates of x and y respectively. Consider
the polynomial

g(z) =
∏

i,j

(z − xi − yj) = g0z
mn + g1z

mn−1 + . . . + gmn.

The coefficients gk depend polynomially on xi and yj. Moreover, these polynomials are symmetric
with respect to {xi} and with respect to {yj} and have rational coefficients. Therefore all gk ∈ Q.

Notice that x + y is a root of g. As we have shown, g ∈ Q[z], so the minimal polynomial of
x+ y divides g. Therefore, every conjugate of x+ y is a root of g and can be written as xi + yj.

Lemma 5.17. If ε1, ε2 . . . εn are roots of unity such that
1

n
(ε1 +ε2+ . . .+εn) is an algebraic integer,

then either ε1 = . . . = εn or ε1 + . . . + εn = 0.

Proof. Let a = 1
n(ε1 + . . .+ εn). Let q = xm +qm−1x

m−1 + . . .+q1x+q0 be the minimal polynomial
of a, and let {ai}, i = 1, . . . ,m be the set of all the conjugates of a.

By 5.16, ai = 1
n(ε′1 + ε′2 + . . . + ε′n), where ε′i are conjugate to εi. Since conjugates of roots

of unity are roots of unity, |ε′i| = 1. This means that |ε′1 + . . . + ε′n| ≤ n and |ai| ≤ 1. Let
q = xn + q1x

n−1 + .. + qnx be the minimal polynomial of a. Then, |q0| =
∏n

i=1 |ai| ≤ 1. However,
by our assumption, a is an algebraic integer and q0 ∈ Z. Therefore, either q0 = 0 or |q0| = 1.
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Assume that |q0| = 1. Then |ai| = 1 for all i, and in particular, |a| = | 1n(ε1 + . . . + εn)| =
1 = 1

n(|ε1| + |ε2| + . . . + |εn|). This means that all εi have the same argument. It follows that
ε1 = . . . = εn since all εi have the same absolute value.

Otherwise, q0 = 0. Then x|q and since q is irreducible, q = x and a = 0.

Proof of theorem 5.15.

Let dimV = n. Let ε1, ε2, . . . εn be eigenvalues of ρ(g). Since G is a finite group, ρ(g) is
diagonalizable and εi are roots of unity. We know that 1

n(|C|χV (g)) ∈ A and that χV (g) ∈ A. Since
GCD(n, |C|) = 1, there are integers α, β such that αn+ β|C| = 1. Therefore,

αχV (g) + β
|C|χV (g)

n
=
χV (g)

n
∈ A.

However, since χV (g) = ε1 + . . .+ εn, we get that either ε1 + . . .+ εn = χV (g) = 0 or ε1 = . . . = εn
by 5.17. If ε1 = . . . = εn, then, since ρ(g) is diagonalizable, it must be scalar. Otherwise, χV (G) =
0.

Proposition 5.18. Let G be a finite, simple non-abelian group and let V be a non-trivial, irreducible
representation of G. Then, if g ∈ G acts by a scalar in V , g = e.

Proof. Assume that g 6= e. Let N be the set of all x ∈ G whose action in V is scalar. Clearly,
N / G and g ∈ N . Since g 6= e, this means that N 6= e and N = G.

Now let K be the kernel of ρ : G → EndV . Since ρ is a group homomorphism, K / G and
because V is non-trivial, K 6= G and K = {e}.

This means that ρ is an injection and G ∼= Imρ. But ρ(x) is scalar for any x ∈ G, so G is
commutative, which is a contradiction.

We are now ready to prove another result in group theory which will later imply Burnside’s
Theorem.

Theorem 5.19. Let G be a group and let C be a conjugacy class of order pk where p is prime and
k > 0. Then G has a proper normal subgroup.

Proof. Assume the contrary, i.e. that G is simple.

We can choose an element e 6= g ∈ C.

Let R be the regular representation of G. Since g 6= e, χR(g) = 0. On the other hand,

R =
⊕

V ∈X

(dimV )V , where X is the set of all irreducible representations of G. Therefore

0 = χR(g) =
∑

V ∈X

dimV χV (g).

We can divide X into three parts:
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1. S, the set of irreducible representations whose dimension is divisible by p,

2. T , the set of non-trivial representations whose dimension is not divisible by p and

3. I, the trivial representation.

Lemma 5.20. If V ∈ T then χV (g) = 0.

Proof. Since gcd(|C|, dim(V )) = 1, by 5.15, either

1. χV (g) = 0 or

2. g acts as a scalar in V , and by 5.18, g = e which is a contradiction.

Also, if V ∈ S, we have 1
p dim(V )χV (g) ∈ A, so

a =
∑

V ∈S

1

p
dim(V )χV (g) ∈ A.

Therefore,

0 =
∑

V ∈S

dimV χV (g) +
∑

V ∈T

dimV χV (g) + dim IχI(g) = pa+ 1.

This means that a = −1
p which is not an algebraic integer, so we have a contradiction.

Now we can finally prove Burnside’s theorem.

Assume that there exists a group of order paqb that is not solvable. We may assume that G has
the smallest order among such groups. Since |G| 6= 1, either a or b must be non-zero.

We may assume without loss of generality that b 6= 0.

Lemma 5.21. Let G be a group as above.

(i) G is simple.

(ii) G has a trivial center (in particular, it is not abelian).

(iii) G has a conjugacy class C of order pk.

Proof.

(i) Assume that N is a non-trivial proper normal subgroup of G. Since |N | divides |G|, |N | = prqs

for some r ≤ a, s ≤ b.
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Let H = N/G. Then |H| = pa−rqb−s. By our minimality assumption, both N and H are
solvable, and there exist normal series

{e} = N1 / N2 / . . . / Nm = N and {e} = H1 / H2 / . . . / Hn = H

with abelian quotients.

Let π be the canonical epimorphism G→ G/N = H. Then

π−1(Hj) / π−1(Hj+1) and π−1(Hj+1)/π
−1(Hj) = Hj+1/Hj

for any j.

Consider the normal series

{e} / N1 / . . . / Nm = N = π−1(e) = π−1(H1) / . . . / π−1(Hn) = G.

The quotient of any two consecutive subgroups of this series is eitherNi+1/Ni or π−1(Hj+1)/π
−1(Hj) =

Hj+1/Hj, all of which are abelian. Because of this, G is solvable, which is a contradiction.
Therefore G is simple.

(ii) The center of G, Z(G) is a normal subgroup of G. If Z(G) = G then G is abelian and {e} / G
is a normal series with abelian factors. Therefore, since G is simple, Z(G) = {e}.

(iii) Assume that G does not have a conjugacy class of order pk. Let C be any conjugacy class.
The order of C divides |G|, so |C| = piqj. Because of our assumption, either j 6= 0 and
q divides |C| or |C| = 1 and C is central. But there is exactly one central element, e, so
|G| =

∑ |C| = 1modq where the sum is taken over all the conjugacy classes C. However,
since b 6= 0, q divides |G|, which is a contradiction.

But by Theorem 5.19, this is impossible! Therefore, there are no groups of order paqb which
are not solvable, and we have proven Burnside’s Theorem.

5.6 Induced Representations

Given a representation V of a group G and a subgroup H < G, there is a natural way to construct
a representation of H. The restricted representation of V to H, ResG

HV is the representation given
by the vector space V and the action ρResG

HV = ρV |H .

There is also a natural, but more complicated way to construct a representation of a group G
given a representation V of its subgroup H.

5.6.1 Definition

Definition 5.22. If G is a group, H < G, and V is a representation of H, then the induced
representation IndG

HV is a representation of G with

IndG
HV = {f : G→ V |f(hx) = ρV (h)f(x)}∀x ∈ G, h ∈ H

and the action g(f)(x) = f(xg)∀g ∈ G.
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5.6.2

Let us check that this is indeed a representation:

g(f)(hx) = f(hxg) = ρV (h)f(xg) = ρV (h)g(f)(x), and g(g′(f))(x) = g′(f)(xg) = f(xgg′) =
(gg′)(f)(x) for any g, g′, x ∈ G and h ∈ H.

