
On the Sun-shadow dynamics

Cavallari I., Gronchi G.F., Baù G.
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The Sun-shadow dynamics is a model to study the
short-period evolution of an Earth satellite subjected
to the solar radiation pressure which passes through

the Earth shadow. It arises by patching two
integrable dynamics: Kepler’s and Stark’s dynamics.
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Kepler’s problem

Hamilton’s function: Hk = 1
2(p

2
x + p2y)− µ/

√
x2 + y2

with px and py the momenta conjugated to the variables x and y
and µ the gravitational parameter of the Earth

Other integrals of motion:

- Laplace-Lenz Vector:

A =

[
py(pxy − pyx) + µx/

√
x2 + y2

px(pxy − pyx)− µy/
√
x2 + y2

]
- Angular momentum:

Ck = pyx− pxy

We denote by Lk the opposite of the x-component of A
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Stark’s problem

Hamilton’s function: Hs =
1
2(p

2
x + p2y)− µ/

√
x2 + y2 − fx

with f > 0 constant acceleration

Other integral of motion: Ls = py(pxy − pyx) + µx/
√
x2 + y2 − fy2/2

Depending on the values hs, ℓs of Hs, Ls, there exist different types of trajectories:

- Region I: unbounded, self-intersecting, not encircling the center of attraction
- Region II : unbounded, self-intersecting, encircling the center of attraction
- Region III : unbounded, not self-intersecting
- Region IV: bounded + unbounded, self-intersecting, not encircling the center

of attraction

There exists a family of periodic orbits of brake type (i.e. developing between two zero velocity
points) at the boundary between regions II and IV, see red curve.
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Parabolic Coordinates

There exists a suitable change of coordinates which separates the variables in the
Hamilton-Jacobi equations of both Kepler’s and Stark’s problems:

x =
u2 − v2

2
, y = uv, px =

upu − vpv
u2 + v2

, py =
vpu + upv
u2 + v2

,
dτ

dt
=

1

u2 + v2

Kepler’s dynamics Stark’s dynamics

Hamilton-Jacobi equation: Hamilton-Jacobi equation:(
∂W
∂u

)2
+

(
∂W
∂v

)2
= 2(hk(u

2 + v2) + 2µ)
(
∂W
∂u

)2
+

(
∂W
∂v

)2
= 2(hs(u

2 + v2) + 2µ) + f(u4 − v4)
↓ ↓{

p2u = 2hku
2 + 2(µ+ ℓk)

p2v = 2hkv
2 + 2(µ− ℓk)

{
p2u = 2hsu

2 + 2(µ+ ℓs) + fu4

p2v = 2hsv
2 + 2(µ− ℓs)− fv4

with ℓs, hs, ℓk, hk the values of Ls, Hs, Lk and Hk
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Sun-shadow dynamics

The solar radiation pressure can become the main perturbation when the area-to-mass
ratio of the satellite is large, but it has no effect inside the shadow region of the Earth.
During short periods of time, the relative motion between the Earth and the Sun can

be neglected and the solar radiation pressure can be considered constant.

Kepler’s regime: red - Stark’s regime : blue

↓

The Sun-shadow problem arises by
patching Kepler’s dynamics, in the

shadow region, to Stark’s dynamics, in
the out-of-shadow region.

I. Cavallari, G.F. Gronchi, G. Baù On the Sun-shadow dynamics 5 /9



Sun-shadow dynamics

Each time the satellite crosses the boundary of the shadow region, there is a leap in
energy from hs to hk, or vice versa. A similar leap occurs from ℓs to ℓk, or vice versa.
When the satellite goes back to Stark’s regime, the value of Ls is the same as before
crossing the shadow; on the other hand, the energy usually changes unless the orbit is

symmetric with respect to the x-axis.

at point p0: ℓs0
at point p1: ℓk1 = ℓs0 + fR2/2
at point p2: ℓs2 = ℓk1

− fR2/2

where R is the Earth’s radius
⇓
ℓs0 = ℓs2
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Periodic orbit of brake type

There exists a family of periodic orbits of brake type, which are close to the brake-type
periodic orbits of Stark’s problem, for ℓs ∈ I,

I = [ℓs
−, ℓs

+] ∈ (−µ, µ), ℓ±s = −5fR2/4±
√

µ2 + 9f2R4/16− 5fR2µ/2

Idea of the proof:
For a fixed value ℓs ∈ I, we search for a point (x0, 0) in
Kepler’s regime allowing us to reach a zero velocity

point in Stark’s regime, taking advantage of the features
of Stark’s periodic orbits and Stark’s regions II and IV.
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Sun-shadow map

To study the Sun-shadow dynamics, we consider a Poincaré map

S : D ⊂ R2 → R2,

(u, pu) 7→ (u′, p′u),

with Poincaré section Σ,

Σ = {(pu, pv, u, v) : |u| ≥
√
R, uv = R, upv > max(0,−puv), Ls = ℓs}.

The map is differentiable and non area-preserving.

The periodic orbit of brake type corresponds to two hyperbolic points of the map.

Note that in the (u, v) plane the shadow region is doubled because the map (u, v) 7→ (x, y)
doubles the values of the angles, like in Levi-Civita regularisation.
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Sun-shadow map

Global picture of the map
In the central region, the plotted points show regular
structures. In a neighbourhood of the hyperbolic
points, along the stable and unstable branches of

their invariant manifold, the regular behaviour seems
to be lost.

Comparison with Stark’s phase portrait
For the same value of Ls, we plot the level curves of

Stark’s problem on the (u, pu) plane. The two
hyperbolic points appearing here correspond to

Stark’s periodic orbit of brake type.
↓

The Sun-shadow problem can be seen as a perturbed
Stark’s dynamics
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