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Abstract. Consider a 1-parameter compactly supported family of Leg-
endrian submanifolds of the 1-jet bundle of a compact manifold with
its natural contact structure and a path of intersection points of the
Legendrian family with the 1-jet of a constant function. Since the con-
tact distribution is a symplectic vector bundle, it is possible to assign
a Maslov type index to the intersection path. We show that the non-
vanishing of the Maslov intersection index implies that there exists at
least one point of bifurcation from the given path of intersection points.
This result can be viewed as a kind of analogue in bifurcation theory
of the Arnold-Sandon conjecture on intersections of Legendrian sub-
manifols. The proof is based on the technique of generating functions,
that relates the properties of Hamiltonian diffeomorphisms to the Morse
theory of the associated functions.
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1. Introduction

In a joint work with J. Pejsachowicz [9] we showed that intersections of a
1-parameter family of Lagrangian submanifolds of the cotangent bundle of
a compact manifold with a given Lagrangian submanifold have stronger bi-
furcation properties than the intersections of general submanifolds of right
codimension. As a corollary we obtained a bifurcation theorem for fixed points
of symplectomorphisms (also proved in [8]) that implies that a 1-parameter
family of symplectomorphisms bifurcates more often than prescribed by stan-
dard bifurcation theory. These theorems can be viewed as a kind of (weak)
analogue in bifurcation theory of the classical Arnold conjectures.
Arnold conjectured that a Hamiltonian symplectomorphism ϕ of a compact
symplectic manifold (W,ω) should have at least as many fixed points as
the minimal number of critical points of a smooth function f : W → R.



2 E. Ciriza

Moreover, Arnold conjectured that if all fixed points are non-degenerate then
their number is bounded below by the sum of the Betti numbers of W , while
the Lefschtetz-Hopf fixed point theorem predicts that ϕ must have at least
as many fixed points as the Euler-Poincaré characteristic.

If ϕ is a Hamiltonian symplectomorphism of (W,ω) then its graph is a La-
grangian submanifold of the product (W ×W,−ω⊕ω) and fixed points of ϕ
correspond to intersection points of the graph of ϕ with the diagonal. Thus
the Arnold conjecture has an interpretation in terms of the number of inter-
section points between a compact Lagrangian manifold and its image under
a Hamiltonian symplectomorphism.

Contact analogues of Arnold’s conjectures were formulated by Sandon in
[18] and in [19]. Fixed points of symplectomorphisms had to be replaced by
translated points of contactomorphisms. A point q in a contact manifold is
called a translated point for a contactomorphism φ with respect to some fixed
contact form if φ(q) and q belong to the same Reeb orbit and the contact form
is preserved at q. A discriminant point of φ is a translated point which is also a
fixed point. Sandon conjectured that every contactomorphism φ on a compact
contact manifold (M, ξ) that is contact isotopic to the identity map must have
at least as many translated points as a function on M must have critical
points. The analogue to intersections between Lagrangian submanifolds in
symplectic geometry is given in contact geometry by Reeb chords connecting
Legendrian submanifolds.

Here we investigate the bifurcation phenomena in the contact situation. The
results we obtain can be viewed as (weak) analogues in bifurcation theory of
Sandon’s conjectures. We consider a 1-parameter compactly supported family
{Lt} of Legendrian submanifolds of the 1-jet bundle of a compact manifold
with its standard contact structure and a path γ of intersection points of {Lt}
with the 1-jet j1u0 of a given constant function u0 : B → R. We will refer
to j1u0 as the u0-section and we will denote it by Bu0 := j1u0 = 0B × {u0},
where 0B is the 0-section of the cotangent bundle.

Since the contact hyperplane field is a symplectic vector bundle it is possible
to assign a Maslov type index µ(Lt, Bu0 ; γ) to the intersection path (Section
3.1). Our main result is the following

Theorem 1.1. Let {Lt}t∈[0,1] be a compactly supported family of Legendrian

submanifolds of the 1-jet bundle J1B of a compact manifold B, and assume
that L0 has a generating function quadratic at infinity. Let γ : [0, 1] → J1B
be a path such that γ(t) ∈ Lt∩Bu0 for all t, and suppose that Lt is transverse
to the 0-wall 0B × R at γ(t) for t = 0, 1. If the Maslov intersection index
µ(Lt, Bu0 ; γ) 6= 0 then there is at least one bifurcation point from the given
path γ of intersection points of {Lt} with Bu0 .

A bifurcation point from a path γ of intersection points of a 1-parameter
Legendrian family {Lt} with the u0-section Bu0 is a point on the path such
that every neighborhood of it contains at least one point of intersection of
{Lt} with the 0-wall 0B × R which does not belong to γ (Definition 3.1).
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The proof of Theorem 1.1 follows the same lines as in the symplectic case in
[9]: given a family of generating functions quadratic at infinity St : E → R

for the Legendrian isotopy {Lt}, using the invariance of the Maslov index un-
der symplectic reduction it is proved (Proposition 3.5) that µ(Lt, Bu0 ; γ) =
µ(j1St, Eu0 ; τ) where τ : [0, 1] → J1E is the path of intersection points of
the Legendrian family {j1St} with the u0-section Eu0 of J1E defined by
τ(t) = j1St(c(t)), and c : [0, 1] → E is the path of critical points for the
family of functions {St} that corresponds to the given path γ : [0, 1] → J1B;
but (Proposition 3.6), µ(j1St, Eu0 ; τ) is equal to the difference of the Morse
indices of S0 and S1 at their respective critical points c(0) and c(1), and
(Proposition 3.7) a non-zero difference of Morse indices forces a bifurcation
from the path c of critical points, hence a bifurcation from the given inter-
section path γ of the Legendrian isotopy {Lt} with the u0-section Bu0 .
A first approach to this question was discussed in [7] where I gave a different
definition of point of bifurcation from intersection points. In that framework
one does not always find bifurcations. The idea to relax the definition was
suggested to me by J. Pejsachowicz. The right context to formulate our prob-
lem is provided by Sandon’s work [18] and [19].

Similarly to the symplectic case, we deduce from Theorem 1.1 the following
bifurcation result for discriminant points of contactomorphims. Let (M, ξ) be
a compact contact manifold and let Cont0(M) be the connected component of
the identity map in the group of contactomorphisms of (M, ξ). We consider a
contact isotopy {φt} in Cont0(M) and a smooth path β of discriminant points
of {φt}. Assuming that the end-points of β are non-degenerate, we define the
relative Conley-Zehnder index CZ(φt, β) of {φt} along β in terms of the
relative Maslov intersection index along a corresponding path of intersection
points between Legendrian isotopies.