Remark 5.23. In fact, IndG
HV is naturally equivalent to HomH(k[G], V ).

Remark 5.24. Notice that if we choose a representative xσ from every left H-coset σ of G, then
any f ∈ IndG

HV is uniquely determined by {f(xσ)}.

Because of this,

dim(IndG
HV ) = dimV · |G||H| .

5.6.3 The character of induced representation

Let us now compute the character χ of IndG
HV .

For a left H-coset of G, σ let us define

Vσ = {f ∈ IndG
HV |f(g) = 0 ∀g 6∈ σ}.

Theorem 5.25. (The Mackey formula) One has

χ(g) =
1

|H|
∑

x∈G,xgx−1∈H

χV (xgx−1)

Proof. One has

IndG
HV =

⊕

σ

Vσ,

and so
χ(g) =

∑

σ

χσ(g),

where χσ(g) is the trace of the projection of ρ(g)|Vσ onto Vσ.

Since g(σ) = σg is a left H-coset for any left H-coset σ, χσ(g) = 0 if σ 6= σg.

Now assume that σ = σg. Choose xσ ∈ σ. Then xσg = hxσ where h = xσgx
−1
σ ∈ H. Consider

the vector space homomorphism α : Vσ → V with α(f) = f(xσ). Since f ∈ Vσ is uniquely
determined by f(xσ), α is an isomorphism. We have

α(gf) = g(f)(xσ) = f(xσg) = f(hxσ) = ρV (h)f(xσ) = hα(f),

and gf = α−1hα(f). This means that χσ(g) = χV (h). Therefore

χ(g) =
∑

σ∈G\H,σg=σ

χV (xσgx
−1
σ ).
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Since it does not matter which representative xσ of σ we choose, this expression can be simplified
to the statement of the theorem.

5.6.4 Frobenius reciprocity

A very important result about induced representations is the Frobenius Reciprocity Theorem which
connects the operators Ind and Res. On the language of category theory, it states that Res and
Ind are adjoint functors.

Theorem 5.26. (Frobenius Reciprocity) Let H < G be groups, V be a representation of G and
W a representation of H. Then HomG(V, IndG

HW ) is naturally isomorphic to HomH(ResG
HV,W ).

Proof. Let A = HomG(V, IndG
HW ) and B = HomH(ResG

HV,W ). Define F : A→ B and F−1 : B →
A as follows: F (α)v = αv(e) for any α ∈ A and F−1(β)v(x) = β(xv) for any β ∈ B.

In order to check that F and F−1 are well defined and inverse to each other, we need to check
the following five statements.

Let α ∈ A, β ∈ B, v ∈ V , and x, g ∈ G.

(a) F (α) is an H-homomorphism, i.e. F (α)(hv) = hF (α)v.

Indeed, F (α)(hv) = (α(hv))(e) = h(αv)(e) = (αv)(h) = (h(αv))(e) = hF (α)v.

(b) (F−1(b))v ∈ IndG
HW , i.e. F−1(β)(v)(hx) = h((F−1(β)(v))(x))

Indeed, F−1(β)(v)(hx) = β(hxv) = h(β(xv)) = h((F−1(β)(v))(x)).

(c) F−1 is a G-homomorphism, i.e. (F−1(β)(gv))(x) = (gF−1(β)(v))(x).

Indeed, (F−1(β)(gv)) = β(x(gv)) = β((xg)v) = (F−1(b)(v))(xg) = (gF−1(β)(v))(x).

(d) F ◦ F−1 = IdB .

This holds since F (F−1(β)(v)) = (F−1(b)(v))(1) = β(v).

(e) F−1 ◦ F = IdA, i.e. (F−1(F (α))(v))(x) = (α(v))(x).

Indeed, (F−1(F (α))(v))(x) = F (α(xv)) = (α(xv))(1) = (x(α(v)))(1) = (α(v))(x), and we are
done.
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5.6.5 Examples

Here are some examples of Induced Representations. (we use the notation for representations from
the character tables)

1. Let G = S3, H = Z2. Using the Frobenius reciprocity, we obtain: IndG
HC = C2 ⊕ C,

IndG
HC− = C2 ⊕ C−.

2. Let G = S3, H = Z3. Then we obtain IndG
HC = C⊕ C−, IndG

HCε = IndG
HCε2 = C2.

3. Let G = S4, H = S3. Then IndG
HC = C⊕C3

−, IndG
HC− = C−⊕C3

+, IndG
HC2 = C2⊕C3

−⊕C3
+.

5.7 Representations of Sn

Let us give, without proof, a description of the representations of the symmetric group Sn for any
n.

Let λ be a partition of n, i.e. a representation of n in the form n = λ1 + λ2 + ... + λp, where
λi are positive integers, and λi ≥ λi+1 To such λ we will attach a Young diagram Yλ, which is the
subset of the coordinate plane defined by the inequalities: 0 ≤ x ≤ p, 0 ≤ y ≤ λ[x]+, where [x]+
denotes the smallest integer N such that N ≥ x. Clearly, Yλ is a collection of n unit squares. A
Young tableau corresponding to Yλ is the result of filling numbers 1, ..., n into the squares iof Yλ in
some way (without repretitions). For example, we will consider the Young tableau Tλ obtained by
filling in the numbers in the increasing order, left to right, bottom to top.

We can define two subgroups of Sn corresponding to Yλ:

1. Row subgroup Pλ: the subgroup which maps every element of {1, ..., n} to an element
standing in the same row in Tλ.

2. Column subgroup Pλ: the subgroup which maps every element of {1, ..., n} to an element
standing in the same column in Tλ.

Clearly, P ∩Q = {1}.

Define the Young projectors:

p+
λ :=

1

|Pλ|
∑

g∈Pλ

g,

q−λ :=
1

|Qλ|
∑

g∈Qλ

(−1)gg,

where (−1)g denotes teh sign of the permutation g. Set cλ = pλqλ.

The irreducible representations of Sn are described by the following theorem.

Theorem 5.27. The subspace Vλ := C[Sn]cλ of C[Sn] is an irreducible representation of Sn under
left multiplication. Every irreducible representation of Sn is isomorphic to Vλ for a unique λ.

Example 5.28.

For the partition λ = (1, ..., 1), Pλ = Sn, Qλ = {1}, so cλ is the symmetrizer, and hence Vλ is the
trivial representation.

For the partition λ = (n), Qλ = Sn, Pλ = {1}, so cλ is the antisymmetrizer, and hence Vλ is the
sign representation.
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n = 3. For λ = (2, 1), Vλ = C2.

n = 4. For λ = (2, 2), Vλ = C2; for λ = (3, 1), Vλ = C3
+; for λ = (2, 1, 1), Vλ = C3

−.

Corollary 5.29. All irreducible representations of Sn can be given by matrices with rational entries.

Problem 5.30. Find the sum of dimensions of all irreducible representations of the symmetric
group Sn.

Hint. Show that all irreducible representations of Sn are real, i.e. admit a nondegenerate
invariant symmetric form. Then use the Frobenius-Schur theorem.

6 Representations of GL2(Fq)

6.1 Conjugacy classes in GL2(Fq)

Let Fq be a finite field of size q of characteristic other than 2. Then

|GL2(Fq)| = (q2 − 1)(q2 − q),

since the first column of an invertible 2 by 2 matrix must be non-zero and the second column may
not be a multiple of the first one. Factoring,

|GL2(Fq)| = q(q + 1)(q − 1)2.

The goal of this section is to describe the irreducible representations of GL2(Fq).
To begin, let us find the conjugacy classes in GL2(Fq).