Corollary 1.2. Let {φt}t∈[0,1] be a path of contactomorphisms isotopic to the
identity for a compact contact manifold (M, ξ), and let β : [0, 1] → M be a
path such that β(t) is a discriminant point of φt, for all t. Assume that β(t) is
non-degenerate at t = 0, 1. If the relative Conley-Zehnder index CZ(φt, β) 6= 0
then there is at least one bifurcation point from the given path β of discrimi-
nant points of {φt}.

A bifurcation point from a path β of discriminant points of a contact isotopy
{φt} is a point on the path such that every neighborhood of it contains at
least one translated point of {φt} which does not belong to β (Definition 4.1).

This article is organised as follows: we recall basic definitions and the needed
theorems in Section 2. In Section 3 we prove Theorem 1.1 and in Section 4
we prove Corollary 1.2.

2. Preliminaries

In this section we recall the definitions and basic notions of contact manifolds
and Legendrian submanifolds in §2.1. In §2.2 we review the definition of the
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Maslov index for paths of Lagrangian subspaces of R2n, which will be used in
§3.1 to define an index for a path of intersection points between two families
of Legendrian submanifolds, and in Section 4 to define an index for a path of
discriminant points of a contact isotopy. In §2.3 we describe the technique of
generating functions, which is the main tool for the proof of Theorem 1.1.

2.1. Contact manifolds

A co-oriented contact manifold (M, ξ) is a (2n+ 1)-dimensional manifold M
equipped with a smooth maximally non-integrable hyperplane field ξ ⊂ TM ,
i.e. ξ = kerα, where α is a 1-form which satisfies α ∧ (dα)n 6= 0. This
condition implies that dα restricted to ξ is a non-degenerate 2-form. The
hyperplane field ξ is called the contact structure on M and α a contact form
for ξ.

Two contact manifolds (M1, ξ1) and (M2, ξ2) are contactomophic if there
exists a diffeomorphism φ : M1 → M2 with φ∗(ξ1) = ξ2, where φ∗ : TM1 →
TM2 is the differential of φ. If ξi = kerαi this condition is equivalent to
asking that α1 and φ∗α2 determine the same hyperplane field, i.e. that there
exists a function g : M1 → R such that φ∗α2 = egα1.

On a contact manifold of dimension 2n + 1 the integral manifolds of the
contact structure ξ are called isotropic. Because of the non-integrability of
the hyperplane distribution the maximal dimension of such manifolds equals
n. In this case they are called Legendrian submanifolds.

An isotopy {φt} of a manifold M is a smooth family of diffeomorphisms
φt : M → M , t ∈ [0, 1] with φ0 = id. It is said to have compact support if
φt(x) = x outside of a fixed compact subset. A contact isotopy is an isotopy
of contact diffeomorphisms. A smooth family of embeddings jt : L0 → (M, ξ)
is called isotropic (Legendrian) isotopy if each jt(L0) is an isotropic (Legen-
drian) submanifold of (M, ξ). It is said to have compact support if jt ≡ j0
outside of a compact subset of L0.

Chaperon [5] proved that any Legendrian isotopy can be extended to a contact
isotopy. More generally, the Isotropic Isotopy Theorem as stated in Geiges
[11, Theorem 2.6.2] is the following

Theorem 2.1. Let jt : L0 → (M, ξ), t ∈ [0, 1] be an isotopy of isotropic
embeddings of a compact manifold L0 in a contact manifold (M, ξ). Then
there exists a compactly supported contact isotopy {φt} of (M, ξ) satisfying
φt ◦ j0 = jt.

2.2. The Maslov-Arnold index in Λ(n)

We briefly review the construction of the Maslov index in R
2n following

Arnold [1] and Duistermaat [10]. The Lagrangian Grassmaniann Λ(n) =
Λ(R2n) consists of all linear Lagrangian subspaces of (R2n, ω0), where ω0

is the standard symplectic form. The unitary group U(n) acts transitively on
Λ(n) with stabiliser group O(n), thus Λ(n) is diffeomorphic to the homoge-
neous space U(n)/O(n). The square of the determinant det2 : U(n) → S1

factors through a smooth map det2 : Λ(n) → S1.
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Given any loop l : S1 → Λ(n) the Maslov index µ(l) is the winding number of

the closed curve t → det2
(

l(t)
)

. The Maslov index induces an isomorphism
from the fundamental group π1(Λ(n)) to the free cyclic group Z, thus from
the cohomology group H1(Λ(n);Z) to Z. A generator of H1(Λ(n);Z) is called
the Maslov class.

To define the Maslov index of a non-closed curve of Lagrangian subspaces
relative to a fixed Lagrangian subspace ℓ ∈ Λ(n), notice that if ℓ′ is any
Lagrangian subspace transverse to ℓ then ℓ′ can be identified with the graph
of a symmetric transformation from ℓ into itself. Thus the set Λ0(ℓ) of La-
grangian subspaces ℓ′ transverse to ℓ is an affine space diffeomorphic to the
space of symmetric bilinear forms on R

n and hence it is contractible in Λ(n).
Let l : [0, 1] → Λ(n) be a smooth path such that its end-points are transverse
to ℓ, take any path δ in Λ0(ℓ) joining the end-points of the curve l and con-
sider the loop l′ obtained by concatenating l with δ. Then the Maslov index
µ(l; ℓ) of the path l relative to ℓ is defined to be the Maslov index of the loop
l′. The result is independent of the choice of δ, and since Λ0(ℓ) is contractible
µ(l; ℓ) is invariant under homotopies keeping the end-points in it.

The train Λℓ of vertex ℓ is the complement of the set Λ0(ℓ) in Λ(n). Denote by
Λk(ℓ) the set of Lagrangian subspaces whose intersection with ℓ has dimension
k. Then Λℓ equals

⋃

1≤k≤n Λ
k(ℓ), thus the train of vertex ℓ is a stratified space

of Λ(n). We have codimΛ1(ℓ) = 1 and the codimΛk(ℓ) ≥ 3 for k > 1. For
λ ∈ Λℓ define its multiplicity as the dimension of λ ∩ ℓ.

For λ ∈ Λ(n) the tangent space TλΛ(n) can be identified with the space of
symmetric bilinear forms on λ in the following way (cf. [3]): every curve l in
Λ(n) such that l(0) = λ can be written as l(t) = A(t)λ where A(t) is a path
of linear symplectic transformations of R2n with A(0) = id. To the vector
d
dt

∣

∣

t=0
l(t) ∈ TλΛ(n) there corresponds the symmetric bilinear form given

by (v, w) → ω0(v, (
d
dt

∣

∣

t=0
A(t))w) for all v, w ∈ λ. For λ ∈ Λ1(ℓ) identify

TλΛ(n)/TλΛ
1(ℓ) with the 1-dimensional space of symmetric bilinear forms

on λ ∩ ℓ. A vector tangent to TλΛ(n)/TλΛ
1(ℓ) is said to be ℓ-positive if the

corresponding bilinear form is positive definite on λ ∩ ℓ. Any such vector
is transverse to the train Λℓ. Thus the train Λℓ is transversally oriented
by ℓ-positive vectors. The train Λℓ together with the transverse orientation
represents a singular cycle which is Poincaré dual to the Maslov class.

Geometrically the Maslov index µ(l; ℓ) for oriented curves on Λ(n) counts
with multiplicities the number of intersections of the path l with the train of
vertex ℓ, with positive sign if the curve cuts the train in the direction of its
co-orientation and with negative sign otherwise. Moreover, if l : S1 → Λ(n)
is an ℓ-positive smooth closed curve then l intersects the train Λℓ in a finite
number of points and µ(l) =

∑

t:l(t)∈Λℓ
dim(l(t) ∩ ℓ).

The Maslov index is natural, in the sense that if φ : R2n → R
2n is a symplectic

isomorphism then for any path l transverse to ℓ at the end-points we have
µ(φ(l);φ(ℓ)) = µ(l; ℓ). This follows from the homotopy invariance and the
fact that the symplectic group Sp(2n,R) is connected. This property allows to
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extend the definition of the Maslov index to any finite dimensional symplectic
space and to any symplectic vector bundle of finite rank.

2.3. Generating Functions

The 1-jet bundle J1B of a smooth manifold B is T ∗B × R and its standard
contact structure is the kernel of the contact form αB = du− λB , where λB
is the canonical Liouville 1-form on the cotangent bundle T ∗B of B and u is
the R-coordinate. The 0-wall 0B × R of J1B is defined to be the product of
the 0-section 0B of T ∗B with the R-coordinate.

Given a smooth function f : B → R, the graph Lf of its differential is an exact
Lagrangian submanifold of the cotangent bundle T ∗B and the 1-jet j1f =
{(q, df(q), f(q)) |q ∈ B} of the function f is a Legendrian submanifold of the
1-jet bundle J1B. Note that (non-degenerate) critical points of f correspond
to (transverse) intersection points of Lf with the 0-section 0B of T ∗B, and
correspond to (transverse) intersections of j1f with the 0-wall 0B × R. The
submanifolds Lf and j1f are said to be generated by the function f .

Generating functions, introduced by Hörmander [13], generalise this construc-
tion. They are functions associated to Lagrangian submanifolds of the cotan-
gent bundle and to Legendrian submanifolds of the 1-jet bundle that are
not necessary sections. We recall the definition of generating function for La-
grangian submanifolds of T ∗B and for Legendrian submanifolds of J1B. We
refer to the articles of Sandon [17], [18].

Let E be the total space of a fiber bundle p : E → B, and let S : E → R be
a function such that dS : E → T ∗E is transverse to the fiber normal bundle

NE := {(e, ν) ∈ T ∗E | ν = 0 onker dp(e)}.

The set ΣS = (dS)−1(NE) of fiber critical points of S is a submanifold of
E of the same dimension of B. To any e ∈ ΣS one associates an element
v∗(e) of T ∗

p(e)B defined by v∗(e)(X) := dS(X̂) for X ∈ Tp(e)B, where X̂ is

any vector in TeE with p∗(X̂) = X . Then iS : ΣS → T ∗B, e 7→ (p(e), v∗(e))
and jS : ΣS → J1B, e 7→ (p(e), v∗(e), S(e)) are respectively a Lagrangian
and a Legendrian immersion. The function S : E → R is called a generating
function for the Lagrangian and Legendrian immersions iS and jS (or for the
Lagrangian and Legendrian submanifolds iS(ΣS) and jS(ΣS) when iS and jS
are embeddings). Furthermore, given a Legendrian immersion j : L0 → J1B,
the function S : E → R is said to be a generating function for j if there exists
a diffeomorphism h : L0 → ΣS such that j = jS ◦h. If j is an embedding then
so is jS .

The significant feature of this construction is that critical points of S corre-
spond to intersection points of iS(ΣS) with the 0-section 0B of T ∗B and to
intersection points of jS(ΣS) with the 0-wall of J1B. Non-degenerate critical
points correspond to transverse intersections. Moreover critical points with
zero as a critical value correspond to intersection points of the generated
Legendrian submanifold with the 0-section B0 of J1B.



Bifurcations on contact manifolds 7

A generating function S : E → R is said to be quadratic at infinity (g.f.q.i. ) if
p : E → B is a vector bundle of finite rank and if there exists a non-degenerate
quadratic form F : E → R such that the vertical derivative ∂v(S − F ) : E →
E∗ is bounded.

Existence results for g.f.q.i. on the cotangent bundle were obtained by Siko-
rav ([20], [21]) using ideas of Chaperon [4] and of Laudenbach-Sikorav [14].
These results have been generalised to the contact case by Chaperon [5] and
Chekanov [6]. The existence Theorem of g.f.q.i. for Legendrian submanifolds
of J1B states the following

Theorem 2.2. If B is compact, then any Legendrian submanifold of J1B con-
tact isotopic to the 0-section has a g.f.q.i. . More generally, if L0 ⊂ J1B has
a g.f.q.i. and {φt} is a contact isotopy of J1B, then there exists a continuous
family of g.f.q.i. St : E → R such that St generates the corresponding φt(L0).

3. Bifurcation from a path of intersection points

Let J1B be the 1-jet bundle of a compact manifold B endowed with the
standard contact structure. The 1-jet j1u0 of a constant function u0 : B → R

will be referred to as the u0-section Bu0 of J1B (Bu0 := j1u0 ≡ 0B × {u0}).
We will consider bifurcations from intersections of a given u0-section Bu0

with a 1-parameter family of compactly supported Legendrian submanifolds
{Lt} of J1B. More precisely, we consider a family {Lt = jt(L0)} where
jt : L0 → J1B, t ∈ [0, 1] is a Legendrian isotopy with compact support.