Representatives
Number of elements in a conjugacy
class

Number of classes

Scalar
(

x 0
0 x

)
1 (this is a central element)

q−1 (one for every non-
zero x)

Parabolic
(

x 1
0 x

)
q2− 1 (elements that commute with
this one are of the form

(
t u
0 t

)
, t 6=

0)

q−1 (one for every non-
zero x)

Hyperbolic
(

x 0
0 y

)
, y 6= x

q2 + q (elements that commute with
this one are of the form

(
t 0
0 u

)
, t, u 6=

0)

1
2(q− 1)(q− 2) (x, y 6= 0
and x 6= y)

Elliptic
( x εy

y x

)
, x ∈ Fq, y ∈

F×
q , ε ∈ Fq \ F2

q (characteris-
tic polynomial over Fq is irre-
ducible)

q2 − q (the reason will be described
below)

1
2q(q−1) (matrices with
y and −y are conjugate)

More on the conjugacy class of elliptic matrices: these are the matrices whose characteristic
polynomial is irreducible over Fq and which therefore don’t have eigenvalues in Fq. Let A be such
a matrix, and consider a quadratic extension of Fq,

Fq(
√
ε), ε ∈ Fq \ F2

q.
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Over this field, A will have eigenvalues

α = α1 +
√
εα2

and
α = α1 −

√
εα2,

with corresponding eigenvectors

v, v (Av = αv, Av = αv).

Choose a basis
{e1 = v + v, e2 =

√
ε(v − v)}.

In this basis, the matrix A will have the form
(
α1 εα2

α2 α1

)

,

justifying the description of representative elements of this conjugacy class.
In the basis {v, v}, matrices that commute with A will have the form

(
λ 0

0 λ

)

,

for all
λ ∈ F×

q2 ,

so the number of such matrices is q2 − 1.

6.2 Representations of GL2(Fq)

In this section, G will denote the group GL2(Fq).

6.2.1 1-dimensional representations

First, we describe the 1-dimensional representations of G.

Proposition 6.1. [G,G] = SL2(Fq).

Proof. Clearly,
det(xyx−1y−1) = 1,

so
[G,G] ⊆ SL2(Fq).

To show the converse, let us show that every elementary matrix with determinant 1 is a commutator;
such matrices generate SL2(Fq). We may restruict our attention to the matrices

(
1 1
0 1

)

or (
1 0
1 1

)
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Clearly, only showing that the first matrix is a commutator suffices, since if

(
1 1
0 1

)

= ABA−1B−1

then (
1 0
1 1

)

=

(
1 x
0 1

)t

= (Bt)−1(At)−1BtAt.

To show that matrix (
1 1
0 1

)

is a commutator, we observe that the commutator of the following two matrices is as required:

A =

(
k 0
0 1

k

)

, B =

(
1 y
0 1

)

,

where

y =
1

k2 − 1
, k /∈ {0, 1,−1}

(the case of F3 is considered below).
In the case of F3, for

A =

(
2 2
0 1

)

, B =

(
2 2
0 2

)

, we have ABA−1B−1 =

(
1 1
0 1

)

.

This completes the proof.

Therefore,
G/[G,G] ∼= F×

q via g → det(g).

The one-dimensional representations of G thus have the form

ρ(g) = ξ
(
det(g)

)
,

where ξ is a homomorphism
ξ : F×

q → C×;

since F×
q is cyclic, there are q − 1 such representations, denoted Cξ.

6.2.2 Principal series representations

Let

B ⊂ G, B = {
(
∗ ∗
0 ∗

)

}

(the set of upper triangular matrices); then

|B| = (q − 1)2q,

[B,B] = U = {
(

1 ∗
0 1

)

},

and
B/[B,B] ∼= F×

q × F×
q
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(the isomorphism maps an element of B/[B,B] to its two eigenvalues).
Let

λ : B → C∗

be a homomorphism defined by

λ

(
a b
0 c

)

= λ1(a)λ2(c),for some pair of homomorphisms λ1, λ2 : Fq → C.

Define
Vλ1,λ2

= IndG
BCλ,

where Cλ is the 1-dimensional representation of B in which B acts by λ. We have

dim(Vλ1,λ2
) =
|G|
|B| = q + 1.

Theorem 6.2. 1. λ1 6= λ2 ⇒ Vλ1,λ2
is irreducible.

2. λ1 = λ2 = µ⇒ Vλ1,λ2
= Cµ ⊕Wµ, where Wµ is a q-dimensional irreducible representation of

G.

3. Wµ
∼= Wν iff µ = ν; Vλ1,λ2

∼= Vλ1,λ2
iff {λ1, λ2} = {λ′

1, λ
′

2} (in the second case, λ1 6= λ2, λ
′

1 6=
λ

′

2).

Proof. From the Mackey formula, we have

trVλ1,λ2
(g) =

1

|B|
∑

a∈G,aga−1∈B

λ(aga−1).

If

g =

(
x 0
0 x

)

,

the expression on the right evaluates to

λ1λ2(x)
|G|
|B| = λ1(x)λ2(x)

(
q + 1

)
.

If

g =

(
x 1
0 x

)

,

the expression evaluates to
λ1λ2(x) · 1,

since here
aga−1 ∈ B ⇒ a ∈ B.

If

g =

(
x 0
0 y

)

,

the expression evaluates to
(
λ1(x)λ2(y) + λ1(y)λ2(x)

)
· 1,

since here
aga−1 ∈ B ⇒ a ∈ B or a is an element of a permutation of B.
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If

g =

(
x εy
y x

)

,

the expression on the right evaluates to 0 because matrices of this type don’t have eigenvalues over
Fq.
From the definition, λi(x)(i = 1, 2) is a root of unity, so

|G|〈χVλ1 ,λ2
, χVλ1,λ2

〉 = (q + 1)2(q − 1) + (q2 − 1)(q − 1)

+ 2(q2 + q)
(q − 1)(q − 2)

2
+ (q2 + q)

∑

x6=y

λ1(x)λ2(y)λ1(y)λ2(x).

The last two summands come from the expansion

|a+ b|2 = |a|2 + |b|2 + ab+ ab.

If
λ1 = λ2 = µ,

the last term is equal to
(q2 + q)(q − 2)(q − 1),

and the total in this case is

(q + 1)(q − 1)[(q + 1) + (q − 1)− 2q(q − 2)] = (q + 1)(q − 1)2q(q − 1) = 2|G|,

so
〈χVλ1,λ2

, χVλ1,λ2
〉 = 2.

Clearly,
Cµ ⊆ IndG

BCµ,µ,

since
HomG(Cµ, IndG

BCµ,µ) = HomB(Cµ,Cµ) = C (Theorem 5.26).

∴ IndG
BCµ,µ = Cµ ⊕Wµ; Wµ is irreducible; and the character of Wµ is different for distinct values

of µ, proving that Wµ are distinct.

If λ1 6= λ2, let z = xy−1, then the last term of the summation is

(q2 + q)
∑

x6=y

λ1(z)λ2(z) = (q2 + q)
∑

x;z 6=1

λ1

λ2
(z) = (q2 + q)(q − 1)

∑

z 6=1

λ1

λ2
(z).

Since
∑

z∈Fq

λ1

λ2
(z) = 0,

being the sum of all roots of unity, the last term becomes

−(q2 + q)(q − 1)
∑

z 6=1

λ1

λ2
(1) = −(q2 + q)(q − 1).

The difference between this case and the case of λ1 = λ2 is equal to

−(q2 + q)[(q − 2)(q − 1) + (q − 1)] = |G|,
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so this is an irreducible representation.

To prove the third assertion of the theorem, we note that on hyperbolic characters the function

λ1(x)λ2(y) + λ1(y)λ2(x)

determines λ1, λ2 up to permutation.

6.2.3 Complimentary series representations

Let Fq2 ⊃ Fq be a quadratic extension Fq(
√
ε), ε ∈ Fq \F2

q. We regard this as a 2-dimensional vector
space over Fq; then GL2(Fq) is the group of linear transformations of Fq2 over Fq. Let K ⊂ GL2(Fq)
be the cyclic group of multiplication by an element of Fq,

K = {
(
x εy
y x

)

}, |K| = q2 − 1.

For ν : K → C× a homomorphism, let
Yν = IndG

Kν.

This representation, of course, is very reducible. Let us compute its character, using the Mackey
formula. We get

χ

(
x 0
0 x

)

= q(q − 1)ν(x);

χ(A) = 0 for A parabolic or hyperbolic;

χ

(
x εy
y x

)

= ν

(
x εy
y x

)

+ ν

(
x εy
y x

)q

.

The last assertion is because if we regard the matrix as an element of Fq2 , conjugation is an
automorphism of Fq2 over Fq, but the only nontrivial automorphism of Fq2 over Fq is the qth power
map.

We thus have
IndG

Kν
q = IndG

Kν

because they have the same character. Therefore, for ν q 6= ν we get 1
2q(q − 1) representations. Of

course, they are reducible.

Next, we look at the following tensor product:

Wε ⊗ Vα,ε,

where ε is the trivial character and Wε is defined as in the previous section. The character of this
representation is

χ

(
x 0
0 x

)

= q(q + 1)α(x);

χ(A) = 0 for A parabolic or elliptic;

χ

(
x 0
0 y

)

= α(x) + α(y).
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Thus the ”virtual representation”

Wε ⊗ Vα,ε, − Vα,ε − IndG
Kν

where α is the restriction of ν to scalars has character

χ

(
x 0
0 x

)

= (q − 1)α(x);

χ

(
x 1
0 x

)

= −α(x);

χ

(
x 0
0 y

)

= 0;

χ

(
x εy
y x

)

= −ν
(
x εy
y x

)

− νq

(
x εy
y x

)

.

In all that follows, we will have νq 6= ν.

The following two lemmas will establish that the inner product of this character with itself is
equal to 1, that its value at 1 is positive, and that the above conditions imply that it is the character
of an irreducible representation of G.

Lemma 6.3. Let χ be the character of the ”virtual representation” defined above. Then

〈χ, χ〉 = 1

and
χ(1) > 0.

Proof.
χ(1) = q(q + 1)− (q + 1)− q(q − 1) = q − 1 > 0.

We now compute the inner product 〈χ, χ〉. Since α is a root of unity, this will be equal to

1

(q − 1)2q(q + 1)

[
(q−1)·(q−1)2·1+(q−1)·1·(q2−1)+

q(q − 1)

2
·

∑

ζ elliptic

(−ν(ζ)−νq(ζ))(−ν(ζ)− νq(ζ))
]

Because ν is also a root of unity, the last term of the expression evaluates to

(−ν(ζ))(−ν(ζ)) + (−νq(ζ))(−νq(ζ)) +
∑

ζ elliptic

νq−1(ζ) + ν1−q(ζ).

The first two summands here are equal to 1. Let’s evaluate the last one.

Associating the elliptic elements with Fq2 as a vector space over Fq, we have, since F×
q2 is cyclic

and νq 6= ν,
∑

ζ∈F
×

q2

νq−1(ζ) =
∑

ζ∈F
×

q2

ν1−q(ζ) = 0.

However, we are only interested in ζ ∈ F×
q2 \ Fq, since we already considered the conjugacy classes

of scalars. Therefore,

∑

ζ elliptic

νq−1(ζ) + ν1−q(ζ) = 0−
∑

ζ∈F
×

q

νq−1(ζ) + ν1−q(ζ) = 0− 2(q − 1) = −2(q − 1)
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since F×
q is cyclic of order q − 1. Therefore,

〈χ, χ〉 =
1

(q − 1)2q(q + 1)

(
(q−1)·(q−1)2 ·1+(q−1)·1·(q2−1)+

q(q − 1)

2
·(2(q2−q)−2(q−1))

)
= 1.

Lemma 6.4. Let
V1, V2, . . . , Vm

be (possibly reducible) representations of a finite group G over C, and let

χ1, χ2, . . . , χm

be the respective characters. Let
p1, p2, . . . pm ∈ Z

(not necessarily nonnegative!), let

χ = p1 + p2 + · · ·+ pm.

If 〈χ, χ〉 = 1 and χ(1) > 0, then χ is a character of an irreducible representation of G.

Proof. Let
W1,W2, . . . ,Ws

be the irreducible representations of G, let

Vi =
⊕

j

aijWj (aij ∈ Z+ ∪ {0}).

If ξj are characters of Wj, then

χi =
∑

j

aijξj ⇒ χ =
∑

i,j

piaijξj =
∑

qjξj,

where
qj =

∑

i

piaij ∈ Z.

Since
〈χ, χ〉 =

∑

j

q2j = 1,

we must have qj = 0 except for one value of j = j0, with qj0 = ±1. Thus,

χ = ±ξj0 ,

and since χ(1) > 0 we have
χ = ξj0 .
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We have now shown that for any pair (α, ν) with νq 6= ν the representation with the same
character as

Wε ⊗ Vλ,ε, − Vλ,ε − IndG
Kν

exists and is irreducible. This character is distinct for distinct pairs (α, ν) when ν is not a q th

power, so there are q(q−1)
2 such representations, each of dimension q − 1.

We have thus found q − 1 1-dimensional representations of G, q(q−1)
2 principal series represen-

tations, and q(q−1)
2 complimentary series representations, for a total of q2 − 1 representations, i.e.

the number of conjugacy classes in G. We can also check the sum of squares formula:

(q − 1) · 12 + (q − 1) · q2 +
(q − 1)(q − 2)

2
· (q + 1)2 +

q(q − 1)

2
· (q − 1)2 = (q − 1)2q(q + 1) = |G|.

7 Quiver Representations

7.1 Problems

Problem 7.1. Field embeddings. Recall that k(y1, ..., ym) denotes the field of rational functions
of y1, ..., ym over a field k.

(a) Let f : k[x1, ..., xn]→ k(y1, ..., ym) be an injective homomorphism. Show that m ≥ n. (Look
at the growth of dimensions of the spaces WN of polynomials of degree N in xi and their images
under f as N →∞).

(b) Let f : k(x1, ..., xn)→ k(y1, ..., ym) be a field embedding. Show that m ≥ n.
Problem 7.2. Some algebraic geometry.

Let k be an algebraically closed field, and G = GLn(k) be the group of nondegenerate matrices
of size n over k. An algebraic representation of G is a finite dimensional representation ρ : G →
GLN (k) such that the matrix elements ρij(g) are polynomials in gpq and 1/det(g). For example,
the standard representation V = kn and the dual representation V ∗ are algebraic (show it!).

Let V be an algebraic representation of G. Show that if G has finitely many orbits on V then
dim(V ) ≤ n2. Namely:

(a) Let x1, ..., xN be linear coordinates on V . Let us say that a subset X of V is Zariski dense
if any polynomial f(x1, ..., xN ) which vanishes on X is zero (coefficientwise). Show that if G has
finitely many orbits on V then G has at least one dense orbit on V .

(b) Use (a) to construct a field embedding k(x1, ..., xN )→ k(gpq), then use problem 1.

(c) generalize the result of this problem to the case when G = GLn1
(k) × ...×GLnm(k).

Problem 7.3. Dynkin diagrams.

Let Γ be a graph, i.e. a finite set of points (vertices) connected with a certain number of edges.
We assume that Γ is connected (any vertex can be connected to any other by a path of edges) and
has no self-loops (edges from a vertex to itself). Suppose the vertices of Γ are labeled by integers
1, ..., N . Then one can assign to Γ an N ×N matrix RΓ = (rij), where rij is the number of edges
connecting vertices i and j. This matrix is obviously symmetric, and is called the adjacency matrix.
Define the matrix AΓ = 2I −RΓ, where I is the identity matrix.

Main definition: Γ is said to be a Dynkin diagram if the quadratic from on RN with matrix
AΓ is positive definite. Dynkin diagrams appear in many areas of mathematics (singularity theory,
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Lie algebras, representation theory, algebraic geometry, mathematical physics, etc.) In this problem
you will get a complete classification of Dynkin diagrams. Namely, you will prove

Theorem. Γ is a Dynkin diagram if and only if it is one on the following graphs:

• An : ◦−−◦ · · · ◦−−◦

• Dn:
◦−−◦ · · · ◦−−◦

|◦

• E6 : ◦−−◦−−◦−−◦−−◦
|◦

• E7 : ◦−−◦−−◦−−◦−−◦−−◦
|◦

• E8 :

◦−−◦−−◦−−◦−−◦−−◦−−◦|◦

(a) Compute the determinant of AΓ where Γ = AN , DN . (Use the row decomposition rule,
and write down a recusive equation for it). Deduce by Sylvester criterion that AN , DN are Dynkin
diagrams.