Definition 3.1. Let γ : [0, 1] → J1B be a smooth path such that γ(t) ∈ Lt ∩
Bu0 for all t. A point γ(t∗) ∈ Lt∗ ∩ Bu0 is said to be a bifurcation point
from the path γ of intersection points of {Lt} with the u0-section Bu0 if any
neighborhood of (t∗, γ(t∗)) in [0, 1] × J1B contains points (t, q) such that
q belongs to the intersection of Lt with the 0-wall 0B × R and such that
q 6= γ(t).

It follows from the implicit function theorem that a necessary condition for
γ(t∗) to be a bifurcation point is that the manifold Lt∗ fails to be transverse
to the 0-wall 0B×R at γ(t∗). This means that for the point p∗ = γ(t∗) one has
that Tp∗

Lt∗+Tp∗
(0B×R) is a proper subset of Tp∗

J1B. Since dimTp∗
Lt∗ = n

and dim Tp∗
(0B×R) = n+1 this is equivalent to Tp∗

Lt∗ ∩Tp∗
(0B×R) 6= {0}.

Note. In the definition of bifurcation point from a path of intersection points
given in [7] the points q were required to belong to the intersection of Lt with
the 0-section B0 = 0B × {0}.

Applying the generating function construction, the problem of finding bifur-
cation points from a path of intersection points of a Legendrian isotopy with
a u0-section translates into the problem of finding bifurcation points from a
path of critical points of a family of generating functions.

Putting together Theorem 2.1 and Theorem 2.2 we obtain the following result.
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Proposition 3.2. For any smooth compactly supported family of Legendrian
submanifolds Lt of J

1B satisfying the hypothesis of Theorem 1.1 there exists a
smooth 1-parameter family of function quadratic at infinity St : E = B×R

k →
R, t ∈ [0, 1] such that St generates Lt, i.e. Lt = jSt

(ΣSt
).

Consider the 1-jet bundle J1E with the standard contact structure. Observe
that the 1-parameter family of Legendrian submanifolds {j1St} of J1E in-
tersects the u0-section Eu0 = 0E × {u0} (0E denotes the 0-section of the
cotangent bundle T ∗E).
To see this, recall that γ : [0, 1] → J1B is a path such that γ(t) ∈ Lt∩Bu0 , for
all t ∈ [0, 1]. Call c : [0, 1] → E the path of critical points of the 1-parameter
family of generating functions {St} that corresponds to the given path γ of
intersection points, i.e. for each t, dSt(c(t)) = 0 and jSt

(c(t)) = γ(t). Recall
that jSt

(c(t)) = (p(c(t)), v∗(c(t)), St(c(t)). Since c(t) is a critical point of St

we have v∗(c(t)) = 0. And since γ(t) belongs to the u0-section Bu0 of J1B,
the critical value of St at the critical point c(t) is u0. Hence

γ(t) = jSt
(c(t)) = (p(c(t)), 0, u0). (3.1)

Define τ : [0, 1] → J1E to be the path t 7→ j1St(c(t)). Since the 1-jet of St at
c(t) is j1St(c(t)) = (c(t), dSt(c(t)), St(c(t))) we have that

τ(t) = j1St(c(t)) = (c(t), 0, u0) = j1u0(c(t)), (3.2)

where, in the last term, j1u0 is the 1-jet of the constant function u0 : E → R,
i.e. j1u0 = Eu0 . Hence τ(t) ∈ j1St ∩ Eu0 , for all t ∈ [0, 1].

3.1. The Maslov index for an intersection path

In this section we define a Maslov type index of two families of Legendrian
submanifolds {Lt} and {Bt} of a contact manifold (M, ξ = kerα) along a
path γ : [0, 1] → M such that γ(t) ∈ Lt ∩ Bt, for all t and such that the
tangent spaces to the Legendrian submanifolds intersect transversally in the
contact hyperplane at the end-points of γ.
The contact structure ξ is a 2n-dimensional subbundle of the tangent bundle
TM of M . The restriction (dα)|ξ of dα to ξ defines on every fiber a symplec-
tic form. Hence (ξ, (dα)|ξ) →M is a symplectic vector bundle. Since Lt and
Bt are Legendrian submanifolds their respective tangent spaces Tγ(t)Lt and
Tγ(t)Bt at γ(t) are Lagrangian subspaces of (ξγ(t), (dα)|ξγ(t)

). Consider the

pullback bundle γ∗ξ of the symplectic vector bundle (ξ, (dα)|ξ) along the path
γ. Since the interval [0, 1] is contractible, γ∗ξ is a trivial symplectic bundle
whose fiber over t is the symplectic vector space (ξγ(t), (dα)|ξγ(t)

). Choose
a symplectic trivialisation of γ∗ξ, i.e. a bundle isomorphism Φ: γ∗ξ →
[0, 1]×R

2n such that the isomorphism Φt between the fibers satisfies Φ∗
tω0 =

(dα)|ξγ(t)
, where ω0 denotes the standard symplectic form on R

2n. The im-
ages of Tγ(t)Lt and Tγ(t)Bt under the mappings Φt are Lagrangian subspaces

of (R2n, ω0). Call the resulting Lagrangian paths {t 7→ lt} and {t 7→ bt}.
By the trivialisation Φ all the Lagrangian vector spaces bt can be identified
with a fixed Lagrangian subspace b0 = R

n × 0. Since by assumption l0 and
l1 are transverse to b0 and b1 respectively, the relative Maslov index µ(l; b0)
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is defined. And from the invariance under the action of the symplectic group
it is independent of the choice of the trivialisation. We call this index the
Maslov intersection index of the Legendrian families {Lt} and {Bt} along γ,
and we denote it by µ(Lt, Bt; γ).

3.2. Symplectic reduction

We recall the notion of symplectic reduction to give a symplectic descrip-
tion of the generating function construction (see [23]). A submanifold Q of
a symplectic manifold (W,ω) is coisotropic if at every point q ∈ Q the sym-
plectic orthogonal (TqQ)⊥ of the tangent space to Q at q is contained in TqQ.
The distribution ker(ω|Q) is integrable and gives rise to a foliation of Q by
isotropic leaves. If the quotient W ′ of Q by the isotropic foliation is a mani-
fold then it has a symplectic form ω′ induced by ω. The symplectic manifold
(W ′, ω′) is called the symplectic reduction of (W,ω) relative to Q. If L is a
Lagrangian submanifold of W transverse to Q, the quotient L′ of L ∩ Q by
the isotropic foliation is a Lagrangian submanifold of (W ′, ω′).