(b) Compute the determinants of AΓ for E6, E7, E8 (use row decomposition and reduce to (a)).
Show they are Dynkin diagrams.

(c) Show that if Γ is a Dynkin diagram, it cannot have cycles. For this, show that det(AΓ) = 0
for a graph Γ below:

(show that the sum of rows is 0). Thus Γ has to be a tree.

(d) Show that if Γ is a Dynkin diagram, it cannot have vertices with 4 or more incoming edges.
For this, show that det(AΓ) = 0 for a graph Γ below (including the case when the two nodal vertices
coincide).

(e) Using (d) show that Γ can have no more than one vertex with 3 incoming edges.

(f) Show that det(AΓ) = 0 for graphs Γ below:
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(g) Deduce from (a)-(f) the classification theorem for Dynkin diagrams.

(h) A (simply laced) affine Dynkin diagram is a connected graph without self-loops such that the
quadratic form defined by AΓ is positive semidefinite. Classify affine Dynkin diagrams. (Show that
they are exactly the forbidden diagrams from (c)-(f)).

Problem 7.4. Let Q be a quiver with set of vertices D. We say that Q is of finite type if it
has finitely many indecomposable representations. Let bij be the number of edges from i to j in Q
(i, j ∈ D).

There is the following remarkable theorem, proved by P. Gabriel in the 1970-s.

Theorem. A quiver Q is of finite type if and only if the corresponding unoriented graph (i.e.
with directions of arrows forgotten) is a Dynkin diagram.

In this problem you will prove the only if direction of this theorem (i.e. why other quivers are
NOT of finite type).

(a) Show that if Q is of finite type then for any numbers xi ≥ 0 which are not simultaneously
zero, one has q(x1, ..., xn) > 0, where

q(x1, ..., xn) :=
∑

i∈D

x2
i −

∑

i,j∈D

bijxixj .

Hint. It suffices to check the result for integers: xi = ni. For this, consider the space W of
representations V of Q such that dimVi = ni. Show that the group ×iGLni

(k) acts with finitely
many orbits on W ⊕ k, and use problem 2 to derive the inequality.

(b) Deduce that q is a positive definite quadratic form.

(c) Show that a quiver of finite type can have no self-loops. Then, using problem 3, deduce the
theorem.

Problem 7.5. Let G be a finite subgroup of SU(2), and V be the 2-dimensional representation of
G coming from its embedding into SU(2). Let Vi, i ∈ I, be all the irreducible representations of G.
Let rij be the multiplicity of Vi in V ⊗ Vj.

(a) Show that rij = rji.

(b) The McKay graph of G, M(G), is the graph whose vertices are labeled by i ∈ I, and i is
connected to j by rij edges. Show that M(G) is connected. (Use problem 1)
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(c) Show that M(G) is an affine Dynkin graph. For this, show that the matrix aij = 2δij − rij
is positive semidefinite but not definite, and use problem set 5.

Hint. Let f =
∑
xiχVi

, where χVi
be the characters of Vi. Show directly that ((2−χV )f, f) ≥ 0.

When is it = 0? Next, show that M(G) has no self-loops, by using that if G is not cyclic then G
contains the central element −Id ∈ SU(2).

(d) Which groups from problem 2 correspond to which diagrams?

(e) Using the McKay graph, find the dimensions of irreducible representations of all finite
G ⊂ SU(2). Compare with the results on subgroups of SO(3) we obtained earlier.

One central question when looking at representations of quivers is whether a certain quiver has
only finitely many indecomposable representions. We already proved that only those quives whose
underlying undirected graph is a Dynkin diagram may have this property. To see if they actually
do have this property, we first explicitly decompose representations of certain easy quivers.

7.2 Indecomposable representations of the quivers A1, A2, A3

Example 7.6 (A1). The quiver A1 consists of a single vertex and has no edges. Since a repre-
sentation of this quiver is just a single vector space, the only indecomposable representation is the
ground field itself. Therefore the quiver A1 has only one indecomposable representation, namely
the field of complex numbers.

Example 7.7 (A2). The quiver A2 consists of two vertices connected by a single edge.

• // •

A representation of this quiver consists of two vector spaces V,W and an operator A : V →W .

•
V

A // •
W

To decompose this representation, we first let V ′ be a complement to the kernel of A in V and
let W ′ be a complement to the image of A in W . Then we can decompose the representation as
follows

•
V

A // •
W

= •
ker V

0 // •
0
⊕ •
V ′

//
A
∼ •

ImA
⊕ •

0
0 // •
W ′

The first summand is a direct sum of objects of the type 1 //0 , the second a multiple of 1 //1 ,

the third of 0 //1 . We see that the quiver A2 has three indecomposable representations, namely
2

1 //0 , 1 //1 and 0 //1 .

Example 7.8 (A3). The quiver A3 consists of three vertices and two connections between them.
So we have to choose between two possible orientations.

• //• //• or • //• •oo

2By an object of the type 1 //0 we mean a map from a one-dimensional vector space to the zero space.

Similarly, an object of the type 0 //1 is a map from the zero space into an one-dimensional space. The object

1 //1 means an isomorphism from a one-dimensional to another one-dimensional space. Similarly, numbers

in such diagrams always mean the dimension of the attached spaces and the maps are the canonical maps (unless
specified otherwise).
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1. We first look at the orientation
• //• //• .

Then a representation of this quiver looks like

•
V

A //•
W

B //•
Y
.

Like in 7.7 we first split away

•
kerA

0 //•
0

0 //•
0
.

This object is a multiple of 1 //0 //0 . Next, let Y ′ be a complement of ImB. Then we
can also split away

•
0

0 //•
0

0 //•
Y ′

which is a multiple of the object 0 //0 //1 . This results in a situation where the map

A is injective and the map B is surjective (we rename the spaces to simplify notation):

•
V

� � A //•
W

B // //•
Y
.

Next, let X = ker(B ◦ A) and let X ′ be a complement of X in V . Let W ′ be a complement
of A(X) in W such that A(X ′) ⊂W ′. Then we get

•
V

� � A //•
W

B // //•
Y

= •
X

A //•
A(X)

B //•
0
⊕ •
X ′

� � A //•
W ′

B // //•
Y

The first of these summands is a multiple of 1 //∼ 1 //0 . Looking at the second summand,

we now have a situation where A is injective, B is surjective and furthermore ker(B ◦A) = 0.
To simplify notation, we redefine

V = X ′, W = W ′.

Next we let X = Im(B ◦ A) and let X ′ be a complement of X in Y . Furthermore, let
W ′ = B−1(X ′). Then W ′ is a complement of A(V ) in W . This yields the decomposition

•
V

� � A //•
W

B // //•
Y

= •
V

∼A //•
A(V )

∼B //•
X
⊕ •

0
//•
W ′

B // //•
X ′

Here, the first summand is a multiple of 1 //∼ 1 //∼ 1 . By splitting away the kernel of B,

the second summand can be decomposed into multiples of 0 //1 //∼ 1 and 0 //1 //0 .
So, on the whole, this quiver has six indecomposable representations:

1 //0 //0 , 0 //0 //1 , 1 //∼ 1 //0 ,

1 //∼ 1 //∼ 1 , 0 //1 //∼ 1 , 0 //1 //0

2. Now we look at the orientation
• //• •oo .

Very similarly to the other orientation, we can split away objects of the type

1 //0 0oo , 0 //0 1oo
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which results in a situation where both A and B are injective:

•
V

� � A //•
W

oo B ? _•
Y
.

By identifying V and Y as subspaces of W , this leads to the problem of classifying pairs of
subspaces of a given space W up to isomorphism (the pairs of subspaces problem). To
do so, we first choose complements V ′,W ′, Y ′ of V ∩Y in V,W, Y , respectively. Then we can
decompose the representation as follows:

•
V

� � //•
W

oo ? _•
Y

= •
V ′

� � //•
W ′

oo ? _•
Y ′ ⊕ •

V ∩ Y
//∼ •

V ∩ Y
•oo ∼

V ∩ Y .

The second summand is a multiple of the object 1 //∼ 1 1oo ∼ . We go on decomposing the
first summand. Again, to simplify notation, we let

V = V ′, W = W ′, Y = Y ′

We can now assume that V ∩ Y = 0. Next, let W ′ be a complement of V ⊕ Y in W . Then
we get

•
V

� � //•
W

oo ? _•
Y

= •
V

� � //•
V ⊕ Y

oo ? _•
Y
⊕ •

0
//•
W ′ •

0
oo

The second of there summands is a multiple of the indecomposable object 0 //1 0oo .
The first summand can be further decomposed as follows:

•
V

� � //•
V ⊕ Y

oo ? _•
Y

= •
V

//∼ •
V

•
0

oo ⊕ •
0

//•
Y

•
Y

oo ∼

These summands are multiples of

1
∼ //1 0oo , 0 //1 1∼

oo

So - like in the other orientation - we get 6 indecomposable representations of A3:

1 //0 0oo , 0 //0 1oo , 1
∼ //1 1

∼oo ,

0 //1 0oo , 1
∼ //1 0oo , 0 //1 1∼

oo

7.3 Indecomposable representations of the quiver D4

As a last - slightly more complicated - example we consider the quiver D4.

Example 7.9 (D4). We restrict ourselves to the orientation

• // • •oo

•

OO .

So a representation of this quiver looks like

•
V1

A1 // •V •
V3

A3oo

•
V2

A2

OO
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The first thing we can do is - as usual - split away the kernels of the maps A1, A2, A3. More
precisely, we split away the representations

•
kerA1

0 // •0 •
0

oo

•
0

OO •
0

// •0 •
0

oo

•
kerA2

0

OO •
0

// •0 •
kerA3

0oo

•
0

OO

These representations are multiples of the indecomposable objects

•
1

0 // •0 •
0

oo

•
0

OO •
0

// •0 •
0

oo

•
1

0

OO •
0

// •0 •
1

0oo

•
0

OO

So we get to a situation where all of the maps A1, A2, A3 are injective.

•
V1

� � A1 // •V •
V3

? _
A3oo

•
V2

� ?

A2

OO

As in 2, we can then identify the spaces V1, V2, V3 with subspaces of V . So we get to the triple of

subspaces problem of classifying a triple of subspaces of a given space V .

The next step is to split away a multiple of

•
0

// •1 •
0

oo

•
0

OO

to reach a situation where
V1 + V2 + V3 = V.

Now, by letting Y = V1 ∩ V2 ∩ V3 and choosing complements V ′
1 , V

′
2 , V

′
3 , V

′ of Y in V1, V2, V3, V
respectively, we can decompose this representation into

•
V ′

1

� � // •V
′

•
V ′

3

? _oo

•
V ′

2

� ?

OO

⊕
•
Y

∼ // •Y •
Y

∼oo

•
Y

OO

O�

The last summand is a multiple of the indecomposable representation

•
1

∼ // •1 •
1

∼oo

•
1

OO

O�
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So - considering the first summand and renaming the spaces to simplify notation - we are in a
situation where

V = V1 + V2 + V3, V1 ∩ V2 ∩ V3 = 0

As a next step, we let Y = V1 ∩ V2 and we choose complements V ′
1 , V

′
2 , V

′ of Y in V1, V2 and V ,
such that V3 ⊂ V ′. This yields the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

� � // •V
′

•
V3

? _oo

•
V ′

2

� ?

OO

⊕
•
Y

∼ // •Y •
0

oo

•
Y

OO

O�

The second summand is a multiple of the indecomposable object

•
1

∼ // •1 •
0

oo

•
1

OO

O�

.

In the resulting situation we have V1 ∩ V2 = 0. Similarly we can split away multiples of

•
1

∼ // •1 •
1

∼oo

•
0

OO

and

•
0

// •1 •
1

∼oo

•
1

OO

O�

to reach a situation where the spaces V1, V2, V3 do not intersect pairwise

V1 ∩ V2 = V1 ∩ V3 = V2 ∩ V3 = 0

Next, if V1 * V2⊕V3 we let Y = V1 ∩ (V2 ⊕ V3). We let V ′
1 be a complement of Y in V1. Since then

V ′
1 ∩ (V2 ⊕ V3) = 0, we can select a complement V ′ of V ′

1 in V which contains V2 ⊕ V3. This gives
us the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

∼ // •V
′
1 •

0
oo

•
0

OO

⊕
•
Y

� � // •V
′

•
V3

? _oo

•
V2

� ?

OO

The first of these summands is a multiple of

•
1

∼ // •1 •
0

oo

•
0

OO

By splitting these away we get to a situation where V1 ⊆ V2 ⊕ V3. Similarly, we can split away
objects of the type

•
0

// •1 •
0

oo

•
1

OO

O� and

•
0

// •1 •
1

∼oo

•
0

OO

to reach a situation in which the following conditions hold
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1. V1 + V2 + V3 = V

2. V1 ∩ V2 = 0, V1 ∩ V3 = 0, V2 ∩ V3 = 0

3. V1 ⊆ V2 ⊕ V3, V2 ⊆ V1 ⊕ V3, V3 ⊆ V1 ⊕ V2

But this implies that
V1 ⊕ V2 = V1 ⊕ V3 = V2 ⊕ V3 = V.

So we get
dimV1 = dimV2 = dimV3 = n

and
dimV = 2n

Since V3 ⊆ V1 ⊕ V2 we can write every element of V3 in the form

x ∈ V3, x = (x1, x2), x1 ∈ V1, x2 ∈ V2

We then can define the projections

B1 : V3 → V1, (x1, x2) 7→ x1

B2 : V3 → V2, (x1, x2) 7→ x2

Since V3 * V1, V3 * V2, these maps have to be injective and therefore are isomorphisms. We then
define the isomorphism

A = B2 ◦ B−1
1

Let e1, . . . , en be a basis for V1. Then we get

V1 = C e1 ⊕ C e2 ⊕ · · · ⊕ C en

V2 = CAe1 ⊕ CAe2 ⊕ · · · ⊕ CAen

V3 = C (e1, Ae1)⊕ C (e2, Ae2)⊕ · · · ⊕ C (en, Aen)

So we can think of V3 as the graph of an isomorphism A : V1 → V2. From this we obtain the
decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=
n⊕

j=1

•
C(1, 0)

� � // •C
2

•
C(1, 1)

? _oo

•
C(0, 1)

� ?

OO

These correspond to the indecomposable object

•
1

// •2 •
1

oo

•
1

OO

Here, the maps coorrespond to the embeddings into the plane of the lines x = 0, y = 0, and y = x.

Thus the quiver D4 with the selected orientation has 12 indecomposable objects. If one were
to explicitly decompose representations for the other possible orientations, one would also find 12
indecomposable objects.

It appears as if the number of indecomposable representations does not depend on the orienta-
tion of the edges, and indeed - Gabriel’s theorem generalizes this observation.
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7.4 Roots

From now on, let Γ be a fixed graph of type An, Dn, E6, E7, E8. We denote the adjacency matrix
of Γ by RΓ.

Definition 7.10 (Cartan Matrix). We define the Cartan matrix as

AΓ = 2Id−RΓ

On the lattice Zn (or the space Rn) we then define an inner product

B(x, y) = xTAΓy

corresponding to the graph Γ.

Lemma 7.11. 1. B is positive definite

2. B(x, x) takes only even values for x ∈ Zn.

Proof. 1. This follows by definition, since Γ is a Dynkin diagram.