In the generating function construction the fiber normal bundle NE of the
vector bundle p : E → B is a coisotropic submanifold of the cotangent bundle
T ∗E. The isotropic leaves are the fibers of E. Thus the cotangent bundle T ∗B
is naturally identified to the symplectic reduction of T ∗E relative to NE . The
0-section 0E of T ∗E is a Lagrangian submanifold whose symplectic reduction
is the 0-section 0B of T ∗B.

In what follows identify J1E with T ∗(B×R
k)×R = T ∗B×R

k × (Rk)∗ ×R,
and include NE in J1E as T ∗B × R

k × 0 × 0. Then consider the com-
pactly supported Legendrian isotopy {Lt} of (J1B, ξ = kerαB) and the path
γ : [0, 1] → J1B such that γ(t) ∈ Lt ∩Bu0 , for all t. Let St : E → R, t ∈ [0, 1]
be the 1-parameter family of functions such that St generates Lt as in Propo-
sition 3.2. For each t, dSt(E) is a Lagrangian submanifold of T ∗E transverse
to the fiber normal bundleNE , thus its symplectic reduction is the Lagrangian
submanifold iSt

(ΣSt
) generated by St.

Let τ : [0, 1] → (J1E, η = kerαE) be the path of intersection points of the
Legendrian isotopy {J1St} with the u0-section Eu0 of J1E that corresponds
to the given intersection path γ. Let τ∗η be the pullback bundle of the sym-
plectic vector bundle (η, (dαE)|η) along the path τ . And let γ∗ξ be the pull-
back bundle of the symplectic vector bundle (ξ, (dαB)|ξ) along the path γ.
Since the interval [0, 1] is contractible the pullback bundles τ∗η and γ∗ξ
are trivial vector bundles over [0, 1]. The respective fibers over t are the
symplectic vector spaces (ητ(t), (dαE)|ητ(t)

) and (ξγ(t), (dαB)|ξγ(t)
). Call

Ψ: τ∗η → [0, 1]× R
2n+2k

the symplectic trivialisation of τ∗η and

Φ: γ∗ξ → [0, 1]× R
2n

the symplectic trivialisation of γ∗ξ. We choose the trivialisations Ψ and Φ to
be adapted to the surjective submersion π : J1E → J1B.
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Recall now the notion of symplectic reduction in the category of vector bun-
dles [23]. If K is a coisotropic subbundle of a symplectic vector bundle (W,ω)
then the reduced bundle K/K⊥ exists and it is naturally a symplectic vector
bundle. If L is a Lagrangian subbundle of W such that L ∩K is a subbun-
dle then L ∩K⊥ is also a subbundle and the reduced bundle exists and is a
Lagrangian subbundle of K/K⊥. We claim that

Lemma 3.3. The symplectic reduction of the symplectic vector bundle τ∗η
relative to the coisotropic subbundle τ∗(TNE) can be identified with the sym-
plectic vector bundle γ∗ξ.

Proof. Choose charts of E and B adapted to the submersion p : E → B. De-
note the corresponding local coordinate systems by q1, . . . , qn, x1, . . . , xk and
by q1, . . . , qn. Then p is expressed as p : (q1, . . . , qn, x1, . . . , xk) 7→ (q1, . . . , qn).
Let q1, . . . , qn, x1, . . . , xk, p1, . . . , pn, y1, . . . yk, u be local coordinates of J1E
and let q1, . . . , qn, p1, . . . , pn, u be local coordinates of J1B associated to
the charts of E and B chosen above. In these coordinates the submani-
fold NE is given by the equations {y1 = · · · = yk = u = 0}; the map
π : J1E → J1B sends (q1, . . . , qn, x1, . . . , xk, p1, . . . , pn, y1, . . . yk, u) to
(q1, . . . , qn, p1, . . . , pn, u); and the Legendrian embedding jSt

: ΣSt
→ J1B

sends (q1, . . . , qn, x1, . . . , xk) to (q1, . . . , qn, ∂St

∂q1
, . . . , ∂St

∂qn
, St(q, x)).

The contact forms of J1E and J1B are αE = du−
∑n

i=1 pidq
i −

∑k
i=1 yidx

i

and αB = du−
∑n

i=1 pidq
i respectively.

At a point z whose coordinates p1 = · · · = pn = y1 = · · · = yk = 0 the contact
hyperplane ηz is horizontal (ηz = ker du). Hence TzNE ∩ ηz = TzNE . Fur-
thermore since dαE = dλE , for such a point z, TzNE contains its symplectic
orthogonal complement, i.e. (TzNE)

⊥ ⊂ TzNE ⊂ ηz .
Recall that the path τ is contained in the u0-section Eu0 of J1E (see (3.2))
and that by hypothesis the path γ is contained in the u0-section Bu0 of J1B
(so ξγ(t) = ker du). Therefore along the paths τ and γ the contact hyper-
planes do not rotate. It follows that the pullback τ∗(TNE) of the tangent
vector bundle TNE to the submanifold NE along the path τ is a coisotropic
subbundle of the symplectic vector bundle τ∗η.
Since the space (Tτ(t)NE)

⊥ is generated by ∂
∂x1 , . . . ,

∂
∂xk , one can see that at

τ(t) the quotient of Tτ(t)NE by (Tτ(t)NE)
⊥ is the fiber ξγ(t) of γ

∗ξ at t. Thus
γ∗ξ is the reduced bundle of τ∗η. �

Furthermore,

Lemma 3.4. The Lagrangian subbundles γ∗(TBu0) and γ∗(TLt) of γ∗ξ are
the reduced bundles of the Lagrangian subbundles τ∗(TEu0) and τ∗(T j1St)
of τ∗η respectively.