2. By the definition of the Cartan matrix we get

B(x, x) = xTAy =
∑

i,j

xi aij xj = 2
∑

i

x2
i +

∑

i,j, i6=j

xi aij xj

But since A is symmetric, we obtain

B(x, x) = 2
∑

i

x2
i +

∑

i,j, i6=j

xi aij xj = 2
∑

i

x2
i + 2 ·

∑

i<j

aij xixj

which is even.

Definition 7.12 (Root). A root is a shortest (with respect to B), nonzero vector in Zn

So, a root is a nonzero vector x ∈ Zn such that

B(x, x) = 2

Remark 7.13. There can be only finitely many roots, since all of them have to lie in a ball of
some radius.

Definition 7.14. We call vectors of the form

αi = (0, . . . ,

i−th
︷︸︸︷

1 , . . . , 0)

simple roots.

The αi naturally form a basis of the lattice Zn.

Lemma 7.15. Let α be a root, α =
∑n

i=1 kiαi. Then either ki ≥ 0 for all i or ki ≤ 0 for all i.
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Proof. Assume the contrary, i.e. ki > 0, kj < 0. Without loss of generality, we can also assume
that ks = 0 for all s between i and j. We can identify the indices i, j with vertices of the graph Γ.

• •
i

ε •i
′

• •
j

• •

•
Next, let ε be the edge connecting i with the next vertex towards j and i′ be the vertex on the other
end of ε. We then let Γ1,Γ2 be the graphs obtained from Γ by removing ε. Since Γ is supposed
to be a Dynkin diagram - and therefore has no cycles or loops - both Γ1 and Γ2 will be connected
graphs, which are not connected to each other.

• •
i Γ1

• • •
j

• •

•
Γ2

Then we have i ∈ Γ1, j ∈ Γ2. We define

β =
∑

m∈Γ1

kmαm, γ =
∑

m∈Γ2

kmαm

With this choice we get
α = β + γ.

Since ki > 0, kj < 0 we know that β 6= 0, γ 6= 0 and therefore

B(β, β) ≥ 2, B(γ, γ) ≥ 2.

Furthermore,
B(β, γ) = −kiki′

since Γ1,Γ2 are only connected at ε. But this has to be a positive number, since ki > 0 and ki′ ≤ 0
for i′ ∈ Γ2. This yields

B(α, α) = B(β + γ, β + γ) = B(β, β)
︸ ︷︷ ︸

≥2

+2B(β, γ)
︸ ︷︷ ︸

≥0

+B(γ, γ)
︸ ︷︷ ︸

≥2

≥ 4

But this is a contradiction, since α was assumed to be a root.

Definition 7.16 (positive and negative roots). We call a root α =
∑

i kiαi a positive root, if all
ki ≥ 0. A root which ki ≤ 0 for all i is called a negative root.

Remark 7.17. The Lemma states that every root is either positive or negative.

Example 7.18. 1. Let Γ be of the type An−1. Then the lattice L = Zn−1 can be realized as a
subgroup of the lattice Zn of all vectors (x1, . . . , xn) such that

∑

i

xi = 0.

The vectors

α1 = (1,−1, 0, . . . , 0)

α2 = (0, 1,−1, 0, . . . , 0)

...

αn−1 = (0, . . . , 0, 1,−1)
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naturally form a basis of L. Furthermore, the standard inner product

(x, y) =
∑

xiyi

on Zn restricts to the inner product B given by Γ on L, since it takes the same values on the
basis vectors:

(αi, αi) = 2

(αi, αj) =

{
−1 i, j adjacent
0 otherwise

This means that vectors of the form

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) = αi + αi+1 + · · ·+ αj−1

and
(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) = −(αi + αi+1 + · · · + αj−1)

are the roots of L. Therefore the number of positive roots in L equals

n(n− 1)

2

2. As a fact we also state the number of positive roots in the other Dynkin diagrams:

Dn n(n− 1)
E6 36 roots
E7 63 roots
E8 120 roots

Definition 7.19 (Root reflection). Let α ∈ Zn be a positive root. The reflection sα is defined by
the formula

sα(v) = v −B(v, α)α

We denote sαi
by si and call these simple reflections.

Remark 7.20. sα fixes B, since

B(sα(v), sα(w)) = B(v −B(v, α)α,w −B(w,α)α)) =

B(v, w)−B(v,B(w,α)α) −B(B(v, α)α,w) +B(B(v, α)α,B(w,α)α) = B(v, w)

Remark 7.21. As a linear operator of Rn, sα fixes any vector orthogonal to α and

sα(α) = −α

Therefore sα is the reflection at the hyperplane orthogonal to α. The si generate a subgroup
W ⊆ O(Rn). Since for every w ∈W , w(αi) is a root, and since there are only finitely many roots,
W has to be finite.
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7.5 Gabriel’s theorem

Definition 7.22. Let Q be a quiver with any labeling 1, . . . , n of the vertices. Let V = (V1, . . . , Vn)
be a representation of Q. We then call

d(V ) = (dimV1, . . . ,dimVn)

the dimension vector of this representation.

We are now able to formulate Gabriel’s theorem using roots.

Theorem 7.23 (Gabriel’s theorem). Let Q be a quiver of type An, Dn, E6, E7, E8. Then Q has
finitely many indecomposable representations. Namely, the dimension vector of any indecomposable
representation is a positive root (with respect to BΓ) and for any positive root α there is exactly
one indecomposable representation with dimension vector α.

The proof of this theorem is contained in the next three subsections.

7.6 Reflection Functors

Definition 7.24. Let Q be any quiver. We call a vertex i ∈ Q a sink, if all edges connected to i
point towards i.

// •i oo
OO

We call a vertex i ∈ Q a source, if all edges connected to i point away from i.

•ioo //

��

Definition 7.25. Let Q be any quiver and i ∈ Q be a sink (a source). Then we let Qi be the
quiver obtained from Q by reversing all arrows pointing into (pointing out of) i.

We are now able to define the reflection functors.

Definition 7.26. Let Q be a quiver, i ∈ Q be a sink. Let V be a representation of Q. Then we
introduce the reflection functor

F+
i : RepQ→ RepQi

by the rule
F+

i (V )k = Vk if k 6= i

F+
i (V )i = ker




⊕

j→i

Vj → Vi





Also, all maps stay the same but those now pointing out of i; these are replaced by the obvious
projections.
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Definition 7.27. Let Q be a quiver, i ∈ Q be a source. Let V be a representation of Q. Let ψ be
the canonical map

ψ : Vi →
⊕

i→j

Vj

Then we define the reflection functor

F−
i : RepQ→ RepQi

by the rule
F−

i (V )k = Vk if k 6= i

F−
i (V )i = Coker (ψ) =




⊕

i→j

Vj



 /(Imψ)

Again, all maps stay the same but those now pointing into i; these are replaced by the obvious
projections.

Proposition 7.28. Let Q be a quiver, V an indecomposable representation of Q.

1. Let i ∈ Q be a sink. Then either dimVi = 1, dimVj = 0 for j 6= i or

ϕ :
⊕

j→i

Vj → Vi

is surjective.

2. Let i ∈ Q be a source. Then either dimVi = 1, dimVj = 0 for j 6= i or

ψ : Vi →
⊕

i→j

Vj

is injective.

Proof. 1. Choose a complement W of Imϕ. Then we get

V =
•
0

// •W •
0

oo

•
0

OO
⊕ V ′

Since V is indecomposable, one of these summands has to be zero. If the first summand is
zero, then ϕ has to be surjective. If the second summand is zero, then the first has to be of
the desired form, because else we could write it as a direct sum of several objects of the type

•
0

// •1 •
0

oo

•
0

OO

which is impossible, since V was supposed to be indecomposable.

2. Follows similarly by splitting away the kernel of ψ.
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Proposition 7.29. Let Q be a quiver, V be a representation of Q.