Proof. The Lagrangian subbundle τ∗(T j1St) is transverse to the coisotropic
subbundle τ∗(TNE) in τ

∗η. Therefore the intersection τ∗(T j1St)∩τ
∗(TNE) is

a subbundle of τ∗η, thus the reduced bundle of τ∗(T j1St) relative to τ
∗(TNE)

exists. Since Tτ(t)J
1St intersects (Tτ(t)NE)

⊥ in {0} its projection into ξγ(t)
is Tγ(t)Lt.
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By inspection in the coordinates constructed above one can see that also
Tτ(t)Eu0 intersects (Tτ(t)NE)

⊥ in {0} and that its projections into ξγ(t) is
Tγ(t)Bu0 . �

3.3. Invariance of the Maslov index under symplectic reduction

A fundamental property that we need is Viterbo’s result on the invariance of
the Maslov class under symplectic reduction [22]. Let (W,ω) be a symplectic
vector space, let K be a non-Lagrangian coisotropic subspace and let K/K⊥

be its symplectic reduction. Denote by ΛK(W ) the set of Lagrangian sub-
spaces of W transverse to K and consider the inclusion ι : ΛK(W ) → Λ(W )
and the projection ρ : ΛK(W ) → Λ(K/K⊥) that to T ∈ Λ(W ) transverse to
K associates its projection ρ(T ) = T ∩K/T ∩K⊥. Note that ρ is smooth on
the set {T ∈ Λ(W ) such that K⊥ 6⊂ T } [12, Proposition 3.2].

Viterbo proved that if µ̄ ∈ H1(Λ(W );Z) and µ̄′ ∈ H1(Λ(K/K⊥);Z) denote
the respective Maslov classes then

ι∗µ̄ = ρ∗µ̄′.

To do this he uses the geometric interpretation of the Maslov index. For
that purpose he chooses a Lagrangian subspace T0 such that K⊥ ⊂ T0 ⊂ K
and considers the train ΛT0 of vertex T0, i.e. the Maslov singular cycle that
is Poincaré dual of the Maslov class µ̄. Recall that the Maslov class is the
element of H1(Λ(n);Z) that corresponds to the element ζ 7→ ζ · ΛT0 of
Hom(H1(Λ(n),Z);Z) that associates to ζ its number of algebraic intersections
with ΛT0 . Then using that the maps ι and ρ are submersions Viterbo shows
that ι−1(ΛT0) = ρ−1(Λρ(T0)). From this equality he obtains that

ι(ζ) · ΛT0 = ζ · ι−1(ΛT0) = ζ · ρ−1(Λρ(T0)) = ρ(ζ) · Λρ(T0). (3.3)

We shall apply Viterbo’s calculations to the situation of Lemma 3.3 and
Lemma 3.4.

Now we define the relative Maslov intersection indices µ(Lt, Bu0 ; γ) and
µ(j1St, Eu0 ; τ) of the pair of Legendrian families {Lt} and {Bt ≡ Bu0} of
J1B along the path γ and of the pair of Legendrian families {j1St} and
{Eu0} of J1E along the path τ as in Section 3.1.
By the hypothesis of Theorem 1.1 L0 and L1 are transverse to the 0-wall
0B × R. This implies that their respective tangent spaces are transverse in
the contact hyperplane ξγ(t) to the tangent space to the u0-section Bu0 , for
t = 0, 1. Thus their images lt = Φt(Tγ(t)Lt) and bt = Φt(Tγ(t)Bu0) under
the trivialisation mappings Φt, for t = 0, 1 are transverse. Hence the Maslov
intersection index µ(Lt, Bu0 ; γ) is defined.
Similarly, since j1St and Eu0 are Legendrian submanifolds of J1E their re-
spective tangent spaces Tτ(t)j

1St and Tτ(t)Eu0 at τ(t) are Lagrangian sub-
spaces of the symplectic vector space (ητ(t), (dαE)|η). Hence their images
under the trivialisation mappings Ψt, call them λt and εt, are Lagrangian sub-
spaces of (R2n+2k,Ω0), where Ω0 denotes the standard structure in R

2n+2k.
By the trivialisation Ψ, along the path τ identify all the Lagrangian vector
spaces εt with the fixed Lagrangian space ε0 = R

n+k × 0. Since lt and bt
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intersect transversally for t = 0, 1, so do λt and εt. Hence µ(λt, ε0) is defined.
We call this index the Maslov intersection index of the Legendrian families
{j1St} and {Eu0} along the path τ and we denote it by µ(j1St, Eu0 ; τ).

Let Λ(ξ) be the bundle of Lagrangian vector subspaces of the fibers of the
symplectic vector bundle (ξ, (dαB)|ξ) and let γ∗Λ(ξ) → [0, 1] be its pullback
bundle along γ. Let Λ(η) be the bundle of Lagrangian vector subspaces of the
fibers of the symplectic vector bundle (η, (dαE)|η) and let τ∗Λ(η) → [0, 1] be
its pullback bundle along τ .

Denote by Λτ∗NE
(τ∗η) the bundle of Lagrangian vector subspaces of the

fibers of the symplectic bundle τ∗η transverse to the fibers of the coisotropic
subbundle τ∗NE of τ∗η. By the trivialisation Ψ, along the path τ all the
tangent spaces Tτ(t)NE to the submanifold NE can be identified with a fixed

subspace κ ≃ R
2n+k × 0.

The inclusion

ι : Λτ∗NE
(τ∗η) −→ τ∗Λ(η)

and the projection

ρ : Λτ∗NE
(τ∗η) −→ γ∗Λ(ξ)

induce corresponding maps on each fiber, which by abuse of notation we still
call ι and ρ.

Since the paths t 7→ Tτ(t)Eu0 and t 7→ Tτ(t)(j
1St) belong to Λτ∗NE

(τ∗η),
their respective projections t 7→ Tγ(t)Bu0 and t 7→ Tγ(t)Lt belong to γ∗Λ(ξ)
(see Lemma 3.4); and since the trivialisations have been chosen to be adapted
to the map π : J1E → J1B, one has that ρ(εt) = bt and that ρ(λt) = lt for
all t. Clearly ι(λt) = λt. Therefore by (3.3) and by the continuity of all the
maps involved one obtains that

λt · Λε0 = ι(λt) · Λε0 = ρ(λt) · Λρ(ε0) = lt · Λb0 .

From the geometric interpretation of the relative Maslov intersection index
of a path as the number of algebraic intersections with the Maslov singular
cycle one has that µ(lt, b0) = lt · Λb0 and that µ(λt, ε0) = λt · Λε0 . Then it
follows that

Proposition 3.5. µ(j1St, Eu0 ; τ) = µ(Lt, Bu0 ; γ).

3.4. Non-vanishing of the Maslov intersection index

To conclude the proof of Theorem 1.1 we need two more propositions. We
first show that generating functions allow to relate the Maslov and the Morse
indices. The second result deals with bifurcations from a path of critical
points of a family of smooth functions.

Recall that the Hessian H(S, c) of a function S : E → R at a critical point c
is a bilinear form defined on the tangent space TcE of E at c. A critical point
c is said to be non-degenerate if H(S, c) is non-singular. The Morse index
m(S, c) of a function S at a critical point c is the dimension of the negative
eigenspace of H(S, c) (cf. [15]).
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Proposition 3.6. Let St : E → R, t ∈ [0, 1] be a 1-parameter family of func-
tions and let c : [0, 1] → E be a path such that for each t, c(t) is a critical
points of St. Assume that the critical points c(t) of St, for t = 0, 1 are non-
degenerate. Consider the family of Legendrian submanifols {j1St}t∈[0,1] of

J1E, and let τ : [0, 1] → J1E be the path τ(t) = j1St(c(t)). Then

µ(j1St, Eu0 ; τ) = m(S0, c(0))−m(S1, c(1)).

Proof. Since the interval [0, 1] is contractible, a tubular neighbourhood of the
embedded path t 7→ (t, c(t)) in [0, 1]×E is diffeomorphic to R

d+1 (d = n+ k,
where d = dimE and n = dimB), and the general case can be reduced to
the case S : [0, 1]× R

d → R, c(t) ≡ 0 with 0 being non-degenerate as critical
points of S0 and S1. Since j

1St is transverse to the 0-wall 0E ×R at t = 0, 1,
the tangent space Tτ(t)(j

1St) at τ(t) to j
1St is a Lagrangian subspace of R2d

transverse to R
d × 0 at t = 0, 1.

Associated to the Hessian H(St, c(t)) of the function St at the critical point
c(t) there is a symmetric operator At : Tc(t)E → T ∗

c(t)E defined by At(v) =

H
(

St, c(t)
)

(v, · ). Thus the tangent space to dSt(E) at τ(t) can be identified
with the graph of the symmetric operator At. On the other hand the Jacobian
of the Lagrangian projection ΠE : J1E → T ∗E is non-degenerate when re-
stricted to the contact hyperplanes in TJ1E and so it defines an isomorphism
between the contact hyperplanes and the tangent space of T ∗E. Through this
isomorphism the tangent space Tτ(t)(j

1St) at τ(t) to the Legendrian submani-

fold j1St can be identified to the tangent space TΠE(τ(t))dSt(E) at ΠE(τ(t)) of

the Lagrangian submanifold dSt(E) in T ∗E. Hence Tτ(t)(j
1St) can be thought

of as the graph of the symmetric operator At. In this case by the localisation
properties the Maslov index [16, Theorem 2.3] can be expressed as the differ-
ence of the signatures ofA at the endpoints µ(GrA) = 1

2 (signA(1)−signA(0)),
where the signature is the number of positive eigenvalues minus the num-
ber of negative eigenvalues. The number n−

1 of negative eigenvalues of A(1)
and the number n−

0 of negative eigenvalues of A(0) are m(S1, c(1)) and
m(S0, c(0)) respectively. Since the critical points c(0) and c(1) are assumed
to be non-degenerate the Hessians at those points are non-singular. Thus
the nullity of A(1) and of A(0) is 0 and the number of positive eigenvalues
are d − n−

1 and d − n−
0 respectively. Therefore 1

2 (signA(1) − signA(0)) =
1
2 (((d− n−

1 )− n−
1 )− ((d− n−

0 )− n−
0 ))) = (n−

0 − n−
1 ). �

Using an argument due to Berger [2] we showed in [9] the following

Proposition 3.7. Let St : E → R, t ∈ [0, 1] and c : [0, 1] → E be as in the
above Proposition. If m(S1, c(1)) 6= m(S0, c(0)) then there exists t∗ ∈ (0, 1)
and a convergent sequence (ti, qi) ∈ [0, 1]× E such that qi is a critical point
of Sti different from c(ti) and ti → t∗, qi → c(t∗).

Berger’s argument says that in absence of bifurcation points the relative
homology groups of the critical sets are independent of t, contradicting the
inequality between the Morse indices.
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We can now prove that the non-vanishing of the Maslov intersection index
forces a bifurcation from the path of intersection points of the given Legen-
drian families.

Proof of Theorem 1.1. By Proposition 3.6, Proposition 3.5 and the hypothesis
of Theorem 1.1 one has that

m(S0, c(0))−m(S1, c(1)) = µ(j1St, E; τ) = µ(Lt, B; γ) 6= 0.

Thus Proposition 3.7 implies that there exists t∗ ∈ (0, 1) and a convergent
sequence (ti, qi) ∈ (0, 1) × E such that qi is a critical point of Sti different
from c(ti) and ti → t∗, qi → c(t∗).
By hypothesis each Lt is an embedded submanifold, thus each jSt

is an em-
bedding. Therefore there is a bijection between critical points of St and in-
tersection points of Lt with the 0-wall 0B × R. Hence γ(t∗) = jSt∗

(c(t∗))
is a point of bifurcation from the given path γ of intersection points of the
Legendrian isotopy {Lt} with the u0-section Bu0 of J1B. �

To explicit the relation of Theorem 1.1 with Sandon’s conjectures recall that
a contact form α determines an associated Reeb vector field R by the con-
ditions ıRα = 1 and ıRdα = 0 and that the Reeb chords of a Legendrian
submanifold L are defined to be the Reeb flow segments which begin and
end on L. Then, observe that the Reeb vector field of the standard contact
form αB = du − λB of (J1B, ξ = kerαB) is R = ∂u, so the Reeb flow is
given by translations in the R-direction. Thus critical points of a function
St generating the embedded Legendrian submanifold Lt correspond to Reeb
chords connecting Lt to the u0-section Bu0 of J1B.

4. Bifurcation from a path of discriminant points

In contrast to the case of a Hamiltonian symplectomorphism, contactomor-
phisms contact isotopic to the identity do not need to have fixed points. For
example, since the Reeb vector field never vanishes, for small t the time-t
map of the Reeb flow does not have any fixed point. Sandon [18] discovered
that in contact geometry the role of fixed points of Hamiltonian diffeomor-
phisms is played by translated points. Let φ be a contactomorphism of a
contact manifold (M, ξ = kerα) and let g : M → R be the function defined
by φ∗α = egα. A point q of M is called a translated point of φ (with respect
to the contact form α) if q and its image φ(q) belong to the same Reeb orbit,
and if moreover g(q) = 0 (i.e. the contact form is preserved at q). A point
q is called a discriminant point of φ if it is a translated point which is also
a fixed point, i.e. if φ(q) = q and g(q) = 0. A discriminant point q is said
to be non-degenerate if there are no tangent vectors X of M at q satisfying
simultaneously φ∗X = X and X(g) = 0.