1. If

ϕ :
⊕

j→i

Vj → Vi

is surjective, then
F−

i F
+
i V = V

2. If

ψ : Vi →
⊕

i→j

Vj

is injective, then
F+

i F
−
i V = V

Proof. In the following proof, we will always mean by i → j that i points into j in the original
quiver Q. We only prove the first statement and we also restrict ourselves to showing that the
spaces of V and F−

i F
+
i V are the same. It is enough to do so for the i-th space. Let

ϕ :
⊕

j→i

Vj → Vi

be surjective and let
K = kerϕ.

When applying F+
i , the space Vi gets replaced by K. Furthermore, let

ψ : K →
⊕

j→i

Vj

After applying F−
i , K gets replaced by

K ′ =




⊕

j→i

Vj



 /(Imψ)

But
Imψ = K

and therefore

K ′ =




⊕

j→i

Vj



 /



ker
⊕

j→i

Vj → Vi



 = Im
⊕

j→i

Vj → Vi

by homomorphism theorem. Since ϕ was assumed to be surjective, we get

K ′ = Vi

Proposition 7.30. Let Q be a quiver, V be an indecomposable representation. Then F +
i V and

F−
i V (whenever defined) are either indecomposable or 0
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Proof. We prove the proposition for F+
i V - the case F−

i V follows similarly. By 7.28 it follows that
either

ϕ :
⊕

j→i

Vj → Vi

is surjective or dimVi = 1,dim Vj = 0, j 6= i. In the last case

F+
i V = 0

So we can assume that ϕ is surjective. In this case, assume that F +
i V is decomposable

F+
i V = X ⊕ Y

with X,Y 6= 0. But F+
i V is injective at i, since the maps are canonical embeddings. Therefore X

and Y also have to be injective at i and hence (by 7.29)

F+
i F

−
i X = X, F+

i F
−
i Y = Y

In particular
F−

i X 6= 0, F−
i Y 6= 0.

Therefore
V = F−

i F
+
i V = F−

i X ⊕ F−
i Y

which is a contradiction, since V was assumed to be indecomposable. So we can infer that

F+
i V

is indecomposable.

Proposition 7.31. Let Q be a quiver and V a representation of Q.

1. Let i ∈ Q be a sink and let V be surjective at i. Then

d(F+
i V ) = si(d(V ))

2. Let i ∈ Q be a source and let V be injective at i. Then

d(F−
i V ) = si(d(V ))

Proof. We only prove the first statement, the second one follows similarly. Let i ∈ Q be a sink and
let

ϕ :
⊕

j→i

Vj → Vi

be surjective. Let K = kerϕ. Then

dimK =
∑

j→i

dimVj − dimVi

Therefore we get
(
d(F+

i V )− d(V )
)

i
=

∑

j→i

dimVj − 2 dimVi = −B (d(V ), αi)

and
(
d(F+

i V )− d(V )
)

j
= 0, j 6= i.

This implies
d(F+

i V )− d(V ) = −B (d(V ), αi)αi

⇔ d(F+
i V ) = d(V )−B (d(V ), αi)αi = si (d(V ))
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7.7 Coxeter elements

Definition 7.32. Let Q be a quiver and let Γ be the underlying graph. Fix any labeling 1, . . . , r
of the vertices of Γ. Then the Coxeter element c of Q corresponding to this labeling is defined as

c = s1s2 . . . sr

Lemma 7.33. Let
β =

∑

i

kiαi

with ki ≥ 0 for all i but not all ki = 0. Then there is N ∈ N, such that

cNβ

has at least one strictly negative coefficient.

Proof. c belongs to a finite group W . So there is M ∈ N, such that

cM = 1

We claim that
1 + c+ c2 + · · ·+ cM−1 = 0

as operators on Rn. This implies what we need, since β has at least one strictly positive coefficient,
so one of the elements

cβ, c2β, . . . , cM−1β

must have at least one strictly negative one. It is enough to show that 1 is not an eigenvalue for c,
since

(1 + c+ c2 + · · ·+ cM−1)v = w 6= 0

⇒ cw = c
(
1 + c+ c2 + · · ·+ cM−1

)
v = (c+ c2 + c3 + · · ·+ cM−1 + 1)v = w

Assume the contrary, i.e. 1 is a eigenvalue of c and let v be a corresponding eigenvector.

cv = v ⇒ s1 . . . srv = v

⇔ s2 . . . srv = s1v

But since si only changes the i-th coordinate of v, we get

s1v = v and s2 . . . srv = v

Repeating the same procedure, we get
siv = v

for all i. But this means
B(v, αi) = 0

for all i and since B is nondegenerate, we get v = 0. But this is a contradiction, since v is an
eigenvector.
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7.8 Proof of Gabriel’s theorem

Let V be an indecomposable representation of Q. We introduce a fixed labeling 1, . . . r on Q, such
that i < j if one can reach j from i. This is possible, since we can assign the highest label to any
sink, remove this sink from the quiver, assign the next highest label to a sink of the remaining
quiver and so on. This way we create a labeling of the desired kind.

We now consider the sequence

V (0) = V, V (1) = F+
r V, V

(2) = F+
r−1F

+
r V, . . .

This sequence is well defined because of the selected labeling: r has to be a sink of Q, r − 1 has
to be a sink of Qr and so on. Furthermore we note that V (r) is a representation of Q again, since
every arrow has been reversed twice (since we applied a reflection functor to every vertex). This
implies that we can define

V (r+1) = F+
r V

(r), . . .

and continue the sequence to infinity.

Theorem 7.34. There is m ∈ N, such that

d
(

V (m)
)

= αp

for some p.

Proof. If V (i) is surjective at the appropriate vertex k, then

d
(

V (i+1)
)

= d
(

F+
k V

(i)
)

= skd
(

V (i)
)

This implies, that if V (0), . . . , V (i−1) are surjective at the appropriate vertices, then

d
(

V (i)
)

= . . . sr−1srd(V )

By 7.33 this cannot continue indefinitely - since d
(
V (i)

)
may not have any negative entries. Let i

be the smallest number such that V (i) is not surjective at the appropriate vertex. Then V (i) is not
surjective at this vertex (which is a sink) but by 7.30 it is indecomposable. So, by 7.28, we get

d(V (i)) = αp

for some p.

Corollary 7.35. Let Q be a quiver, V be any indecomposable representation. Then d(V ) is a
positive root.

Proof. By 7.34
si1 . . . sin (d(V )) = αp.

Since the si preserve B, we get

B(d(V ), d(V )) = B(αp, αp) = 2.

Corollary 7.36. Let V, V ′ be indecomposable representations of Q such that d(V ) = d(V ′). Then
V and V ′ are isomorphic.
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Proof. Let i be such that

d
(

V (i)
)

= αp.

Then we also get d
(
V ′(i)) = αp. So

V ′(i) = V (i) =: V i.

Furthermore we have
V (i) = F+

k . . . F+
r−1F

+
r V

(0)

V ′(i) = F+
k . . . F+

r−1F
+
r V

′(0)

But both V (i−1), . . . , V (0) and V ′(i−1), . . . , V ′(0) have to be surjective at the appropriate vertices.
This implies

F−
r F

−
r−1 . . . F

−
k V

i =

{
F−

r F
−
r−1 . . . F

−
k F

+
k . . . F+

r−1F
+
r V

(0) = V (0) = V

F−
r F

−
r−1 . . . F

−
k F

+
k . . . F+

r−1F
+
r V

′(0) = V ′(0) = V ′

These two corollaries show that there are only finitely many indecomposable representations
(since there are only finitely many roots) and that the dimension vector of each of them is a positive
root. The last statement of Gabriel’s theorem follows from

Corollary 7.37. For every positive root α, there is an indecomposable representation V with

d(V ) = α

Proof. Consider the sequence
srα, sr−1srα, . . .

Consider the first element of this sequence which is a negative root (this has to happen by 7.33)
and look at one step before that, call this element β. So β is a positive root and siβ is a negative
root for some i. But since the si only change one coordinate, we get

β = αi

and
(sq . . . sr−1sr)α = αi.

We let C(i) be the representation having dimension vector αi. Then we define

V = F−
r F

−
r−1 . . . F

−
q C(i)

This is an indecomposable representation and

d(V ) = α.
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