We consider an isotopy φ : [0, 1] → Cont0(M) and a smooth path β : [0, 1] →
M such that β(t) is a discriminant point of φt, for all t.
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Definition 4.1. A discriminant point β(t∗) of φ(t∗) is said to be a bifurcation
point from a path of discriminant points β of a contact isotopy {φt} if any
neighbourhood of (t∗, β(t∗)) in [0, 1] ×M contains points (t, q) where q is a
translated point of φt such that q 6= β(t).

We shall define the Conley-Zehnder index CZ(φt, β) for the contact isotopy
{φt} along the path β of discriminant points. Our aim is to show that the
non-vanishing of the Conley-Zehnder index forces a bifurcation from the given
path of discriminant points (Corollary 1.2). In order to apply Theorem 1.1
we need to associate to a contactomorphism of M a Legendrian submanifold
in a 1-jet bundle.
The contact product ofM with itself is defined to be the manifoldM×M×R

endowed with the contact structure given by the kernel of the product contact
form A = eθα1 − α2, where α1 and α2 are the pullback of α with respect to
the projections of M ×M × R into the first and second factors respectively
and θ is the R-coordinate. The contact diagonal ∆ = {(q, q, 0) | q ∈ M}
and the contact graph of φ, gr(φ) = {(q, φ(q), g(q)) | q ∈M} are Legendrian
submanifolds of M ×M × R.
By Weinstein’s neighbourhood theorem for Legendrian submanifolds, a neigh-
bourhood of ∆ in the product contact manifold M ×M ×R is contactomor-
phic, by a contactomorphism Θ that preserves also the contact form, to a
neighbourhood of the 0-section in the 1-jet bundle J1∆ of ∆. (See Theorem
2.5.8 and Example 2.5.11 in [11]).

Assuming that the discriminant points β(t) of {φt}, for t = 0, 1 are non-
degenerate, we define the relative Conley-Zehnder index of {φt} along the
path of discriminant points β to be the relative Maslov intersection index
of the 1-parameter family of Legendrian submanifolds {Θ(gr(φt))} with ∆
along the path t→ Θ(β(t), β(t), 0), i.e.

CZ(φt;β) = µ(Θ(gr(φt)),∆;Θ(β, β, 0)).

Recall that in the symplectic case fixed points of Hamiltonian symplectomor-
phisms correspond to intersection points of their graphs with the diagonal;
instead in the contact case translated points of a contactomorphism φ are in
one to one correspondence with Reeb chords between the contact graph of φ
and the contact diagonal in M ×M ×R. Indeed, if q is a translated point of
φ then the corresponding point in gr(φ) is of the form (q, ϕR

t0
(q), 0) for some

t0, where ϕ
R
t is the Reeb flow generated by the Reeb vector field R defined

by the contact form α. The Reeb flow of the contact form A is generated by
the vector field (0,−R, 0). Thus (q, ϕR

t0
(q), 0) and (q, q, 0) belong to the same

Reeb orbit.
A time-dependent Hamiltonian function Ht uniquely defines a (contact) vec-
tor field Xt by ıXt

dα = dHt(Xt)−dHt and α(Xt) = Ht. Observe that, unlike
in the symplectic case, all contact isotopies can be written as the flow induced
by a time-dependent function onM . Moreover the contact Hamiltonian func-
tion of a contact isotopy is uniquely defined, since by adding a constant to a
function the generated isotopy changes (because α(Xt) = Ht). Hence there
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is a 1-1 correspondence between contact isotopies and Hamiltonian functions
(which however depend on the choice of a contact form α for ξ).

Proof of Corollary 1.2. We follow the idea of the proof given in [9] for the

symplectic case. Let {H̃t} be the family of time-dependent Hamiltonian func-
tions associated to the given contact isotopy {φt}. Let U be a Weinstein
neighbourhood of the diagonal ∆ in M ×M ×R, V the corresponding neigh-
bourhood of the 0-section of J1∆ and Θ: U → V a contactomorphism pre-
serving the contact form. In order to be in the hypothesis of Theorem 1.1
we modify the Hamiltonian H̃. To simplify, for the contractibility of [0, 1],
we can assume the path β(t) to be constant, i.e. β(t) ≡ p. Then take any
metric on M and consider a ball B(p, 2r) and a positive ǫ such that the clo-
sure of B(p, 2r) × B(p, 2r) × (−ǫ, ǫ) is contained in U . Let f : M → R be
such that 0 ≤ f ≤ 1, f ≡ 1 on B(p, r) and f ≡ 0 outside B(p, 2r). Define

H : [0, 1] ×M → R by H(t, v) = f(v)H̃(t, v). Let Xt = X(Ht) and let ψt

be the corresponding flow. By definition of H , ψt(v) = v outside of B(p, 2r)
and therefore the manifold gr(ψt) ∩ U coincide with the contact diagonal ∆
outside the closure of B(p, 2r)×B(p, 2r)× (−ǫ, ǫ). Thus Lt = Θ(gr(ψt)∩U)
is a Legendrian submanifold of J1∆ with compact support. Since L0 has a
generating function, being ψ0 contact isotopic to the identity map of M , if
CZ(φ, β) 6= 0 we can apply Theorem 1.1 to {Lt} and to the 0-section ∆ of
J1∆. Thus we obtain at least one point of bifurcation for intersection points
of {Lt} with ∆ from the intersection path t 7→ γ = Θ(β(t), β(t), 0).

Intersection points of Lt with the 0-wall of J1∆ correspond to Reeb chords
between Lt and the 0-section of J1∆, which correspond to Reeb chords be-
tween the gr(ψt) ∩ U and the diagonal in M ×M × R, hence to translated
points of ψt.

Therefore the point of bifurcation from the path γ of intersection points of
the 1-parameter Legendrian family {Lt} with the 0-section ∆ corresponds
to a point of bifurcation from the given path β of discriminant points of
the contact isotopy {ψt}. Namely, we find a convergent sequence (ti, qi) ∈
(0, 1) ×M with ti → t∗, qi → p∗, such that qi is a translated point of ψti

and qi 6= β(ti) for all i. By continuous dependence on initial conditions and
parameters for solutions of differential equations and compactness of [0, 1]
it is possible to find a ball B(p, δ) such that for all v ∈ B(p, δ) and all
t ∈ [0, 1] ψt(v) ∈ B(p, r). Since on B(p, δ) we have that ψt(v) = φt(v) for all
t then for i large we have that qi is a translated point of φi. �
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